Research on a 3D Point Cloud Map Learning Algorithm Based on Point Normal Constraints
Abstract
:1. Introduction
- (1)
- The integration of Dirichlet energy with the coupling orthogonality deviation term to improve the accuracy and robustness of feature map learning denoising;
- (2)
- The introduction of a density function to better illustrate the correlation between the local features of the point cloud, preserving the fundamental structure of the denoised point cloud;
- (3)
- The design of denoising algorithms for Gaussian noise and Laplace noise, thereby eliminating both types of noise simultaneously.
2. Related Work
2.1. Methods Based on Sparsity
2.2. Non-Local Methods
2.3. Based on the Moving Least Squares (MLS) Method
2.4. Methods Based on Local Optimal Projection (LOP)
2.5. Graph-Based Methods
2.6. Methods Based on Deep Learning
3. Methods
3.1. Normal Point Constraint Feature Map Learning Model
3.1.1. Three-Dimensional Point Cloud and Noise Model
3.1.2. Normal Vector Local Consistency Constraint
3.1.3. Probability Density Function
3.2. Maximum A Posteriori (MAP) Point Cloud Denoising
3.3. Point Cloud Noise Removal Solution
4. Algorithm Design
Algorithm 1: Denoising for 3D point cloud based on PNCFGL |
. . ; do; as a block center; nearest neighbors of the center of each block to form a surface block; ; ; converges; 9: end for |
5. Performance Evaluation
6. Results and Discussion
6.1. Comparison and Analysis of Noise Reduction Performance
6.2. Noise Reduction Applications of 3D Point Clouds
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, X.; Zhang, T.; Xie, H. DualShape. Sketch-based 3D Shape Design with Part Generation and Retrieval. IEEE Access 2024, 12, 18888–18900. [Google Scholar] [CrossRef]
- Park, M.; Park, C.; Kwon, N.K. Autonomous Driving of Mobile Robots in Dynamic Environments Based on Deep Deterministic Policy Gradient: Reward Sha and Hindsight Experience Replay. Biomimetics 2024, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Pintos Gómez de las Heras, B.; Martínez-Tomás, R.; Cuadra Troncoso, J.M. Self-Learning Robot Autonomous Navigation with Deep Reinforcement Learning Techniques. Appl. Sci. 2024, 14, 366. [Google Scholar] [CrossRef]
- Ping, G.; Esfahani, M.A.; Chen, J.; Wang, H. Visual enhancement of single-view 3D point cloud reconstruction. Comput. Graph. 2022, 102, 112–119. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, X.; Xu, Z. Quasi-Dense Matching Algorithm for Close-Range Image Combined with Feature Line Constraint. IEEE Access 2022, 10, 117914–117924. [Google Scholar] [CrossRef]
- Holmström, S.T.; Baran, U.; Urey, H. MEMS laser scanners: A Review. J. Microelectromech. Syst. 2014, 23, 259–275. [Google Scholar] [CrossRef]
- Cutti, A.G.; Santi, M.G.; Hansen, A.H.; Fatone, S. Accuracy, Repeatability, and Reproducibility of a Hand-Held Structured-Light 3D Scanner across Multi-Site Settings in Lower Limb Prosthetics. Sensors 2024, 24, 2350. [Google Scholar] [CrossRef]
