Brain Function, Learning, and Role of Feedback in Complete Paralysis
Abstract
:1. Ideomotor Theory of Thinking
2. Communication in (Completely) Locked-In State
2.1. Clinical and Communication History of the Patient
2.2. Communication Devices
2.3. Communication-Oriented Strategies
2.4. Reliability of the Communication Interfaces
3. Brain Function and Cognition
3.1. Comprehension of Instructions and Expressive Components
3.2. Memory
3.3. Emotional State
3.4. Sensory and Proprioceptive Processing
4. Learning and Reinforcement
4.1. Perception of Reinforcement
4.2. Positive Reinforcement
4.3. A Modified Learning Model of the Stimulus-Response-Effect Unit
4.4. Ideomotor or Ideosensorimotor Theory of Thinking?
4.5. Determinants of the ‘Extinction of Thinking’ Concept
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aristotle. Aristotle’s Physics: Books 1 & 2; Clarendon Press: Oxford, UK, 1970. [Google Scholar]
- James, W. The Principles of Psychology; Dover Publications: New York, NY, USA, 1890; Volume 1. [Google Scholar]
- Lange, C.G. Über Gemütsbewegungen [About Movements of the Mind]; Theodor Thomas: Leipzig, Germany, 1887. [Google Scholar]
- Ziessler, M.; Nattkemper, D.; Frensch, P.A. The role of anticipation and intention in the learning of effects of self-performed actions. Psychol. Res. 2004, 68, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Birbaumer, N.; Piccione, F.; Silvoni, S.; Wildgruber, M. Ideomotor silence: The case of complete paralysis and brain–computer interfaces (BCI). Psychol. Res. 2012, 76, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Jeannerod, M. Neural Simulation of Action: A Unifying Mechanism for Motor Cognition. NeuroImage 2001, 14, S103–S109. [Google Scholar] [CrossRef]
- Birbaumer, N. Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 2006, 43, 517–532. [Google Scholar] [CrossRef]
- Zoccolella, S.; Beghi, E.; Palagano, G.; Fraddosio, A.; Guerra, V.; Samarelli, V.; Lepore, V.; Simone, I.L.; Lamberti, P.; Serlenga, L.; et al. Predictors of long survival in amyotrophic lateral sclerosis: A population-based study. J. Neurol. Sci. 2008, 268, 28–32. [Google Scholar] [CrossRef]
- Mochizuki, Y.; Hayashi, K.; Nakayama, Y.; Shimizu, T.; Kamide, M.; Ogino, M.; Komori, T.; Hasegawa, M.; Isozaki, E.; Nakano, I. ALS patients with ability to communicate after long-term mechanical ventilation have confined degeneration to the motor neuron system. J. Neurol. Sci. 2016, 363, 245–248. [Google Scholar] [CrossRef]
- Mercadante, S.; Al-Husinat, L. Palliative Care in Amyotrophic Lateral Sclerosis. J. Pain. Symptom Manag. 2023, 66, e485–e499. [Google Scholar] [CrossRef]
- Birbaumer, N. “Your Thoughts are (were) Free!”: Brain-Computer-Interfaces, Neurofeedback, Detection of Deception, and the Future of Mind-Reading. Appl. Psychophysiol. Biofeedback 2024. [Google Scholar] [CrossRef]
- Rezvani, S.; Hosseini-Zahraei, S.H.; Tootchi, A.; Guger, C.; Chaibakhsh, Y.; Saberi, A.; Chaibakhsh, A. A review on the performance of brain-computer interface systems used for patients with locked-in and completely locked-in syndrome. Cogn. Neurodyn 2024, 18, 1419–1443. [Google Scholar] [CrossRef]
- Card, N.S.; Wairagkar, M.; Iacobacci, C.; Hou, X.; Singer-Clark, T.; Willett, F.R.; Kunz, E.M.; Fan, C.; Vahdati Nia, M.; Deo, D.R.; et al. An Accurate and Rapidly Calibrating Speech Neuroprosthesis. N. Engl. J. Med. 2024, 391, 609–618. [Google Scholar] [CrossRef]
- Chaudhary, U.; Vlachos, I.; Zimmermann, J.B.; Espinosa, A.; Tonin, A.; Jaramillo-Gonzalez, A.; Khalili-Ardali, M.; Topka, H.; Lehmberg, J.; Friehs, G.M.; et al. Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback training. Nat. Commun. 2022, 13, 1236. [Google Scholar] [CrossRef] [PubMed]
