Foot–Floor Contact Sequences: A Metric for Gait Assessment in Parkinson’s Disease after Deep Brain Stimulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol and Data Acquisitions
2.3. Gait Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait Impairments in Parkinson’s Disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Dharnipragada, R.; Denduluri, L.S.; Naik, A.; Bertogliat, M.; Awad, M.; Ikramuddin, S.; Park, M.C. Frequency Settings of Subthalamic Nucleus DBS for Parkinson’s Disease: A Systematic Review and Network Meta-Analysis. Park. Relat. Disord. 2023, 116, 105809. [Google Scholar] [CrossRef] [PubMed]
- Vercruysse, S.; Vandenberghe, W.; Munks, L.; Nuttin, B.; Devos, H.; Nieuwboer, A. Effects of Deep Brain Stimulation of the Subthalamic Nucleus on Freezing of Gait in Parkinson’s Disease: A Prospective Controlled Study. J. Neurol. Neurosurg. Psychiatry 2014, 85, 871–877. [Google Scholar] [CrossRef]
- Cavallieri, F.; Campanini, I.; Gessani, A.; Budriesi, C.; Fioravanti, V.; Di Rauso, G.; Feletti, A.; Damiano, B.; Scaltriti, S.; Guagnano, N. Long-Term Effects of Bilateral Subthalamic Nucleus Deep Brain Stimulation on Gait Disorders in Parkinson’s Disease: A Clinical-Instrumental Study. J. Neurol. 2023, 13, 127–132. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Gruendlinger, L.; Scollins, L.; O’Herron, S.; Tarsy, D. Deep Brain Stimulation Effects on Gait Variability in Parkinson’s Disease. Mov. Disord. 2009, 24, 1688–1692. [Google Scholar] [CrossRef]
- Limousin, P.; Foltynie, T. Long-Term Outcomes of Deep Brain Stimulation in Parkinson Disease. Nat. Rev. Neurol. 2019, 15, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Zibetti, M.; Merola, A.; Rizzi, L.; Ricchi, V.; Angrisano, S.; Azzaro, C.; Artusi, C.A.; Arduino, N.; Marchisio, A.; Lanotte, M.; et al. Beyond Nine Years of Continuous Subthalamic Nucleus Deep Brain Stimulation in Parkinson’s Disease. Mov. Disord. 2011, 26, 2327–2334. [Google Scholar] [CrossRef]
- Schlenstedt, C.; Shalash, A.; Muthuraman, M.; Falk, D.; Witt, K.; Deuschl, G. Effect of High-Frequency Subthalamic Neurostimulation on Gait and Freezing of Gait in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Eur. J. Neurol. 2017, 24, 18–26. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Di Biase, L.; Di Santo, A.; Caminiti, M.L.; De Liso, A.; Shah, S.A.; Ricci, L.; Di Lazzaro, V. Gait Analysis in Parkinson’s Disease: An Overview of the Most Accurate Markers for Diagnosis and Symptoms Monitoring. Sensors 2020, 20, 3529. [Google Scholar] [CrossRef]
- Zanardi, A.P.J.; da Silva, E.S.; Costa, R.R.; Passos-Monteiro, E.; dos Santos, I.O.; Kruel, L.F.M.; Peyré-Tartaruga, L.A. Gait Parameters of Parkinson’s Disease Compared with Healthy Controls: A Systematic Review and Meta-Analysis. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B.; Mancini, M. Objective Biomarkers of Balance and Gait for Parkinson’s Disease Using Body-Worn Sensors. Mov. Disord. 2013, 28, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Youm, C.; Jeon, J.; Cheon, S.M.; Park, H. Validity of Shoe-Type Inertial Measurement Units for Parkinson’s Disease Patients during Treadmill Walking. J. Neuroeng. Rehabil. 2018, 15, 38. [Google Scholar] [CrossRef]
