Integrating Automated Labeling Framework for Enhancing Deep Learning Models to Count Corn Plants Using UAS Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.3. Plant Counting Framework
2.3.1. Automatic Annotation of Images
2.3.2. Deep Learning Models for Plant Counting and Their Architectures
2.4. Model Performance Evaluation
3. Results
3.1. Comparative Analysis of Automated and Manual Approaches in Curating Data for the Training and Test Set
3.2. Performance of Deep Learning Models for the Classification of Corn Plants
3.3. Model Predicted vs. Manually Counted Corn Stands
4. Discussion
4.1. Automating High-Quality Annotated Training Data for Corn Counting
4.2. Deep Learning Models for Counting Plant Stands
4.3. Differences in Performances with Other Models
5. Limitations and Future Works
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perfect, E.; McLaughlin, N.B. Soil Management Effects on Planting and Emergence of No-till Corn. Trans. ASAE 1996, 39, 1611–1615. [Google Scholar] [CrossRef]
- Poncet, A.M.; Fulton, J.P.; McDonald, T.P.; Knappenberger, T.; Shaw, J.N. Corn Emergence and Yield Response to Row-Unit Depth and Downforce for Varying Field Conditions. Appl. Eng. Agric. 2019, 35, 399–408. [Google Scholar] [CrossRef]
- Mohammadi, G.R.; Koohi, Y.; Ghobadi, M.; Najaphy, A. Effects of Seed Priming, Planting Density and Row Spacing on Seedling Emergence and Some Phenological Indices of Corn (Zea mays L.). Philipp. Agric. Sci. 2014, 97, 300–306. [Google Scholar]
- Lawles, K.; Raun, W.; Desta, K.; Freeman, K. Effect of Delayed Emergence on Corn Grain Yields. J. Plant Nutr. 2012, 35, 480–496. [Google Scholar] [CrossRef]
- Baghdadi, A.; Halim, R.A.; Majidian, M.; Daud, W.N.W.; Ahmad, I. Plant Density and Tillage Effects on Forage Corn Quality. J. Food Agric. Environ. 2012, 10, 366–370. [Google Scholar]
- Yang, T.; Zhu, S.; Zhang, W.; Zhao, Y.; Song, X.; Yang, G.; Yao, Z.; Wu, W.; Liu, T.; Sun, C.; et al. Unmanned Aerial Vehicle-Scale Weed Segmentation Method Based on Image Analysis Technology for Enhanced Accuracy of Maize Seedling Counting. Agriculture 2024, 14, 175. [Google Scholar] [CrossRef]
- Duffy, J.P.; Anderson, K.; Fawcett, D.; Curtis, R.J.; Maclean, I.M.D. Drones Provide Spatial and Volumetric Data to Deliver New Insights into Microclimate Modelling. Landsc. Ecol. 2021, 36, 685–702. [Google Scholar] [CrossRef]
- Pathak, H.; Igathinathane, C.; Zhang, Z.; Archer, D.; Hendrickson, J. A Review of Unmanned Aerial Vehicle-Based Methods for Plant Stand Count Evaluation in Row Crops. Comput. Electron. Agric. 2022, 198, 107064. [Google Scholar] [CrossRef]
- Donmez, C.; Villi, O.; Berberoglu, S.; Cilek, A. Computer Vision-Based Citrus Tree Detection in a Cultivated Environment Using UAV Imagery. Comput. Electron. Agric. 2021, 187, 106273. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, R.; Chen, L.; Huang, Y.; Xu, G.; Wen, Y.; Yi, T. Monitor Cotton Budding Using SVM and UAV Images. Appl. Sci. 2019, 9, 4312. [Google Scholar] [CrossRef]
- Banerjee, B.P.; Sharma, V.; Spangenberg, G.; Kant, S. Machine Learning Regression Analysis for Estimation of Crop Emergence Using Multispectral UAV Imagery. Remote Sens. 2021, 13, 2918. [Google Scholar] [CrossRef]
- Tavus, M.R.; Eker, M.E.; Senyer, N.; Karabulut, B. Plant Counting By Using k-NN Classification on UAVs Images. In Proceedings of the 2015 23rd Signal Processing and Communications Applications Conference (SIU); IEEE: New York, NY, USA, 2015; pp. 1058–1061. [Google Scholar]