- Hu, Z.; Jiang, C.; Zhu, J.; Zhao, Y.; Liu, Z.; Yuan, Y.; Wang, Y. Efficient and robust chaos single photon Lidar. Opt. Laser Technol. 2024, 174, 110623. [Google Scholar] [CrossRef]
- Gou, F.; Li, Y.; Hou, C.; Wang, H. 3D point cloud global denoising algorithm based on different noise characteristics. Meas. Sci. Technol. 2023, 35, 015032. [Google Scholar] [CrossRef]
- Ping, G.; Wang, H. PushNet. 3D reconstruction from a single image by pushing. Neural Comput. Appl. 2024, 36, 6629–6641. [Google Scholar] [CrossRef]
- Wang, L.; Yang, B.; Ye, H.; Cao, F. Two-view point cloud registration network: Feature and geometry. Appl. Intell. 2024, 54, 3135–3151. [Google Scholar] [CrossRef]
- Zeng, J.; Cheung, G.; Ng, M.; Pang, J.; Yang, C. 3D point cloud denoising using graph Laplacian regularization of a low dimensional manifold model. IEEE Trans. Image Process. 2019, 29, 3474–3489. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Gao, X.; Cheung, G.; Guo, Z. Feature graph learning for 3D point cloud denoising. IEEE Trans. Signal Process. 2020, 68, 2841–2856. [Google Scholar] [CrossRef]
- Sun, Y.; Schaefer, S.; Wang, W. Denoising point sets via L0 minimization. Comput. Aided Geom. Des. 2015, 35, 2–15. [Google Scholar] [CrossRef]
- Avron, H.; Sharf, A.; Greif, C.; Cohen-Or, D. ℓ1-sparse reconstruction of sharp point set surfaces. ACM Trans. Graph. (TOG) 2010, 29, 1–12. [Google Scholar] [CrossRef]
- Mattei, E.; Castrodad, A. Point cloud denoising via moving RPCA. Comput. Graph. Forum 2017, 36, 123–137. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2005, 2, 60–65. [Google Scholar]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Deschaud, J.E.; Goulette, F. Point cloud non local denoising using local surface descriptor similarity. PCV Photogramm. Comput. Vision. 2010, 120, 108128. [Google Scholar] [CrossRef]
- Alexa, M.; Behr, J.; Cohen-Or, D.; Fleishman, S.; Levin, D.; Silva, C.T. Computing and rendering point set surfaces. IEEE Trans. Vis. Comput. Graph. 2003, 9, 3–15. [Google Scholar] [CrossRef]
- Guennebaud, G.; Gross, M. Algebraic point set surfaces. In Proceedings of the SIGGRAPH07: Special Interest Group on Computer Graphics and Interactive Techniques Conference, San Diego, CA, USA, 5–9 August 2007. [Google Scholar]
- Huang, H.; Li, D.; Zhang, H.; Ascher, U.; Cohen-Or, D. Consolidation of unorganized point clouds for surface reconstruction. ACM Trans. Graph. (TOG) 2009, 28, 1–7. [Google Scholar] [CrossRef]
- Huang, H.; Wu, S.; Gong, M.; Cohen-Or, D.; Ascher, U.; Zhang, H. Edge-aware point set resampling. ACM Trans. Graph. (TOG) 2013, 32, 1–12. [Google Scholar] [CrossRef]
- Dinesh, C.; Cheung, G.; Bajić, I.V. Point cloud denoising via feature graph laplacian regularization. IEEE Trans. Image Process. 2020, 29, 4143–4158. [Google Scholar] [CrossRef] [PubMed]