- Caramia, C.; Torricelli, D.; Schmid, M.; Munoz-Gonzalez, A.; Gonzalez-Vargas, J.; Grandas, F.; Pons, J.L. IMU-Based Classification of Parkinson’s Disease from Gait: A Sensitivity Analysis on Sensor Location and Feature Selection. IEEE J. Biomed. Health Inform. 2018, 22, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Galna, B.; Lord, S.; Rochester, L. Is Gait Variability Reliable in Older Adults and Parkinson’s Disease? Towards an Optimal Testing Protocol. Gait Posture 2013, 37, 580–585. [Google Scholar] [CrossRef]
- Agostini, V.; Balestra, G.; Knaflitz, M.; Agostini, V.; Balestra, G.; Knaflitz, M.; Agostini, V.; Balestra, G.; Knaflitz, M. Segmentation and Classification of Gait Cycles. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 946–952. [Google Scholar] [CrossRef]
- Di Nardo, F.; Strazza, A.; Mengarelli, A.; Cardarelli, S.; Tigrini, A.; Verdini, F.; Nascimbeni, A.; Agostini, V.; Knaflitz, M.; Fioretti, S. EMG-Based Characterization of Walking Asymmetry in Children with Mild Hemiplegic Cerebral Palsy. Biosensors 2019, 9, 82. [Google Scholar] [CrossRef]
- Agostini, V.; Ganio, D.; Facchin, K.; Cane, L.; Moreira Carneiro, S.; Knaflitz, M. Gait Parameters and Muscle Activation Patterns at 3, 6 and 12 Months After Total Hip Arthroplasty. J. Arthroplast. 2014, 29, 1265–1272. [Google Scholar] [CrossRef]
- Ghislieri, M.; Agostini, V.; Rizzi, L.; Knaflitz, M.; Lanotte, M. Atypical Gait Cycles in Parkinson’s Disease. Sensors 2021, 21, 5079. [Google Scholar] [CrossRef]
- Balaji, E.; Brindha, D.; Elumalai, V.K.; Umesh, K. Data-Driven Gait Analysis for Diagnosis and Severity Rating of Parkinson’s Disease. Med. Eng. Phys. 2021, 91, 54–64. [Google Scholar] [CrossRef]
- Schlachetzki, J.C.M.; Barth, J.; Marxreiter, F.; Gossler, J.; Kohl, Z.; Reinfelder, S.; Gassner, H.; Aminian, K.; Eskofier, B.M.; Winkler, J.; et al. Wearable Sensors Objectively Measure Gait Parameters in Parkinson’s Disease. PLoS ONE 2017, 12, e0183989. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Sigward, S.; Fisher, B.; Salem, G.J. Altered Dynamic Postural Control during Step Turning in Persons with Early-Stage Parkinson’s Disease. Parkinsons Dis. 2012, 2012, 386962. [Google Scholar] [CrossRef] [PubMed]
- Turcato, A.M.; Godi, M.; Giardini, M.; Arcolin, I.; Nardone, A.; Giordano, A.; Schieppati, M. Abnormal Gait Pattern Emerges during Curved Trajectories in High-Functioning Parkinsonian Patients Walking in Line at Normal Speed. PLoS ONE 2018, 13, e197264. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.C.; Hsu, W.L.; Wu, R.M.; Lu, T.W.; Lin, K.H. Motion Analysis of Axial Rotation and Gait Stability during Turning in People with Parkinson’s Disease. Gait Posture 2016, 44, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.K.; Cauraugh, J.H.; Ho, K.W.D.; Broderick, M.; Ramirez-Zamora, A.; Almeida, L.; Shukla, A.W.; Wilson, C.A.; de Bie, R.M.; Weaver, F.M.; et al. STN vs. GPi Deep Brain Stimulation for Tremor Suppression in Parkinson Disease: A Systematic Review and Meta-Analysis. Park. Relat. Disord. 2019, 58, 56–62. [Google Scholar] [CrossRef]