- Osco, L.P.; de Arruda, M.d.S.; Goncalves, D.N.; Dias, A.; Batistoti, J.; de Souza, M.; Georges Gomes, F.D.; Marques Ramos, A.P.; de Castro Jorge, L.A.; Liesenberg, V.; et al. A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows from UAV Imagery. ISPRS J. Photogramm. Remote Sens. 2021, 174, 1–17. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, B.; Yang, C.; Shi, Y.; Liao, Q.; Zhou, G.; Wang, C.; Xie, T.; Jiang, Z.; Zhang, D.; et al. Rapeseed Stand Count Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural Networks. Front. Plant Sci. 2020, 11, 617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Atkinson, P.M.; George, C.; Wen, Z.; Diazgranados, M.; Gerard, F. Identifying and Mapping Individual Plants in a Highly Diverse High-Elevation Ecosystem Using UAV Imagery and Deep Learning. ISPRS J. Photogramm. Remote Sens. 2020, 169, 280–291. [Google Scholar] [CrossRef]
- Vong, C.N.; Conway, L.S.; Zhou, J.; Kitchen, N.R.; Sudduth, K.A. Early Corn Stand Count of Different Cropping Systems Using UAV-Imagery and Deep Learning. Comput. Electron. Agric. 2021, 186, 106214. [Google Scholar] [CrossRef]
- Wang, L.; Xiang, L.; Tang, L.; Jiang, H. A Convolutional Neural Network-Based Method for Corn Stand Counting in the Field. Sensors 2021, 21, 507. [Google Scholar] [CrossRef]
- Machefer, M.; Lemarchand, F.; Bonnefond, V.; Hitchins, A.; Sidiropoulos, P. Mask R-CNN Refitting Strategy for Plant Counting and Sizing in UAV Imagery. Remote Sens. 2020, 12, 3015. [Google Scholar] [CrossRef]
- Lu, H.; Cao, Z. TasselNetV2+: A Fast Implementation for High-Throughput Plant Counting From High-Resolution RGB Imagery. Front. Plant Sci. 2020, 11, 541960. [Google Scholar] [CrossRef]
- Li, H.; Wang, P.; Huang, C. Comparison of Deep Learning Methods for Detecting and Counting Sorghum Heads in UAV Imagery. Remote Sens. 2022, 14, 3143. [Google Scholar] [CrossRef]
- Robey, A.; Hassani, H.; Pappas, G.J. Model-Based Robust Deep Learning: Generalizing to Natural, Out-of-Distribution Data. arXiv 2020, arXiv:2005.10247. [Google Scholar]
- Wang, Y.; Bansal, M. Robust Machine Comprehension Models via Adversarial Training. arXiv 2018, arXiv:1804.06473. [Google Scholar]
- Alnaasan, N.; Lieber, M.; Shafi, A.; Subramoni, H.; Shearer, S.; Panda, D.K. HARVEST: High-Performance Artificial Vision Framework for Expert Labeling Using Semi-Supervised Training. In Proceedings of the 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023; pp. 139–148. [Google Scholar]
- Mei, J.; Sun, K. Unsupervised Adversarial Domain Adaptation Leaf Counting with Bayesian Loss Density Estimation. Signal Image Video Process. 2023, 17, 1503–1509. [Google Scholar] [CrossRef]
- Rodriguez-Vazquez, J.; Fernandez-Cortizas, M.; Perez-Saura, D.; Molina, M.; Campoy, P. Overcoming Domain Shift in Neural Networks for Accurate Plant Counting in Aerial Images. Remote Sens. 2023, 15, 1700. [Google Scholar] [CrossRef]
- Shi, M.; Li, X.-Y.; Lu, H.; Cao, Z.-G. Background-Aware Domain Adaptation for Plant Counting. Front. Plant Sci. 2022, 13, 731816. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Nie, C.; Wang, H.; Cheng, M.; Liu, S.; Yu, X.; Shao, M.; Wang, Z.; Wang, S.; Tuohuti, N.; et al. A Fast and Robust Method for Plant Count in Sunflower and Maize at Different Seedling Stages Using High-Resolution UAV RGB Imagery. Precis. Agric. 2022, 23, 1720–1742. [Google Scholar] [CrossRef]
- Wu, J.; Yang, G.; Yang, X.; Xu, B.; Han, L.; Zhu, Y. Automatic Counting of in Situ Rice Seedlings from UAV Images Based on a Deep Fully Convolutional Neural Network. Remote Sens. 2019, 11, 691. [Google Scholar] [CrossRef]
- Corn Growth and Development: Crop Staging|Agronomic Crops Network. Available online: https://agcrops.osu.edu/newsletter/corn-newsletter/2022-18/corn-growth-and-development-crop-staging (accessed on 5 September 2024).
