Design and Implementation of an Ultra-Wideband Water Immersion Antenna for Underwater Ultrasonic Sensing in Microwave-Induced Thermoacoustic Tomography
Abstract
:1. Introduction
Reference | Antenna | Operation Frequency/ Bandwidth | Size/Aperture | Application Scenario | Background Medium |
---|---|---|---|---|---|
[21] | Quasi-conical spiral antenna | 3 GHz | 17.5 × 182 mm2 | MITAT | Mineral oil |
[22] | Horn antenna | 3 GHz | 476 × 346 × 700 mm | MITAT | Mineral oil |
[23] | Polarized antenna | 3 GHz | 175 × 156 mm2 | MITAT | Mineral oil |
[27] | Beamforming array antenna | 1.6–3.3 GHz | Circle with radius of 50 mm | MITAT | Mineral oil |
[24] | Waveguide | 2.45 GHz | 109.22 × 54.61 mm2 | MITAT | Acoustic coupling |
[25] | Cascaded Waveguide | 3 GHz | 72 mm × 34 mm plus 72 mm × 5 mm | MITAT | Water |
[47] | dipole antenna array | 0.8–1.2 GHz | Circle with radius of 223.5 mm | MWT | Salt water |
[45] | Wide-slot antenna | About 4.3–5.7 GHz; 6.5–10 GHz | 14 mm × 13 mm × 1.25 mm | MWT | Customed Medium |
This work | Water-immersion antenna | 0.84–2.75 GHz | 55 mm × 55 mm × 63.2 mm | MITAT | Water |
2. Power Loss Analysis
2.1. Ultrasonic Wave Power Loss
2.2. Microwave Power Loss
3. Antenna Design
3.1. Antenna Structure
3.2. Radiating Element Design
3.3. Balun Design
4. Antenna Performance
4.1. Antenna Simulation
4.2. Antenna Fabrication
4.3. Antenna Measurement
5. Microwave Power Absorption under the Illumination of the Proposed Antenna
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mckinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.; et al. International evaluation of an AI system for breast cancer screening. Nature 2020, 577, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Hassan, E.M.; DeRosa, M.C. Recent advances in cancer early detection and diagnosis: Role of nucleic acid-based aptasensors. TrAC Trends Anal. Chem. 2020, 124, 115806. [Google Scholar] [CrossRef]
- Lyu, S.; Cheung, R.C.C. An efficient and automatic breast cancer early diagnosis system is based on the hierarchical extreme learning machine. Sensors 2023, 23, 7772. [Google Scholar] [CrossRef]
- Harmsen, S.; Wall, M.A.; Huang, R.; Kircher, M.F. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat. Protoc. 2017, 12, 1400. [Google Scholar] [CrossRef] [PubMed]
- Cheon, H.; Yang, H.J.; Son, J.H. Toward clinical cancer imaging using terahertz spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 8600109. [Google Scholar] [CrossRef]
- De Visschere, P.J.L.; Standaert, C.; Fütterer, J.J.; Villeirs, G.M.; Panebianco, V.; Walz, J.; Maurer, T.; Hadaschik, B.A.; Lecouvet, F.E.; Giannarini, G.; et al. A systematic review on the role of imaging in early recurrent prostate cancer. Eur. Urol. Oncol. 2019, 2, 47–76. [Google Scholar] [CrossRef] [PubMed]
- Baran, P.; Pacile, S.; Nesterets, Y.I.; Mayo, S.C.; Dullin, C.; Dreossi, D.; Arfelli, F.; Thompson, D.; Lockie, D.; McCormack, M.; et al. Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging. Phys. Med. Biol. 2017, 62, 2315–2332. [Google Scholar] [CrossRef]
- Gergel’, T.; Hamza, J.; Ondrejka, V.; Nemec, M.; Vanek, M.; Drugdova, J. Radiation protection of a 3D computer tomography scanning workplace for Logs-A case study. Sensors 2023, 23, 8937. [Google Scholar] [CrossRef]
