Enhancing the Resistive Switching Properties of Transparent HfO2-Based Memristor Devices for Reliable Gasistor Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication Process of the Transparent Memristor
2.2. Characterization of the Transparent Memristor
2.3. I–V Characterization of the Transparent Memristor
2.4. Electrical and Gas Sensing Characterization of Gasistor
3. Results and Discussion
3.1. Material Characteristics of RS BE
3.2. Operation Priciple of a Low-Power Memristor with RS BE
3.3. Reliability of a Memristor with an RS BE
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Hu, L.; Wei, X.; Zhuge, F. Ultralow operation voltages of a transparent memristor based on bilayer ITO. Appl. Phys. Lett. 2020, 116, 221602. [Google Scholar] [CrossRef]
- Han, X.; Xu, Y.; Sun, B.; Xu, R.; Xu, J.; Hong, W.; Fu, Z.; Zhu, H.; Sun, X.; Chang, J. Highly transparent flexible artificial nociceptor based on forming-free ITO memristor. Appl. Phys. Lett. 2022, 120, 094103. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, D.; Wang, J.; Cheng, Z.; Liu, L.; Yang, N.; Liu, Y.; Xia, T.; Liu, X.; Zhang, X. Black phosphorus based multicolor light-modulated transparent memristor with enhanced resistive switching performance. ACS Appl. Mater. Interfaces 2020, 12, 25108–25114. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-K.; Kwon, O.; Jeon, B.; Kim, S. Reservoir Computing for Temporal Data Processing Using Resistive Switching Memory Devices Based on ITO Treated With O2 Plasma. IEEE Trans. Electron Devices 2023, 70, 5651–5656. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, G.-Q.; Zhao, X.; Li, Y.; Zhang, M.; Wu, Z.; Wu, W.; Sun, H.; Guo, Y.; Wang, L. Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 2021, 12, 7232. [Google Scholar] [CrossRef]
- Qiu, P.; Qin, Y.; Xia, Q. Ultrasensitive gas sensor developed from SnS/TiO2-based memristor for dilute methanol detection at room temperature. Sens. Actuators B Chem. 2023, 392, 134038. [Google Scholar] [CrossRef]
- Qiu, P.; Qin, Y.; Xia, Q. Ultrasensitive memristor-based gas sensor (gasistor) with gas-triggered switch and memory function for dilute NH3 detection. Sens. Actuators B Chem. 2022, 373, 132730. [Google Scholar] [CrossRef]
- Chae, M.; Lee, D.; Jung, J.; Kim, H.-D. Enhanced memristor-based gas sensor for fast detection using a porous carbon nanotube top electrode with membrane. Cell Rep. Phys. Sci. 2023, 4, 101659. [Google Scholar] [CrossRef]
- Vidiš, M.; Plecenik, T.; Moško, M.; Tomašec, S.; Roch, T.; Satrapinskyy, L.; Grančič, B.; Plecenik, A. Gasistor: A memristor based gas-triggered switch and gas sensor with memory. Appl. Phys. Lett. 2019, 115, 093504. [Google Scholar] [CrossRef]
- Guo, L.; Han, H.; Li, Y.; Ye, C.; Cui, J.; Zheng, C.; Ding, G.; Zhai, Y.; Zhou, Y.; Zhang, C. V2CTx gas sensor based on memristive effect with ultrafast SO2 detection. Appl. Phys. Lett. 2023, 123, 013901. [Google Scholar] [CrossRef]
- Charpin-Nicolle, C.; Bonvalot, M.; Sommer, R.; Persico, A.; Cordeau, M.; Belahcen, S.; Eychenne, B.; Blaise, P.; Martinie, S.; Bernasconi, S. Impact of roughness of TiN bottom electrode on the forming voltage of HfO2 based resistive memories. Microelectron. Eng. 2020, 221, 111194. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, J.; Gao, B.; Sun, W.; Liu, W.; Wang, K.; Wu, W.; Qian, H.; Wu, H. Impact of Bottom Electrode Roughness on the Analog Switching Characteristics in Nanoscale RRAM Array. In Proceedings of the 2021 Device Research Conference (DRC), Santa Barbara, CA, USA, 20–23 June 2021; IEEE: New York, NY, USA, 2021; pp. 1–2. [Google Scholar]