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. [Google Scholar]
- Johnson, J.M.; Khoshgoftaar, T.M. Survey on Deep Learning with Class Imbalance. J. Big Data 2019, 6, 27. [Google Scholar] [CrossRef]
- Ahmed, W.; Karim, A. The Impact of Filter Size and Number of Filters on Classification Accuracy in CNN. In Proceedings of the 2020 International Conference on Computer Science and Software Engineering (CSASE), Duhok, Iraq, 16–18 April 2020; pp. 88–93. [Google Scholar]
- Chen, P.; Ma, X.; Wang, F.; Li, J. A New Method for Crop Row Detection Using Unmanned Aerial Vehicle Images. Remote Sens. 2021, 13, 3526. [Google Scholar] [CrossRef]
- Al Mansoori, S.; Kunhu, A.; Al Ahmad, H. Automatic Palm Trees Detection from Multispectral UAV Data Using Normalized Difference Vegetation Index and Circular Hough Transform. In Proceedings of the High-Performance Computing in Geoscience and Remote Sensing Viii; Huang, B., Lopez, S., Wu, Z., Eds.; SPIE—The International Society for Optical Engineering: Bellingham, WA, USA, 2018; Volume 10792, p. 1079203. [Google Scholar]
- Liu, X.; Ghazali, K.H.; Han, F.; Mohamed, I.I. Automatic Detection of Oil Palm Tree from UAV Images Based on the Deep Learning Method. Appl. Artif. Intell. 2021, 35, 13–24. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, W.; Ma, Y.; Zhang, Z.; Gao, P.; Lv, X. Cotton Seedling Detection and Counting Based on UAV Multispectral Images and Deep Learning Methods. Remote Sens. 2023, 15, 2680. [Google Scholar] [CrossRef]
- Koh, J.C.O.; Hayden, M.; Daetwyler, H.; Kant, S. Estimation of Crop Plant Density at Early Mixed Growth Stages Using UAV Imagery. Plant Methods 2019, 15, 64. [Google Scholar] [CrossRef] [PubMed]
- Poncet, A.; Fulton, J.; Port, K.; McDonald, T.; Pate, G. Optimizing Field Traffic Patterns to Improve Machinery Efficiency: Path Planning Using Guidance Lines. Available online: https://ohioline.osu.edu/factsheet/fabe-5531 (accessed on 19 September 2024).
Model | Image Input Size | Trained Parameters | Training Time (Mins) |
---|---|---|---|
VGG16 | 32 × 32 × 3 | 7,116,546 | 300 |
VGG19 | 32 × 32 × 3 | 7,116,546 | 320 |
InceptionV3 | 75 × 75 × 3 | 21,772,450 | 750 |
ViT | 32 × 32 × 3 | 275,394 | 200 |
TR1 | TR2 | TR3 | TR4 | TR5 | ||
---|---|---|---|---|---|---|
Ground Truth | 229 | 274 | 184 | 116 | 140 | |
Models | Version | Estimated Corn Stand Counts | ||||
Inceptionv3 | 1 | 205 | 246 | 162 | 99 | 121 |
2 | 198 | 236 | 176 | 100 | 116 | |
3 | 203 | 255 | 170 | 103 | 133 | |
4 | 194 | 203 | 155 | 92 | 94 | |
5 | 192 | 233 | 150 | 96 | 97 | |
VGG16 | 1 | 209 | 263 | 177 | 111 | 135 |
2 | 211 | 263 | 177 | 111 | 137 | |
3 | 210 | 259 | 181 | 111 | 136 | |
4 | 209 | 261 | 177 | 110 | 135 | |
5 | 210 | 266 | 178 | 111 | 137 | |
VGG19 | 1 | 202 | 255 | 177 | 111 | 132 |
2 | 200 | 252 | 178 | 109 | 135 | |
3 | 203 | 251 | 177 | 107 | 135 | |
4 | 207 | 249 | 176 | 109 | 135 | |
5 | 202 | 251 | 173 | 108 | 132 | |
ViT | 1 | 206 | 259 | 180 | 108 | 133 |
2 | 210 | 255 | 179 | 110 | 134 | |
3 | 204 | 260 | 179 | 108 | 135 | |
4 | 146 | 235 | 133 | 87 | 120 | |
5 | 206 | 260 | 180 | 107 | 133 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katari, S.; Venkatesh, S.; Stewart, C.; Khanal, S. Integrating Automated Labeling Framework for Enhancing Deep Learning Models to Count Corn Plants Using UAS Imagery. Sensors 2024, 24, 6467. https://doi.org/10.3390/s24196467
Katari S, Venkatesh S, Stewart C, Khanal S. Integrating Automated Labeling Framework for Enhancing Deep Learning Models to Count Corn Plants Using UAS Imagery. Sensors. 2024; 24(19):6467. https://doi.org/10.3390/s24196467
Chicago/Turabian StyleKatari, Sushma, Sandeep Venkatesh, Christopher Stewart, and Sami Khanal. 2024. "Integrating Automated Labeling Framework for Enhancing Deep Learning Models to Count Corn Plants Using UAS Imagery" Sensors 24, no. 19: 6467. https://doi.org/10.3390/s24196467
APA StyleKatari, S., Venkatesh, S., Stewart, C., & Khanal, S. (2024). Integrating Automated Labeling Framework for Enhancing Deep Learning Models to Count Corn Plants Using UAS Imagery. Sensors, 24(19), 6467. https://doi.org/10.3390/s24196467