- Han, B.K.; Garcia, S.; Aboulhosn, J.; Blanke, P.; Martin, M.H.; Zahn, E.; Crean, A.; Overman, D.; Craig, C.H.; Hanneman, K.; et al. Technical recommendations for computed tomography guidance of intervention in the right ventricular outflow tract: Native RVOT, conduits and bioprosthetic valves: A white paper of the Society of Cardiovascular Computed Tomography (SCCT), Congenital Heart Surgeons’ Society (CHSS), and Society for Cardiovascular Angiography & Interventions (SCAI). J. Cardiovasc. Comput. Tomogr. 2024, 18, 75–99. [Google Scholar] [CrossRef]
- Willke, P.; Yang, K.; Bae, Y.; Heinrich, A.J.; Lutz, C.P. Magnetic resonance imaging of single atoms on a surface. Nat. Phys. 2019, 15, 1005–1010. [Google Scholar] [CrossRef]
- Neugut, A.I.; Sackstein, P.; Hillyer, G.C.; Jacobson, J.S.; Bruce, J.; Lassman, A.B.; Stieg, P.A. Magnetic Resonance Imaging-Based Screening for Asymptomatic Brain Tumors: A Review. Oncologist 2019, 24, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Avery, J.C.; Deslandes, A.; Freger, S.M.; Leonardi, M.; Lo, G.; Carneiro, G.; Condous, G.; Hull, M.L. Noninvasive diagnostic imaging for endometriosis part 1: A systematic review of recent developments in ultrasound, combination imaging, and artificial. Fertil. Steril. 2024, 121, 164–188. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Tan, C.; Dong, F. Design of Ultrasonic Tomography System for Biomedical Imaging. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, Auckland, New Zealand, 20–23 May 2019. [Google Scholar] [CrossRef]
- Zaatar, O.; Zakaria, A.; Qaddoumi, N. A novel switch for microwave imaging systems. IEEE Access 2024, 12, 26978–26990. [Google Scholar] [CrossRef]
- Wu, L.H.; Cheng, Z.W.; Ma, Y.Z.; Li, Y.; Ren, M.; Xing, D.; Qin, H. A handheld microwave thermoacoustic imaging system with an impedance matching microwave-sono probe for breast tumor screening. IEEE Trans. Med. Imaging 2022, 41, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.S.; Zhang, X.J.; Zhang, L.J.; Li, C.; Wu, T.; Wang, X. Investigation of transducer distribution in compressive thermoacoustic tomography for breast cancer detection. IEEE Sens. J. 2024, 24, 788–797. [Google Scholar] [CrossRef]
- Yan, A.; Lin, L.; Liu, C.J.; Shi, J.H.; Na, S.; Wang, L.H.V. Microwave-induced thermoacoustic tomography through an adult human skull. Med. Phys. 2019, 46, 1793–1797. [Google Scholar] [CrossRef]
- Machado, A. Prospects of Photo-and Thermoacoustic Imaging in Neurosurgery. Neurosurgery 2020, 87, 24. [Google Scholar]
- Liang, M.; Yang, K.; Feng, M.Y.; Mu, K.J.; Jiao, M.Q.; Li, L. Acoustic Imaging Method for Gas Leak Detection and Localization Using Virtual Ultrasonic Sensor Array. Sensors 2024, 24, 1366. [Google Scholar] [CrossRef]
- Liu, S.Y.; Zhang, R.C.; Zheng, Z.S.; Zheng, Y.J. Electromagnetic-acoustic sensing for biomedical applications. Sensors 2018, 18, 3203. [Google Scholar] [CrossRef]
- Yan, A.; Lin, L.; Na, S.; Liu, C.J.; Wang, L.H.V. Large field homogeneous illumination in microwave-induced thermoacoustic tomography based on a quasi-conical spiral antenna. Appl. Phys. Lett. 2018, 113, 123701. [Google Scholar] [CrossRef]