- Tonin, A.; Jaramillo-Gonzalez, A.; Rana, A.; Khalili-Ardali, M.; Birbaumer, N.; Chaudhary, U. Auditory Electrooculogram-based Communication System for ALS Patients in Transition from Locked-in to Complete Locked-in State. Sci. Rep. 2020, 10, 8452. [Google Scholar] [CrossRef] [PubMed]
- Cedarbaum, J.M.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function. J. Neurol. Sci. 1999, 169, 13–21. [Google Scholar] [CrossRef]
- Skinner, B.F. Science and Human Behavior; Macmillan: Oxford, UK, 1953. [Google Scholar]
- Loriette, C.; Ziane, C.; Ben Hamed, S. Neurofeedback for cognitive enhancement and intervention and brain plasticity. Rev. Neurol. 2021, 177, 1133–1144. [Google Scholar] [CrossRef]
- Flor, H.; Denke, C.; Schaefer, M.; Grüsser, S. Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet 2001, 357, 1763–1764. [Google Scholar] [CrossRef]
- Johnson, B.P.; Cohen, L.G. Reward and plasticity: Implications for neurorehabilitation. Handb. Clin. Neurol. 2022, 184, 331–340. [Google Scholar] [CrossRef]
- Mahncke, H.W.; Connor, B.B.; Appelman, J.; Ahsanuddin, O.N.; Hardy, J.L.; Wood, R.A.; Joyce, N.M.; Boniske, T.; Atkins, S.M.; Merzenich, M.M. Memory enhancement in healthy older adults using a brain plasticity-based training program: A randomized, controlled study. Proc. Natl. Acad. Sci. USA 2006, 103, 12523–12528. [Google Scholar] [CrossRef]
- Ferster, C.B.; Skinner, B.F. Schedules of Reinforcement; Appleton-Century-Crofts: East Norwalk, CT, USA, 1957. [Google Scholar]
- Nguyen, M.H.; Ngo, T.D.; Hung, N.B.; Mao, C.V.; Kieu, H.-D.; Le, T.H. On-screen keyboard controlled by gaze for Vietnamese people with amyotrophic lateral sclerosis. Technol. Disabil. 2023, 35, 53–65. [Google Scholar] [CrossRef]
- Müller-Putz, G.; Scherer, R.; Brunner, C.; Leeb, R.; Pfurtscheller, G. Better than random: A closer look on BCI results. Int. J. Bioelectromagn. 2008, 10, 52–55. [Google Scholar]
- Waxman, S.G. Higher Cortical Functions. In Clinical Neuroanatomy, 30th ed.; McGraw Hill: New York, NY, USA, 2024. [Google Scholar]
- Patestas, M.A.; Gartner, L.P. A Textbook of Neuroanatomy; Blackwell Publishing: Oxford, UK, 2006. [Google Scholar]
- Temp, A.G.M.; Kasper, E.; Machts, J.; Vielhaber, S.; Teipel, S.; Hermann, A.; Prudlo, J. Cognitive reserve protects ALS-typical cognitive domains: A longitudinal study. Ann. Clin. Transl. Neurol. 2022, 9, 1212–1223. [Google Scholar] [CrossRef]
- Catani, M.; Mesulam, M. The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Cortex 2008, 44, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Yassa, M.A.; Stark, S.M.; Bakker, A.; Albert, M.S.; Gallagher, M.; Stark, C.E. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment. Neuroimage 2010, 51, 1242–1252. [Google Scholar] [CrossRef]
- Aust, E.; Linse, K.; Graupner, S.T.; Joos, M.; Liebscher, D.; Grosskreutz, J.; Prudlo, J.; Meyer, T.; Günther, R.; Pannasch, S.; et al. Quality of life and mental health in the locked-in-state-differences between patients with amyotrophic lateral sclerosis and their next of kin. J. Neurol. 2022, 269, 5910–5925. [Google Scholar] [CrossRef]
- Simmons, Z. Patient-Perceived Outcomes and Quality of Life in ALS. Neurotherapeutics 2015, 12, 394–402. [Google Scholar] [CrossRef]
- Matuz, T.; Birbaumer, N.; Hautzinger, M.; Kübler, A. Coping with amyotrophic lateral sclerosis: An integrative view. J. Neurol. Neurosurg. Psychiatry 2010, 81, 893–898. [Google Scholar] [CrossRef]
- Lulé, D.; Pauli, S.; Altintas, E.; Singer, U.; Merk, T.; Uttner, I.; Birbaumer, N.; Ludolph, A.C. Emotional adjustment in amyotrophic lateral sclerosis (ALS). J. Neurol. 2012, 259, 334–341. [Google Scholar] [CrossRef]