- Schoenenberger, Y.; Paratte, J.; Vandergheynst, P. Graph-based denoising for time-varying point clouds. In Proceedings of the 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), Lisbon, Portugal, 8–10 July 2015; IEEE: New York, NY, USA, 2015; pp. 1–4. [Google Scholar]
- Zhang, X.; Cheung, G.; Pang, J.; Sanghvi, Y.; Gnanasambandam, A.; Chan, S.H. Graph-based depth denoising & dequantization for point cloud enhancement. IEEE Trans. Image Process. 2022, 31, 6863–6878. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zou, B.; Xu, J.; Yang, S.; Li, Y. Denoising for 3D point cloud based on regularization of a statistical low-dimensional manifold. Sensors 2022, 22, 2666. [Google Scholar] [CrossRef]
- Han, X.F.; Jin, J.S.; Wang, M.J.; Jiang, W.; Gao, L.; Gao, L. A review of algorithms for filtering the 3D point cloud. Signal Process. Image Commun. 2017, 57, 103–112. [Google Scholar] [CrossRef]
- Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Rakotosaona, M.J.; La Barbera, V.; Guerrero, P.; Mitra, N.J.; Ovsjanikov, M. Pointcleannet: Learning to denoise and remove outliers from dense point clouds. Comput. Graph. Forum 2020, 39, 185–203. [Google Scholar] [CrossRef]
- Xiao, D.; Shi, Z.; Li, S.; Deng, B.; Wang, B. Point normal orientation and surface reconstruction by incorporating isovalue constraints to poisson equation. Comput. Aided Geom. Des. 2023, 103, 102195. [Google Scholar] [CrossRef]
Noise Levels | = 0.02 | = 0.03 | = 0.04 | = 0.05 | Average | Time |
---|---|---|---|---|---|---|
Noisy | 0.259 | 0.322 | 0.372 | 0.417 | 0.343 | 754 s |
APSS | 0.208 | 0.239 | 0.254 | 0.267 | 0.242 | 891 s |
AWLOP | 0.237 | 0.259 | 0.306 | 0.315 | 0.280 | 780 s |
NLD | 0.231 | 0.265 | 0.297 | 0.331 | 0.281 | 718 s |
MRPCA | 0.202 | 0.230 | 0.242 | 0.253 | 0.232 | 868 s |
RSLDM | 0.201 | 0.228 | 0.240 | 0.249 | 0.230 | 1073 s |
Ours | 0.199 | 0.226 | 0.237 | 0.245 | 0.227 | 782 s |
Noise Level | = 0.02 | = 0.03 | = 0.04 | = 0.05 | Average | Time |
---|---|---|---|---|---|---|
Noisy | 47.41 | 45.25 | 43.18 | 42.65 | 44.62 | 754 s |
APSS | 49.61 | 48.24 | 47.60 | 47.09 | 48.14 | 891 s |
NLD | 48.53 | 47.16 | 46.02 | 44.94 | 46.66 | 780 s |
AWLOP | 48.31 | 46.69 | 45.74 | 45.44 | 46.54 | 718 s |
MRPCA | 49.88 | 48.60 | 48.09 | 47.64 | 48.55 | 868 s |
RSLDM | 49.97 | 48.65 | 48.12 | 47.76 | 48.62 | 1073 s |
Ours | 50.04 | 48.70 | 48.15 | 47.81 | 48.68 | 782 s |
Method | Noisy | APSS | NLD | AWLOP | MRPCA | RSLDM | Ours |
---|---|---|---|---|---|---|---|
= 0.02 | |||||||
a | 0.103 | 0.052 | 0.075 | 0.081 | 0.047 | 0.046 | 0.043 |
b | 0.116 | 0.065 | 0.083 | 0.092 | 0.057 | 0.057 | 0.054 |
c | 0.119 | 0.061 | 0.080 | 0.089 | 0.056 | 0.054 | 0.052 |
d | 0.113 | 0.063 | 0.082 | 0.091 | 0.057 | 0.056 | 0.053 |
Average | 0.112 | 0.060 | 0.080 | 0.088 | 0.054 | 0.053 | 0.505 |
= 0.03 | |||||||
a | 0.160 | 0.077 | 0.102 | 0.092 | 0.065 | 0.064 | 0.062 |
b | 0.159 | 0.075 | 0.104 | 0.096 | 0.068 | 0.063 | 0.063 |
c | 0.161 | 0.079 | 0.103 | 0.098 | 0.069 | 0.066 | 0.064 |
d | 0.160 | 0.076 | 0.102 | 0.091 | 0.065 | 0.063 | 0.062 |