- Munde, M.; Mehonic, A.; Ng, W.; Buckwell, M.; Montesi, L.; Bosman, M.; Shluger, A.; Kenyon, A. Intrinsic resistance switching in amorphous silicon suboxides: The role of columnar microstructure. Sci. Rep. 2017, 7, 9274. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, M.; Kumar, P.; Sharma, S.; Soni, A.; Sahariya, J. Photovoltaic waste assessment in india and its environmental impact. J. Phys. Conf. Ser. 2021, 1849, 012003. [Google Scholar] [CrossRef]
- Park, J.H.; Park, H.K.; Jeong, J.; Kim, W.; Min, B.K.; Do, Y.R. Wafer-scale growth of ITO nanorods by radio frequency magnetron sputtering deposition. J. Electrochem. Soc. 2011, 158, K131. [Google Scholar] [CrossRef]
- Kumar, R.R.; Rao, K.N.; Rajanna, K.; Phani, A. Low temperature and self catalytic growth of ultrafine ITO nanowires by electron beam evaporation method and their optical and electrical properties. Mater. Res. Bull. 2014, 52, 167–176. [Google Scholar] [CrossRef]
- Urquiza, M.L.; Islam, M.M.; Van Duin, A.C.; Cartoixà, X.; Strachan, A. Atomistic insights on the full operation cycle of a HfO2-based resistive random access memory cell from molecular dynamics. ACS Nano 2021, 15, 12945–12954. [Google Scholar] [CrossRef]
- He, H.; Tan, Y.; Lee, C.; Zhao, Y. Ti/HfO2-based RRAM with superior thermal stability based on self-limited TiOx. Electronics 2023, 12, 2426. [Google Scholar] [CrossRef]
- Al-Mamun, M.; Chakraborty, A.; Li, Y.; Orlowski, M.K. Impact of Surface Roughness of the Electrodes on the Resistive Switching in ReRam Devices. ECS Trans. 2020, 97, 133. [Google Scholar] [CrossRef]
- Kim, D.-W.; Kim, H.-J.; Lee, W.-Y.; Kim, K.; Lee, S.-H.; Bae, J.-H.; Kang, I.-M.; Kim, K.; Jang, J. Enhanced switching reliability of sol–gel-processed Y2O3 RRAM devices based on Y2O3 surface roughness-induced local electric field. Materials 2022, 15, 1943. [Google Scholar] [CrossRef]
- Li, L.; Liu, B.; Feng, J.; Hu, W.; Lin, H.; Huang, Y.; Wu, D.; Zeng, F.; Zhou, J.; Tang, X. Improved uniformity in resistive switching behaviors based on PMMA films with embedded carbon quantum dots. Appl. Phys. Lett. 2021, 118, 222108. [Google Scholar] [CrossRef]
- Lee, D.; Kim, H.-D. Effect of Hydrogen Annealing on Performances of BN-Based RRAM. Nanomaterials 2023, 13, 1665. [Google Scholar] [CrossRef] [PubMed]
- Min, K.; Jung, D.; Kwon, Y. Investigation of switching uniformity in resistive memory via finite element simulation of conductive-filament formation. Sci. Rep. 2021, 11, 2447. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, T.; Hu, S.; Liu, P.; Liu, Y.; Lee, P.; Wang, X.; Li, H.; Lo, G. Study of multilevel high-resistance states in HfOx-based resistive switching random access memory by impedance spectroscopy. IEEE Trans. Electron Devices 2015, 62, 2684–2688. [Google Scholar] [CrossRef]
- Qingjiang, L.; Khiat, A.; Salaoru, I.; Papavassiliou, C.; Hui, X.; Prodromakis, T. Memory impedance in TiO2 based metal-insulator-metal devices. Sci. Rep. 2014, 4, 4522. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.K.; Liu, X.; Venkatachalam, D.K.; Elliman, R.G. Effect of Electrode Roughness on Electroforming in HfO2 and Defect-Induced Moderation of Electric-Field Enhancement. Phys. Rev. Appl. 2015, 4, 064010. [Google Scholar] [CrossRef]
- Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater. 2009, 21, 2632–2663. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D.; Woo, J.; Cha, E.; Park, J.; Song, J.; Moon, K.; Koo, Y.; Attari, B.; Tamanna, N. Highly reliable resistive switching without an initial forming operation by defect engineering. IEEE Electron Device Lett. 2013, 34, 1515–1517. [Google Scholar] [CrossRef]