- Lulé, D.; Ehlich, B.; Lang, D.; Sorg, S.; Heimrath, J.; Kübler, A.; Birbaumer, N.; Ludolph, A.C. Quality of life in fatal disease: The flawed judgement of the social environment. J. Neurol. 2013, 260, 2836–2843. [Google Scholar] [CrossRef]
- Eder, A.B. A perceptual control theory of emotional action. Cogn. Emot. 2023, 37, 1167–1184. [Google Scholar] [CrossRef]
- Linhartová, P.; Látalová, A.; Kóša, B.; Kašpárek, T.; Schmahl, C.; Paret, C. fMRI neurofeedback in emotion regulation: A literature review. Neuroimage 2019, 193, 75–92. [Google Scholar] [CrossRef]
- Urry, H.L.; van Reekum, C.M.; Johnstone, T.; Kalin, N.H.; Thurow, M.E.; Schaefer, H.S.; Jackson, C.A.; Frye, C.J.; Greischar, L.L.; Alexander, A.L.; et al. Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. J. Neurosci. 2006, 26, 4415–4425. [Google Scholar] [CrossRef]
- Scheibe, S.; Carstensen, L.L. Emotional aging: Recent findings and future trends. J. Gerontol. B Psychol. Sci. Soc. Sci. 2010, 65B, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Samanez-Larkin, G.R.; Hollon, N.G.; Carstensen, L.L.; Knutson, B. Individual differences in insular sensitivity during loss anticipation predict avoidance learning. Psychol. Sci. 2008, 19, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Murguialday, A.R.; Hill, J.; Bensch, M.; Martens, S.; Halder, S.; Nijboer, F.; Schoelkopf, B.; Birbaumer, N.; Gharabaghi, A. Transition from the locked in to the completely locked-in state: A physiological analysis. Clin. Neurophysiol. 2011, 122, 925–933. [Google Scholar] [CrossRef]
- Delhaye, B.P.; Long, K.H.; Bensmaia, S.J. Neural Basis of Touch and Proprioception in Primate Cortex. Compr. Physiol. 2018, 8, 1575–1602. [Google Scholar]
- Roudaut, Y.; Lonigro, A.; Coste, B.; Hao, J.; Delmas, P.; Crest, M. Touch sense: Functional organization and molecular determinants of mechanosensitive receptors. Channels 2012, 6, 234–245. [Google Scholar] [CrossRef]
- Birbaumer, N.; Elbert, T.; Canavan, A.G.; Rockstroh, B. Slow potentials of the cerebral cortex and behavior. Physiol. Rev. 1990, 70, 1–41. [Google Scholar] [CrossRef]
- Hinterberger, T.; Veit, R.; Wilhelm, B.; Weiskopf, N.; Vatine, J.-J.; Birbaumer, N. Neuronal mechanisms underlying control of a brain–computer interface. Eur. J. Neurosci. 2005, 21, 3169–3181. [Google Scholar] [CrossRef]
- Koralek, A.C.; Jin, X.; Long, J.D., II; Costa, R.M.; Carmena, J.M. Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 2012, 483, 331–335. [Google Scholar] [CrossRef]
- Kotchoubey, B.; Strehl, U.; Uhlmann, C.; Holzapfel, S.; König, M.; Fröscher, W.; Blankenhorn, V.; Birbaumer, N. Modification of slow cortical potentials in patients with refractory epilepsy: A controlled outcome study. Epilepsia 2001, 42, 406–416. [Google Scholar] [CrossRef]
- Kamiya, J. The first communications about operant conditioning of the EEG. J. Neurother. 2011, 15, 65–73. [Google Scholar] [CrossRef]
- Lehéricy, S.; Ducros, M.; Krainik, A.; Francois, C.; Van de Moortele, P.F.; Ugurbil, K.; Kim, D.S. 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cereb. Cortex 2004, 14, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.F.; Krishnan, S.; Scott, S.K. Roles of supplementary motor areas in auditory processing and auditory imagery. Trends Neurosci. 2016, 39, 527–542. [Google Scholar] [CrossRef] [PubMed]