- He, Y.; Liu, C.J.; Lin, L.; Wang, L.H.V. Comparative effects of linearly and circularly polarized illumination on microwave induced thermoacoustic tomography. IEEE Antennas Wirel. Propag. Lett. 2017, 16. [Google Scholar] [CrossRef]
- He, Y.; Shen, Y.C.; Feng, X.H.; Liu, C.J.; Wang, L.V. Homogenizing microwave illumination in thermoacoustic tomography by a linear-to-circular polarizer based on frequency selective surfaces. Appl. Phys. Lett. 2017, 111, 063703. [Google Scholar] [CrossRef]
- Luo, Z.X.; Li, C.Z.; Liu, D.T.; Wang, B.S.; Zhang, L.J.; Ma, Y.X.; Xu, K.W.; Wang, X. Quantitative Reconstruction of Dielectric Properties Based on Deep-Learning-Enabled Microwave-Induced Thermoacoustic Tomography. IEEE Trans. Microw. Theory Tech. 2023, 71, 2652–2663. [Google Scholar] [CrossRef]
- Ku, G.; Wang, L.V. Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast. Med. Phys. 2001, 28, 4–10. [Google Scholar] [CrossRef]
- Qin, H.; Qin, B.H.; Yuan, C.; Chen, Q.; Xing, D. Pancreatic Cancer detection via Galectin-1-targeted Thermoacoustic Imaging: Validation in an in vivo heterozygosity model. Theranostics 2020, 10, 9172–9185. [Google Scholar] [CrossRef]
- Nan, H.; Liu, S.Y.; Buckmaster, J.G.; Arbabian, A. Beamforming Microwave-Induced Thermoacoustic Imaging for Screening Applications. IEEE Trans. Microw. Theory Tech. 2019, 67, 464–474. [Google Scholar] [CrossRef]
- Li, C.H.; Pramanik, M.; Ku, G.; Wang, L.V. Image distortion in thermoacoustic tomography caused by microwave diffraction. Phys. Rev. E 2008, 77, 031923. [Google Scholar] [CrossRef]
- Huang, L.; Yao, L.; Liu, L.X.; Rong, J.; Jiang, H.B. Quantitative thermoacoustic tomography: Recovery of conductivity maps of heterogeneous media. Appl. Phys. Lett. 2013, 101, 244106. [Google Scholar] [CrossRef]
- He, Y.; Shen, Y.C.; Liu, C.J.; Wang, L.H.V. Suppressing excitation effects in microwave induced thermoacoustic tomography by multi-view Hilbert transformation. Appl. Phys. Lett. 2017, 110, 053701. [Google Scholar] [CrossRef]
- Du, Y.; Xu, Y.; Wu, J.; Qiao, J.; Wang, Z.; Hu, Z.; Jiang, Z.; Liu, M. Very-Low-Frequency magnetoelectric antennas for portable underwater communication: Theory and experiment. IEEE Trans. Antennas Propag. 2023, 71, 2167–2181. [Google Scholar] [CrossRef]
- Ali, M.F.; Jayakody, D.N.K.; Chursin, Y.A.; Affes, S.; Dmitry, S. Recent advances and future directions on underwater wireless communications. Arch. Comput. Methods Eng. 2020, 27, 1379–1412. [Google Scholar] [CrossRef]
- Kelley, B.; Manoj, K.; Jamshidi, M. Broadband RF communications in underwater environments using multi-carrier modulation. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 2303–2308. [Google Scholar]
- Hao, Z.; Dawei, G.; Guoping, Z.; Gulliver, T.A. The impact of antenna design and frequency on underwater wireless communications. In Proceedings of the IEEE Pacific Rim Conference on Signal Processing, Victoria, BC, Canada, 23–26 August 2011. [Google Scholar]
- Smolyaninov, I.I.; Balzano, Q.; Davis, C.C.; Young, D. Surface wave based underwater radio communication. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2503–2507. [Google Scholar] [CrossRef]
- Zoksimovski, A.; Sexton, D.; Stojanovic, M.; Rappaport, C. Underwater electromagnetic communications using conduction—Channel characterization. AD HOC Netw. 2015, 34, 42–51. [Google Scholar] [CrossRef]