Average | 0.160 | 0.076 | 0.103 | 0.094 | 0.067 | 0.064 | 0.063 |
= 0.04 | |||||||
a | 0.207 | 0.089 | 0.132 | 0.141 | 0.077 | 0.075 | 0.072 |
b | 0.195 | 0.078 | 0.121 | 0.130 | 0.064 | 0.064 | 0.062 |
c | 0.204 | 0.090 | 0.130 | 0.142 | 0.078 | 0.077 | 0.073 |
d | 0.203 | 0.088 | 0.127 | 0.140 | 0.075 | 0.073 | 0.071 |
Average | 0.202 | 0.086 | 0.128 | 0.138 | 0.074 | 0.072 | 0.070 |
= 0.05 | |||||||
a | 0.253 | 0.103 | 0.167 | 0.151 | 0.089 | 0.087 | 0.081 |
b | 0.242 | 0.096 | 0.158 | 0.141 | 0.082 | 0.076 | 0.073 |
c | 0.254 | 0.102 | 0.168 | 0.153 | 0.091 | 0.086 | 0.082 |
d | 0.257 | 0.108 | 0.170 | 0.156 | 0.094 | 0.088 | 0.084 |
Average | 0.252 | 0.102 | 0.166 | 0.150 | 0.089 | 0.084 | 0.080 |
Method | Noisy | APSS | NLD | AWLOP | MRPCA | RSLDM | Ours |
---|---|---|---|---|---|---|---|
= 0.02 | |||||||
a | 81.55 | 83.75 | 82.65 | 82.45 | 84.02 | 84.10 | 84.18 |
b | 76.32 | 78.30 | 77.32 | 76.69 | 78.69 | 78.75 | 78.83 |
c | 79.50 | 81.63 | 80.25 | 80.33 | 82.01 | 82.10 | 82.16 |
d | 78.68 | 80.88 | 79.90 | 79.58 | 81.12 | 81.25 | 81.31 |
Average | 79.01 | 81.14 | 80.03 | 79.76 | 81.46 | 81.55 | 81.58 |
= 0.03 | |||||||
a | 77.08 | 80.07 | 78.99 | 78.50 | 80.43 | 80.44 | 80.53 |
b | 74.64 | 77.63 | 76.55 | 76.16 | 78.06 | 78.12 | 78.19 |
c | 77.34 | 80.23 | 79.09 | 78.68 | 80.56 | 80.61 | 80.69 |
d | 76.56 | 79.39 | 78.30 | 77.89 | 79.78 | 79.87 | 79.91 |
Average | 76.40 | 79.33 | 78.23 | 77.81 | 79.71 | 79.76 | 79.83 |
= 0.04 | |||||||
a | 74.02 | 78.56 | 76.90 | 76.62 | 78.99 | 79.01 | 79.05 |
b | 71.66 | 76.08 | 74.55 | 74.25 | 76.54 | 76.54 | 76.63 |
c | 74.17 | 78.66 | 77.09 | 76.86 | 79.18 | 79.20 | 79.24 |
d | 73.52 | 77.96 | 76.42 | 76.32 | 78.43 | 78.47 | 78.53 |
Average | 73.34 | 77.82 | 76.24 | 76.01 | 78.29 | 78.28 | 78.36 |
= 0.05 | |||||||
a | 72.52 | 76.96 | 74.81 | 75.31 | 77.51 | 77.56 | 77.68 |
b | 70.06 | 74.50 | 72.45 | 72.79 | 75.06 | 75.10 | 75.20 |
c | 72.65 | 77.19 | 75.12 | 75.54 | 77.86 | 77.87 | 77.91 |
d | 72.15 | 76.52 | 74.45 | 74.92 | 77.12 | 77.18 | 77.28 |
Average | 71.85 | 76.29 | 74.21 | 74.64 | 76.89 | 76.92 | 77.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Z.; Liu, Y.; Xu, L.; Shahed, M.H.; Shi, L. Research on a 3D Point Cloud Map Learning Algorithm Based on Point Normal Constraints. Sensors 2024, 24, 6185. https://doi.org/10.3390/s24196185
Fang Z, Liu Y, Xu L, Shahed MH, Shi L. Research on a 3D Point Cloud Map Learning Algorithm Based on Point Normal Constraints. Sensors. 2024; 24(19):6185. https://doi.org/10.3390/s24196185
Chicago/Turabian StyleFang, Zhao, Youyu Liu, Lijin Xu, Mahamudul Hasan Shahed, and Liping Shi. 2024. "Research on a 3D Point Cloud Map Learning Algorithm Based on Point Normal Constraints" Sensors 24, no. 19: 6185. https://doi.org/10.3390/s24196185
APA StyleFang, Z., Liu, Y., Xu, L., Shahed, M. H., & Shi, L. (2024). Research on a 3D Point Cloud Map Learning Algorithm Based on Point Normal Constraints. Sensors, 24(19), 6185. https://doi.org/10.3390/s24196185