- Taub, E.; Crago, J.E.; Burgio, L.D.; Groomes, T.E.; Cook, E.W., 3rd; DeLuca, S.C.; Miller, N.E. An operant approach to rehabilitation medicine: Overcoming learned nonuse by shaping. J. Exp. Anal. Behav. 1994, 61, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Pashler, H.; Mozer, M.C. When does fading enhance perceptual category learning? J. Exp. Psychol. Learn. Mem. Cogn. 2013, 39, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.; White-Schwoch, T.; Parbery-Clark, A.; Kraus, N. Reversal of age-related neural timing delays with training. Proc. Natl. Acad. Sci. USA 2013, 110, 4357–4362. [Google Scholar] [CrossRef]
- Marschner, A.; Mell, T.; Wartenburger, I.; Villringer, A.; Reischies, F.M.; Heekeren, H.R. Reward-based decision-making and aging. Brain Res. Bull. 2005, 67, 382–390. [Google Scholar] [CrossRef]
- Berry, A.S.; Zanto, T.P.; Clapp, W.C.; Hardy, J.L.; Delahunt, P.B.; Mahncke, H.W.; Gazzaley, A. The influence of perceptual training on working memory in older adults. PLoS ONE 2010, 5, e11537. [Google Scholar] [CrossRef]
- Frensch, P.A.; Rünger, D. Implicit learning. Curr. Dir. Psychol. Sci. 2003, 12, 13–18. [Google Scholar] [CrossRef]
- Bi, G.-q.; Poo, M.-m. Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type. J. Neurosci. 1998, 18, 10464–10472. [Google Scholar] [CrossRef]
- Bandura, A. Social Learning Theory; General Learning Press: New York, NY, USA, 1971. [Google Scholar]
- Faggin, F. Irriducibile; Mondadori: Milan, Italy, 2022; La natura dell’informazione; Chapter 4; pp. 77–91. Available online: https://www.perlego.com/book/3709811 (accessed on 31 January 2024).
- World Health Organization. International Classification of Functioning, Disability and Health: ICF; 2001. Available online: https://iris.who.int/handle/10665/42407 (accessed on 2 May 2024).
- Zola, I.K. Toward the necessary universalizing of a disability policy. Milbank Q. 1989, 67 Pt. 2 (Suppl. S2), 401–428. [Google Scholar] [CrossRef]
- Van Damme, P.; Al-Chalabi, A.; Andersen, P.M.; Chiò, A.; Couratier, P.; De Carvalho, M.; Hardiman, O.; Kuźma-Kozakiewicz, M.; Ludolph, A.; McDermott, C.J.; et al. European Academy of Neurology (EAN) guideline on the management of amyotrophic lateral sclerosis in collaboration with European Reference Network for Neuromuscular Diseases (ERN EURO-NMD). Eur. J. Neurol. 2024, 31, e16264. [Google Scholar] [CrossRef] [PubMed]
- Washburn, M.F. Movement and Mental Imagery: Outlines of a Motor Theory of the Complexer Mental Processes; Houghton Mifflin Company: Boston, MA, USA, 1916. [Google Scholar]
- Michelet, T.; Badets, A. The anterior midcingulate cortex might be a neuronal substrate for the ideomotor mechanism. Exp. Brain Res. 2021, 239, 2345–2355. [Google Scholar] [CrossRef] [PubMed]
- Riccio, A.; Mattia, D.; Simione, L.; Olivetti, M.; Cincotti, F. Eye-gaze independent EEG-based brain-computer interfaces for communication. J. Neural Eng. 2012, 9, 045001. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liang, S.; Li, Z.; Lai, C.Y.Y.; Choi, K.S. EEG-based vibrotactile evoked brain-computer interfaces system: A systematic review. PLoS ONE 2022, 17, e0269001. [Google Scholar] [CrossRef]
- Macefield, V.G. Physiological characteristics of low-threshold mechanoreceptors in joints, muscle and skin in human subjects. Clin. Exp. Pharmacol. Physiol. 2005, 32, 135–144. [Google Scholar] [CrossRef]
- Mather, M.; Carstensen, L.L. Aging and motivated cognition: The positivity effect in attention and memory. Trends Cogn. Sci. 2005, 9, 496–502. [Google Scholar] [CrossRef]
- Spaniol, J.; Voss, A.; Grady, C.L. Aging and emotional memory: Cognitive mechanisms underlying the positivity effect. Psychol. Aging 2008, 23, 859–872. [Google Scholar] [CrossRef]
- Fung, H.H.; Carstensen, L.L.; Lutz, A.M. Influence of time on social preferences: Implications for life-span development. Psychol. Aging 1999, 14, 595–604. [Google Scholar] [CrossRef]