- Yun, M.J.; Lee, D.; Kim, S.; Wenger, C.; Kim, H.-D. A nonlinear resistive switching behaviors of Ni/HfO2/TiN memory structures for self-rectifying resistive switching memory. Mater. Charact. 2021, 182, 111578. [Google Scholar] [CrossRef]
- Ku, B.; Abbas, Y.; Sokolov, A.S.; Choi, C. Interface engineering of ALD HfO2-based RRAM with Ar plasma treatment for reliable and uniform switching behaviors. J. Alloys Compd. 2018, 735, 1181–1188. [Google Scholar] [CrossRef]
- Napolean, A.; Sivamangai, N.; Naveenkumar, R.; Nithya, N. Electroforming atmospheric temperature and annealing effects on Pt/HfO2/TiO2/HfO2/Pt resistive random access memory cell. Silicon 2022, 14, 2863–2869. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, H.; Xia, Q.; Ye, C.; Wei, X.; Wang, J.; Zhang, L.; Zhu, L.Q. Role of oxygen vacancies at the TiO2/HfO2 interface in flexible oxide-based resistive switching memory. Adv. Electron. Mater. 2019, 5, 1800833. [Google Scholar] [CrossRef]
- Lee, D.; Chae, M.; Kim, H.-D. Response Characteristic in Discontinuous NO Gas Flows for Boron Nitride Memristor Gas Sensor Devices. Sens. Actuators B Chem. 2023, 401, 135063. [Google Scholar] [CrossRef]
- Lee, D.; Yun, M.J.; Kim, K.H.; Kim, S.; Kim, H.-D. Advanced recovery and high-sensitive properties of memristor-based gas sensor devices operated at room temperature. ACS Sens. 2021, 6, 4217–4224. [Google Scholar] [CrossRef] [PubMed]
Sub-Heater Temperature (°C) | Roughness (nm) | ||
---|---|---|---|
Ra | Rq | Rpv | |
RT | 1.18 | 1.48 | 10.32 |
200 | 1.21 | 1.53 | 10.48 |
300 | 1.24 | 1.68 | 12.38 |
400 | 1.67 | 2.32 | 21.23 |
500 | 2.41 | 3.23 | 28.31 |
State | Parameter | FS | RS 200 | RS 300 | RS 400 | RS 500 |
---|---|---|---|---|---|---|
HRS | Rs (Ω) | 592 | 565 | 558 | 541 | 523 |
Rp (kΩ) | 1.03 | 0.991 | 0.873 | 0.836 | 0.434 | |
Cp (pF) | 4.31 | 4.47 | 4.82 | 5.29 | 8.26 | |
LRS | Rs (Ω) | 631 | 654 | 662 | 685 | 693 |
Rp (kΩ) | 10.7 | 13.7 | 18.2 | 26.4 | 35.4 | |
Cp (nF) | 14.3 | 9.26 | 7.83 | 3.63 | 1.85 |
Device Structure | Parameter | |||||
---|---|---|---|---|---|---|
VForming (V) | Vset (V) | Vreset (V) | On/Off Ratio | Retention (s) | Ref. | |
Pt/HfO2/TiO2/HfO2/Pt | - | 4 | −2.5 | 100 | 104 | [29] |
CNT/HfO2/Pt | 10.95 | 7.9 | −3.95 | 100 | 104 | [8] |
Ti/HfO2/Pt | - | 0.88 | −0.89 | 11.4 | 104 | [30] |
Pt/HfO2/TiO2/HfO2/Pt | 3.2 | 1.5 | −0.5 | <100 | 104 | [31] |
Pt/HfO2/TiO2/ITO | 3.1 | 1.6 | −1.5 | 10 | 104 | [32] |
Ti/HfO2/ITO with RS BE | 0.8 | 0.77 | −0.53 | 125 | 104 | In this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Lee, D.; Chae, M.; Kim, K.-H.; Kim, H.-D. Enhancing the Resistive Switching Properties of Transparent HfO2-Based Memristor Devices for Reliable Gasistor Applications. Sensors 2024, 24, 6382. https://doi.org/10.3390/s24196382
Kim T, Lee D, Chae M, Kim K-H, Kim H-D. Enhancing the Resistive Switching Properties of Transparent HfO2-Based Memristor Devices for Reliable Gasistor Applications. Sensors. 2024; 24(19):6382. https://doi.org/10.3390/s24196382
Chicago/Turabian StyleKim, Taegi, Doowon Lee, Myoungsu Chae, Kyeong-Heon Kim, and Hee-Dong Kim. 2024. "Enhancing the Resistive Switching Properties of Transparent HfO2-Based Memristor Devices for Reliable Gasistor Applications" Sensors 24, no. 19: 6382. https://doi.org/10.3390/s24196382
APA StyleKim, T., Lee, D., Chae, M., Kim, K. -H., & Kim, H. -D. (2024). Enhancing the Resistive Switching Properties of Transparent HfO2-Based Memristor Devices for Reliable Gasistor Applications. Sensors, 24(19), 6382. https://doi.org/10.3390/s24196382