- Zampieri, C.; Salarian, A.; Carlson-Kuhta, P.; Aminian, K.; Nutt, J.G.; Horak, F.B. The Instrumented Timed up and Go Test: Potential Outcome Measure for Disease Modifying Therapies in Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 2010, 81, 171–176. [Google Scholar] [CrossRef]
- Stack, E.; Ashburn, A. Dysfunctional Turning in Parkinson’s Disease. Disabil. Rehabil. 2008, 30, 1222–1229. [Google Scholar] [CrossRef]
- Hulbert, S.; Ashburn, A.; Robert, L.; Verheyden, G. A Narrative Review of Turning Deficits in People with Parkinson’s Disease. Disabil. Rehabil. 2015, 37, 1382–1389. [Google Scholar] [CrossRef]
- Hong, M.; Perlmutter, J.S.; Earhart, G.M. A Kinematic and Electromyographic Analysis of Turning in People With Parkinson Disease. Neurorehabil. Neural. Repair. 2008, 23, 166–176. [Google Scholar] [CrossRef]
- Mancini, M.; Weiss, A.; Herman, T.; Hausdorff, J.M. Turn Around Freezing: Community-Living Turning Behavior in People with Parkinson’s Disease. Front. Neurol. 2018, 9, 18. [Google Scholar] [CrossRef]
- Mak, M.K.Y.; Patla, A.; Hui-Chan, C. Sudden Turn during Walking Is Impaired in People with Parkinson’s Disease. Exp. Brain Res. 2008, 190, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Crenna, P.; Carpinella, I.; Rabuffetti, M.; Calabrese, E.; Mazzoleni, P.; Nemni, R.; Ferrarin, M. The Association between Impaired Turning and Normal Straight Walking in Parkinson’s Disease. Gait Posture 2007, 26, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Huxham, F.; Baker, R.; Morris, M.E.; Iansek, R. Head and Trunk Rotation during Walking Turns in Parkinson’s Disease. Mov. Disord. 2008, 23, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Visser, J.E.; Voermans, N.C.; Nijhuis, L.B.O.; van der Eijk, M.; Nijk, R.; Munneke, M.; Bloem, B.R. Quantification of Trunk Rotations during Turning and Walking in Parkinson’s Disease. Clin. Neurophysiol. 2007, 118, 1602–1606. [Google Scholar] [CrossRef]
- Weaver, T.B.; Robinovitch, S.N.; Laing, A.C.; Yang, Y. Falls and Parkinson’s Disease: Evidence from Video Recordings of Actual Fall Events. J. Am. Geriatr. Soc. 2016, 64, 96–101. [Google Scholar] [CrossRef]
Sex | Age ) | Weight ) | Height ) | UPDRS-III (Best-On Condition) | H&R (Best-On Condition) | Disease Duration (Years) | LEDD ) | ||
---|---|---|---|---|---|---|---|---|---|
PD (= 27) | Before DBS | 8 F, 19 M | 57.4 ± 1.5 | 74.4 ± 2.7 | 1.72 ± 0.02 | 19.4 ± 1.8 † | I–III | 11.2 ± 0.6 | 1354.5 ± 79.9 † |
12-mo after DBS | 58.6 ± 1.5 | 10.2 ± 1.0 † | I–III | 12.3 ± 0.6 | 669.4 ± 65.0 † | ||||
Controls (= 30) | 18 F, 12 M | 55.0 ± 1.6 | 74.1 ± 3.4 | 1.68 ± 0.01 | N/A | N/A | N/A | N/A |
PD Patients | Controls | 1-Way MANOVA | ||||
---|---|---|---|---|---|---|
Before DBS | 3 Months after DBS | 12 Months after DBS | Group (p-Value) | |||
Walking Speed () | 1.05 ± 0.04 | 1.03 ± 0.04 | 0.99 ± 0.06 | 1.11 ± 0.03 | 0.25 | |
Turning Time () | 2.77 ± 0.13 * | 2.68 ± 0.13 † | 2.81 ± 0.20 ‡ | 2.05 ± 0.11 *,†,‡ | <0.0005 | |