- Blanchard-Fields, F. Everyday Problem Solving and Emotion: An Adult Developmental Perspective. Curr. Dir. Psychol. Sci. 2007, 16, 26–31. [Google Scholar] [CrossRef]
- Ferdinand, N.K.; Czernochowski, D. Motivational Influences on Performance Monitoring and Cognitive Control Across the Adult Lifespan. Front. Psychol. 2018, 9, 1018. [Google Scholar] [CrossRef]
- Kessler, E.M.; Staudinger, U.M. Affective experience in adulthood and old age: The role of affective arousal and perceived affect regulation. Psychol. Aging 2009, 24, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Albert, S.M.; Whitaker, A.; Rabkin, J.G.; del Bene, M.; Tider, T.; O’Sullivan, I.; Mitsumoto, H. Medical and supportive care among people with ALS in the months before death or tracheostomy. J. Pain. Symptom Manag. 2009, 38, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Andersen, P.M.; Kuzma-Kozakiewicz, M.; Keller, J.; Aho-Oezhan, H.E.A.; Ciecwierska, K.; Szejko, N.; Vázquez, C.; Böhm, S.; Badura-Lotter, G.; Meyer, T.; et al. Therapeutic decisions in ALS patients: Cross-cultural differences and clinical implications. J. Neurol. 2018, 265, 1600–1606. [Google Scholar] [CrossRef]
- Kettemann, D.; Funke, A.; Maier, A.; Rosseau, S.; Meyer, R.; Spittel, S.; Münch, C.; Meyer, T. Clinical characteristics and course of dying in patients with amyotrophic lateral sclerosis withdrawing from long-term ventilation. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 53–59. [Google Scholar] [CrossRef]
- Niedermeyer, S.; Murn, M.; Choi, P.J. Respiratory Failure in Amyotrophic Lateral Sclerosis. Chest 2019, 155, 401–408. [Google Scholar] [CrossRef]
- Moglia, C.; Palumbo, F.; Veronese, S.; Calvo, A. Withdrawal of mechanical ventilation in amyotrophic lateral sclerosis patients: A multicenter Italian survey. Neurol. Sci. 2023, 44, 4349–4357. [Google Scholar] [CrossRef]
- Spittel, S.; Maier, A.; Kettemann, D.; Walter, B.; Koch, B.; Krause, K.; Norden, J.; Münch, C.; Meyer, T. Non-invasive and tracheostomy invasive ventilation in amyotrophic lateral sclerosis: Utilization and survival rates in a cohort study over 12 years in Germany. Eur. J. Neurol. 2021, 28, 1160–1171. [Google Scholar] [CrossRef]
Number | Period | System/Task | Interface | Feedback Domain | Response-Effect Time Interval |
---|---|---|---|---|---|
1 | from Aug. 2016 to Aug. 2017 | Digital eye-tracker, eye movements controlling the pointer on the computer screen a | MyTobii scheme (e.g., virtual keyboard) | visual | roughly < 70 ms |
2 | from Aug. 2017 to Feb. 2018 | Manual spelling procedure, eye movements detected by observation to select characters based on “no”/“yes” responses | Transpaent board displaying colored alphanumeric characters | visual (auditory) | roughly < 10 s |
3 | from Feb. 2018 to Feb. 2019 | Digital auditory speller, electro-oculogram of eye movements to select characters based on “no”/“yes” responses | Auditory scheme presenting alphanumeric characters | auditory | [3–10] s |
4 | from Jun. 2019 to Jun. 2020 | Same speller as above (3) but used neuronal responses from neurons in SMA b to indicate “no” or “yes”, fed back as tones changing in frequency | Auditory scheme presenting alphanumeric characters | auditory (frequency range 120–480 Hz) | 250 ms |
Main Domain (Specific or Other Domains) a,b | Deutsch | English | Day(s) |
---|---|---|---|
Social | |||
(feedback) | ‘erst mal moechte ich mich niels und seine birbäumchen bedanken’ | ‘first I would like to thank Niels and his birbäumchen’ | 107 |
(instructions) c | [sentence spelled in English] | ‘turn on word recognition’ | 183 |
(wish) c | [sentence spelled in English] | ‘come tonight [to continue with the speller]’ | 203, 247, 251, 294, 295 |