- Aboderin, O.; Pessoa, L.M.; Salgado, H.M. Wideband dipole antennas with parasitic elements for underwater communications. In Proceedings of the IEEE Oceans, Aberdeen, UK, 19–22 June 2017. [Google Scholar]
- Domann, J.P.; Carman, G.P. Strain powered antennas. J. Appl. Phys. 2017, 121, 044905. [Google Scholar] [CrossRef]
- Bickford, J.A.; Duwel, A.E.; Weinberg, M.S.; McNabb, R.S.; Freeman, D.K.; Ward, P.A. Performance of electrically small conventional and mechanical antennas. IEEE Trans. Antennas Propag. 2019, 67, 2209–2223. [Google Scholar] [CrossRef]
- Cui, Y.; Wu, M.; Song, X.; Huang, Y.P.; Jia, Q.; Tao, Y.F.; Wang, C. Research progress of small low-frequency transmitting antenna. Acta Phys. Sin. 2020, 69, 208401. [Google Scholar] [CrossRef]
- Chen, H.H.; Liang, X.F.; Dong, C.Z.; He, Y.; Sun, N.; Zaeimbashi, M.; He, Y.; Gao, Y.; Parimi, P.V.; Lin, H.; et al. Ultra-compact mechanical antennas. Appl. Phys. Lett. 2020, 117, 170501. [Google Scholar] [CrossRef]
- Fereidoony, F.; Nagaraja, S.P.M.; Santos, J.P.D.; Wang, Y.E. Efficient ULF transmission utilizing stacked magnetic pendulum array. IEEE Trans. Antennas Propag. 2022, 70, 585–597. [Google Scholar] [CrossRef]
- Niu, Y.P.; Ren, H. Transceiving signals by mechanical resonance: A miniaturized standalone low frequency (LF) magnetoelectric mechanical antenna pair with integrated DC magnetic bias. IEEE Sens. J. 2022, 22, 14008–14017. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Jing, L.; Shi, P.; Hou, J.J.; Yang, X.F.; Peng, Y.Q.; Chen, S. Research on a miniaturized VLF antenna array based on a magnetoelectric heterojunction. J. Mater. Sci.-Mater. Electron. 2022, 33, 4211–4224. [Google Scholar] [CrossRef]
- Gibbins, D.; Klemm, M.; Craddock, I.J.; Leendertz, J.A.; Preece, A.P.; Benjamin, R. A comparison of a wide-slot and a stacked patch antenna for the purpose of breast cancer detection. IEEE Trans. Antennas Propag. 2010, 58, 665–674. [Google Scholar] [CrossRef]
- Karagianni, E.A. Electromagnetic waves under sea: Bow-tie antennas design for wi-fi underwater communications. Prog. Electromagn. Res. 2015, 41, 189–198. [Google Scholar] [CrossRef]
- Ostadrahimi, M.; Mojabi, P.; Zakaria, A.; LoVetri, J.; Shafai, L. Enhancement of Gauss-Newton inversion method for biological tissue imaging. IEEE Trans. Microw. Theory Tech. 2013, 61, 3424–3434. [Google Scholar] [CrossRef]
- Gurjar, R.; Upadhyay, D.K.; Kanaujia, B.K. Compact Four-element 8-Shaped Self-Affine Fractal UWB MIMO Antenna. In Proceedings of the 2018 3rd International Conference on Microwave and Photonics (ICMAP), Dhanbad, India, 9–11 February 2018. [Google Scholar] [CrossRef]
- Cai, Y.; Ren, X.; He, S.; Huang, Z. Four-Element UWB-MIMO Fractal Antenna with 8.5GHz Band-Notched Characteristic. In Proceedings of the 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium, Chengdu, China, 28–31 July 2021. [Google Scholar] [CrossRef]
- Rafique, U.; Agarwal, S.; Abbas, S.M.; Dalal, P.; Ullah, R.; Kiani, S.H. Circular Ring Fractal UWB Antenna for Microwave Imaging Applications. In Proceedings of the IEEE Wireless Antenna and Microwave Symposium (WAMS), Ahmedabad, India, 7–10 June 2023. [Google Scholar] [CrossRef]