Stride Time Variability () | ||||||
Straight-line | More affected | 8.48 ± 1.53 | 4.95 ± 1.53 | 5.88 ± 2.39 | 3.89 ± 1.35 | 0.16 |
Less affected | 9.92 ± 1.97 | 9.50 ± 1.97 | 5.99 ± 3.08 | 5.62 ± 1.74 | 0.30 | |
Turnings | More affected | 16.74 ± 1.73 | 14.73 ± 1.73 | 16.79 ± 2.70 | 12.65 ± 1.53 | 0.29 |
Less affected | 18.75 ± 1.82 | 17.63 ± 1.82 | 16.19 ± 2.85 | 14.05 ± 1.61 | 0.25 | |
Atypical Gait Cycles (Forefoot and Flatfoot IC) () | ||||||
Straight-line | More affected | 11.07 ± 1.51 *,† | 3.06 ± 1.51 * | 5.09 ± 2.36 | 3.07 ± 1.33 † | <0.0005 |
Less affected | 10.53 ± 2.62 | 8.74 ± 2.62 | 4.18 ± 4.11 | 5.42 ± 2.32 | 0.40 | |
Turnings | More affected | 13.69 ± 1.12 *,† | 7.80 ± 1.12 * | 10.91 ± 1.76 | 8.05 ± 0.99 † | 0.001 |
Less affected | 13.25 ± 1.22 * | 12.28 ± 1.22 | 9.59 ± 1.90 | 8.36 ± 1.08 * | 0.016 | |
Stance () | ||||||
Straight-line | More affected | 54.41 ± 0.84 * | 57.35 ± 0.84 * | 58.52 ± 1.31 | 56.76 ± 0.74 | 0.026 |
Less affected | 57.36 ± 1.06 | 55.62 ± 1.06 | 58.65 ± 1.66 | 57.61 ± 0.94 | 0.38 | |
Turnings | More affected | 59.37 ± 1.21 * | 62.93 ± 1.21 | 67.03 ± 1.90 *,† | 60.56 ± 1.08 † | 0.005 |
Less affected | 61.89 ± 1.55 | 61.12 ± 1.56 | 66.56 ± 2.42 | 61.67 ± 1.37 | 0.28 | |
Swing () | ||||||
Straight-line | More affected | 45.70 ± 0.85 * | 42.44 ± 0.85 * | 41.47 ± 1.33 | 43.26 ± 0.75 | 0.017 |
Less affected | 42.51 ± 1.07 | 44.41 ± 1.07 | 41.14 ± 1.68 | 42.34 ± 0.95 | 0.32 | |
Turnings | More affected | 40.62 ± 1.21 * | 37.12 ± 1.21 | 32.91 ± 1.89 *,† | 39.42 ± 1.07 † | 0.005 |
Less affected | 38.09 ± 1.53 | 38.85 ± 1.53 | 33.27 ± 2.40 | 38.28 ± 1.36 | 0.25 | |
Double Support () | ||||||
Straight-line | More affected | 13.98 ± 1.22 | 14.91 ± 1.22 | 17.77 ± 1.92 | 14.62 ± 1.08 | 0.42 |
Less affected | 14.28 ± 1.42 | 15.34 ± 1.42 | 17.83 ± 2.22 | 14.63 ± 1.26 | 0.57 | |
Turnings | More affected | 22.75 ± 1.77 | 23.44 ± 1.77 | 29.19 ± 2.78 | 21.62 ± 1.57 | 0.13 |
Less affected | 23.86 ± 1.92 | 24.14 ± 1.92 | 29.17 ± 3.00 | 21.98 ± 1.70 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghislieri, M.; Agostini, V.; Rizzi, L.; Fronda, C.; Knaflitz, M.; Lanotte, M. Foot–Floor Contact Sequences: A Metric for Gait Assessment in Parkinson’s Disease after Deep Brain Stimulation. Sensors 2024, 24, 6593. https://doi.org/10.3390/s24206593
Ghislieri M, Agostini V, Rizzi L, Fronda C, Knaflitz M, Lanotte M. Foot–Floor Contact Sequences: A Metric for Gait Assessment in Parkinson’s Disease after Deep Brain Stimulation. Sensors. 2024; 24(20):6593. https://doi.org/10.3390/s24206593
Chicago/Turabian StyleGhislieri, Marco, Valentina Agostini, Laura Rizzi, Chiara Fronda, Marco Knaflitz, and Michele Lanotte. 2024. "Foot–Floor Contact Sequences: A Metric for Gait Assessment in Parkinson’s Disease after Deep Brain Stimulation" Sensors 24, no. 20: 6593. https://doi.org/10.3390/s24206593
APA StyleGhislieri, M., Agostini, V., Rizzi, L., Fronda, C., Knaflitz, M., & Lanotte, M. (2024). Foot–Floor Contact Sequences: A Metric for Gait Assessment in Parkinson’s Disease after Deep Brain Stimulation. Sensors, 24(20), 6593. https://doi.org/10.3390/s24206593