(feedback) c | [sentence spelled in English] | ‘is it easy back once confirmation’ | 253 |
(instructions) c | [sentence spelled in English] | ‘tell alessandro i need to save edit and delete whole phrases and all of that into the list where (patient’s son name)’ | 295 |
(instructions, feedback) c | [sentence spelled in English] | ‘why cant you leave the system on. ifind that good’ | 461 |
(feedback) | ‘jungs es funktioniert gerade so muehelos’ | ‘boys, it works so effortlessly’ | 247 |
(wish, drink) | ‘und jetwzt ein bier’ | ‘and now a beer’ (through the gastro-tube) | 247, 251, 253, 461 |
(wish, food) | ‘mixer fuer suppen mit fleisch’ | ‘instructed his wife to buy a mixer for soup with meat’ | 247 |
(wish, food) | ‘gulaschsuppe und dann erbsensuppe’ | ‘Gulash soup and sweet pea soup’ | 253 |
(wish, food) | ‘wegen essen da wird ich erst mal des curry mit kartoffeln haben und dann bologna und dann gefuellte und dann kartoffeln suppe’ | ‘for food I want to have curry with potato then Bolognese and potato soup’ | 462 |
(emotion) | ‘(son’s name) ich liebe meinen coolen (son’s name)’ | ‘I love my cool son’ | 251 |
(wish, emotion, vision) | ‘(son’s name) willst du mit mir bald disneys robin hood anschauen’ | ‘Do you want to watch Disney’s Robin Hood with me’ | 253 |
(wish, emotion, vision) | ‘alles von den dino ryders und brax autobahnund alle aufziehautos’ | ‘everything from dino riders and brax and cars’ | 309 |
(wish, emotion, vision) | ‘(son’s name) moechtest du mit mir disneys die hexe und der zauberer anschauen auf amazon’ | ‘would you like to watch Disney’s witch and wizard with me on amazon’ | 461 |
Memory | |||
(wish, episodic memory) | ‘wili ch tool balbum mal laut hoerenzn’ | ‘I would like to listen to the album by Tool [a band] loud’ | 245 |
(wish, social, somatosensory, episodic memory) | ‘mein groesster wunsch ist eine neue bett und das ich morgen mitkommen darf zum grillen’ | ‘my biggest wish is a new bed and that tomorrow I come with you for barbecue’ | 462 |
Sensory | |||
(somatosensory) | ‘kein shirt aber socken’ | ‘no shirts but socks [for the night]’ | 244 |
(emption) | ‘mama kopfmassage’ | ‘Mom head massage’ | 247 |
(vision) | ‘an alle muessen mir viel oefter gel augengel’ | ‘everybody must use gel on my eye more often’ | 254 |
Proprioception | |||
(instructions) | ‘kop?f immerlqz gerad’ | ‘head always straight’ | 161 |
(instructions) | ‘erstmal kopfteil viel viel hoeh ab jetzt imm’ | ‘first of all head position very high from now’ | 251 |
(instructions) | ‘alle sollen meine haende direkten auf baubch’ | ‘everybody should put my hand direct on my stomach’ | 344 |
(instructions, social) | ‘zum glotze und wenn besuchen da ist das kopfteil immer gaaanz rauf’ | ‘when visitors are here, head position always very high’ | 461 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvoni, S.; Occhigrossi, C.; Di Giorgi, M.; Lulé, D.; Birbaumer, N. Brain Function, Learning, and Role of Feedback in Complete Paralysis. Sensors 2024, 24, 6366. https://doi.org/10.3390/s24196366
Silvoni S, Occhigrossi C, Di Giorgi M, Lulé D, Birbaumer N. Brain Function, Learning, and Role of Feedback in Complete Paralysis. Sensors. 2024; 24(19):6366. https://doi.org/10.3390/s24196366
Chicago/Turabian StyleSilvoni, Stefano, Chiara Occhigrossi, Marco Di Giorgi, Dorothée Lulé, and Niels Birbaumer. 2024. "Brain Function, Learning, and Role of Feedback in Complete Paralysis" Sensors 24, no. 19: 6366. https://doi.org/10.3390/s24196366
APA StyleSilvoni, S., Occhigrossi, C., Di Giorgi, M., Lulé, D., & Birbaumer, N. (2024). Brain Function, Learning, and Role of Feedback in Complete Paralysis. Sensors, 24(19), 6366. https://doi.org/10.3390/s24196366