- Rasheda, H.M.Q.; Abdullah, N.; Abdullah, Q.; Farah, N.; Ugurenver, A.; Salh, A.; Mumin, A.R.O. Design of UWB Antenna for Microwave Imaging using Modified Fractal Structure. In Proceedings of the 2021 International Congress of Advanced Technology and Engineering (ICOTEN), Taiz, Yemen, 4–5 July 2021. [Google Scholar] [CrossRef]
- Asok, A.O.; Kailash, P.; Dey, S. Compact Flexible Textile Antenna for Microwave Imaging of the Human Head. In Proceedings of the IEEE Wireless Antenna and Microwave Symposium (WAMS), Visakhapatnam, India, 29 February–3 March 2024. [Google Scholar] [CrossRef]
- Valarmathi, G.; Subashini, V.; Pradeep, K.R.; Prabhakaran, P.; Keerthivasan, A. A Compact Flexible Frequency Reconfigurable Antenna. In Proceedings of the Intelligent Computing and Control for Engineering and Business Systems (ICCEBS), Chennai, India, 14–15 December 2023. [Google Scholar] [CrossRef]
- Shaw, T.; Mandal, B.; Samanta, G.; Perez, M.D.; Augustine, R. A Compact Wideband Biocompatible Circularly Polarized Implantable Flexible Antenna for Biomedical Applications. In Proceedings of the 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, UK, 17–22 March 2024. [Google Scholar] [CrossRef]
- Pengelly, R.S.; Wood, S.M.; Milligan, J.W.; Sheppard, S.T.; Pribble, W.L. A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans. Microw. Theory Tech. 2012, 60, 1764–1783. [Google Scholar] [CrossRef]
- Daoudi, K.; van den Berg, P.J.; Rabot, O.; Kohl, A.; Tisserand, S.; Brands, P.; Steenbergen, W. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging. Opt. Express 2014, 22, 26365–26374. [Google Scholar] [CrossRef] [PubMed]
- Nan, H.; Arbabian, A. Peak-power-limited frequency-domain microwave-induced thermoacoustic imaging for handheld diagnostic and screening tools. IEEE Trans. Microw. Theory Tech. 2017, 65, 2607–2616. [Google Scholar] [CrossRef]
- Nong, H.; Jin, M.; Pan, C.; Zhou, H.; Zhang, C.; Pan, X.; Chen, Y.; Wei, X.; Lu, Y.; Zhao, K.; et al. Intelligent sensing technologies based on flexible wearable sensors: A review. IEEE Sens. J. 2024, 24, 22197–22217. [Google Scholar] [CrossRef]
- Wells, P.N.T. Ultrasonic imaging of the human body. Rep. Prog. Phys. 1999, 62, 671. [Google Scholar] [CrossRef]
- Liang, S.; Lashkari, B.; Choi, S.S.S.; Ntziachristos, V.; Mandelis, A. The application of frequency-domain photoacoustics to temperature-dependent measurements of the Grüneisen parameter in lipids. Photoacoustics 2018, 11, 56–64. [Google Scholar] [CrossRef]
- Vorst, A.; Rosen, A.; Kotsuka, Y. RF/Microwave Interaction with Biological Tissues; Wiley-IEEE Press: Piscataway, NJ, USA, 2006. [Google Scholar]
Reference | Antenna | Features | Application Scenario | Background Medium |
---|---|---|---|---|
[21] | Quasi-conical spiral antenna | 1. Large image domain 2. Homogeneous 3. Circular polarization | Breast and prostate imaging | Mineral oil |
[22] | Helical antenna | 1. More homogenous illumination 2. Circular polarization | Cylindrical tumor phantom | Mineral oil |
[22] | Horn antenna | 1. Less homogenous illumination 2. Linear polarization | Cylindrical tumor phantom | Mineral oil |
[23] | Polarized antenna | 1. High SNR 2. Homogenous illumination 3. Circular polarization | Phantoms of breast tumor imaging | Mineral oil |
[24] | Waveguide | 1. Quantitatively reconstruct dielectric properties of biological samples 2. A 5% experimental reconstruction error | Reconstruct inhomogeneous biological samples | Acoustic coupling |
[25] | Cascaded Waveguide | 1. Two waveguides in tandem 2. The choice of optimal microwave frequency based on SNR is broad for malignant tumors 3. Using gain compensation to counteract the microwave attenuation and improve the image contrast | Fat tissue and muscle tissue sample imaging | Water |
[26] | Dipole antenna | 1. Portable 2. Anti-Gal1-Fe3O4 nanoparticles through intravenous infusion is needed 3. Can identify tiny pancreatic tumors | Tiny pancreatic tumors imaging | Mineral oil |
[27] | Beamforming array antenna | 1. The peak power can be reduced 2. The focus point can be controlled 3. Wearable | Breast cancer imaging | Mineral oil |
This work | Water-immersion antenna | 1. Water immersion and antirust 2. Homogenous illumination 3. Circular polarization 4. Ultra-wideband | Brain and tumor tissues imaging | Water |
Category | Material | Density kg/m3 | Sound Speed m/s | Acoustic Impedance 106 kg/m2⋅s | αu * Np/m | εr * | σ * S/m |
---|---|---|---|---|---|---|---|
Background medium | Air | 1 | 330 | 0.00033 | 13.81 | 1 | 0 |
Mineral oil | 825 | 1440 | 1.19 | 3.63 | 3 | 0.02 | |
Water | 994 | 1480 | 1.47 | 0.02 | 78 | 0.23 | |
milk | 945 | 1535 | 1.45 | 40 | 78 | 0.7 | |
Customed medium | 1046 | 1540 | 1.61 | 10.36 | 48.9 | 1.31 | |
Target tissue | Breast fat | 911 | 1450 | 1.32 | 4.36 | 5.41 | 0.1 |
Skull cancellous | 1178 | 2117 | 2.49 | 47 | 20.6 | 0.364 | |
Brain | 1046 | 1540 | 1.61 | 10.36 | 48.9 | 1.31 | |
Muscle | 1090 | 1590 | 1.73 | 7.11 | 54.8 | 0.978 |
Frequency (GHz) | Directivity (dBi) | 3dB Angular Width (Degree) |
---|---|---|
0.6 | 8.98 | 62.3 |
0.84 | 10.6 | 53.9 |
0.9 | 11 | 51.3 |
0.91 | 11 | 50.8 |
1.1 | 11.5 | 45 |
1.46 | 12.3 | 37.9 |
1.8 | 12.6 | 34.8 |
Category | Absolute Bandwidth (GHz) | Relative Bandwidth | Center Frequency (GHz) |
---|---|---|---|
Impedance | 1.91 | 106.4% | 1.795 |
Axial ratio | 3.06 | 125.4% | 2.44 |
Radiation pattern | 1.2 | 100% | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, F.; Wang, H. Design and Implementation of an Ultra-Wideband Water Immersion Antenna for Underwater Ultrasonic Sensing in Microwave-Induced Thermoacoustic Tomography. Sensors 2024, 24, 6311. https://doi.org/10.3390/s24196311
Tan F, Wang H. Design and Implementation of an Ultra-Wideband Water Immersion Antenna for Underwater Ultrasonic Sensing in Microwave-Induced Thermoacoustic Tomography. Sensors. 2024; 24(19):6311. https://doi.org/10.3390/s24196311
Chicago/Turabian StyleTan, Feifei, and Haishi Wang. 2024. "Design and Implementation of an Ultra-Wideband Water Immersion Antenna for Underwater Ultrasonic Sensing in Microwave-Induced Thermoacoustic Tomography" Sensors 24, no. 19: 6311. https://doi.org/10.3390/s24196311
APA StyleTan, F., & Wang, H. (2024). Design and Implementation of an Ultra-Wideband Water Immersion Antenna for Underwater Ultrasonic Sensing in Microwave-Induced Thermoacoustic Tomography. Sensors, 24(19), 6311. https://doi.org/10.3390/s24196311