An Ultra-Broadband Conductor-Backed Coplanar Waveguide with Sine Edges
Abstract
:1. Introduction
2. Analysis of the CBCPW-SE
2.1. Geometry of the Structure
2.2. Working Principle
3. Experimental Results and Discussion
3.1. Fabrication and Measurement Process
3.2. Simulation and Measurement Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, X.; Sugeta, M.; Yamagami, Y.; Fujita, M.; Nagatsuma, T. Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications. Appl. Phys. Express 2019, 12, 012005. [Google Scholar] [CrossRef]
- Wu, K. The substrate integrated circuits—A new concept for high-frequency electronics and optoelectronics. In Proceedings of the 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, TELSIKS 2003, Nis, Yugoslavia, 1–3 October 2003; Volume 1, pp. P-3–P-5. [Google Scholar]
- Wu, K.; Bozzi, M.; Fonseca, N.J.G. Substrate Integrated Transmission Lines: Review and Applications. IEEE J. Microw. 2021, 1, 345–363. [Google Scholar] [CrossRef]
- Yu, T.; Xue, K.; Li, K.; Liang, Y.; Yu, D. Characteristics of 10–110 GHz transmission lines on fused silica substrate for millimeter-wave modules. In Proceedings of the 2021 22nd International Conference on Electronic Packaging Technology (ICEPT), Xiamen, China, 14–17 September 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- El Gibari, M.; Li, H.W. A Comparative Study between Via-Hole and Via-Free Grounded Coplanar Waveguide to Microstrip Transitions on Thin Polymer Substrate. Int. J. Antennas Propag. 2015, 2015, 481768. [Google Scholar] [CrossRef]
- Huang, H.; Liu, D.; Guan, T.; Liu, X. Investigating scattering parameters measurements for 50GHz high speed printed circuit boards (PCBs). In Proceedings of the 2015 85th IEEE Microwave Measurement Conference, Phoenix, AZ, USA, 22–22 May 2015. [Google Scholar]
- Zhu, J.; Wan, Z.; Zhao, K. Method to Change the Through-Hole Structure to Broaden Grounded Coplanar Waveguide Bandwidth. Sensors 2023, 23, 4342. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Fesharaki, F.; Wu, K. Longitudinally Uniform Transmission Lines with Frequency-Enabled Mode Conversion. IEEE Access 2018, 6, 24089–24109. [Google Scholar] [CrossRef]
- Wang, D.; Fesharaki, F.; Wu, K. Physical evidence of mode conversion along mode-selective transmission line. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 491–494. [Google Scholar]
- Wang, D.; Wu, K. Mode-Selective Transmission Line—Part I: Theoretical Foundation and Physical Mechanism. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 2072–2086. [Google Scholar] [CrossRef]
- Wang, D.; Wu, K. Mode-Selective Transmission Line—Part II: Excitation Scheme and Experimental Verification. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 11, 260–272. [Google Scholar] [CrossRef]
- Wang, D.; Wu, K. Synthesized All-Pass Waveguide for Ultrafast Electronics. Engineering 2023, 30, 49–54. [Google Scholar] [CrossRef]
- Shih, Y.; Itoh, T. Analysis of conductor-backed coplanar waveguide. Electron. Lett. 1982, 18, 538–540. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering; Wiley: New York, NY, USA, 2012. [Google Scholar]
- Fan, F.; Yang, J.; Vassilev, V.; Zaman, A.U. Bandwidth Investigation on Half-Height Pin in Ridge Gap Waveguide. IEEE Trans. Microw. Theory Tech. 2018, 66, 100–108. [Google Scholar] [CrossRef]
- Safwat, A.M.E.; Tretyakov, S.A.; Räisänen, A.V. High impedance wire. IEEE Antennas Wirel. Propagat. Lett. 2007, 6, 631–634. [Google Scholar] [CrossRef]
- Mendez-Jeronimo, G.; Sejas-Garcia, S.C.; Torres-Torres, R. Modeling and Parameter Extraction for the Metal Surface Roughness Loss Effect on Substrate Integrated Waveguides From S-Parameters. IEEE Trans. Microw. Theory Tech. 2018, 66, 875–882. [Google Scholar] [CrossRef]
- Watanabe, A.O.; Tehrani, B.K.; Ogawa, T.; Raj, P.M.; Tentzeris, M.M.; Tummala, R.R. Ultralow-Loss Substrate-Integrated Waveguides in Glass-Based Substrates for Millimeter-Wave Applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 531–533. [Google Scholar] [CrossRef]
- Moscato, S.; Oldoni, M.; Mejillones, S.C. Substrate integrated waveguide components on alumina for E-band applications. In Proceedings of the 2022 Microwave Mediterranean Symposium (MMS), Pizzo Calabro, Italy, 9–13 May 2022; pp. 1–4. [Google Scholar]
- Aslani-Amoli, N.; Rehman, M.U.; Kumar, L.N.V.; Moradinia, A.; Liu, F.; Swaminathan, M.; Zhuang, C.-G.; Vaddi, R.; Seok, S.-H.; Kim, C. Ultralow-Loss Substrate-Integrated Waveguides in Alumina Ribbon Ceramic Substrates for 75–170 GHz Wireless Applications. IEEE Technol. Policy Ethic 2023, 33, 1415–1418. [Google Scholar] [CrossRef]
w | s | g | l | p | m | n |
0.4 | 0.08 | 0.11 | 0.7 | 0.8 | 0.6 | 0.2 |
Wsub | Lsub | hsub | t | |||
20 | 50 | 0.254 | 0.018 |
Ref. | Type | BW (GHz) | Mode | Vias | Measured Insertion Loss (dB/mm) |
---|---|---|---|---|---|
[18] [19] [20] | SIW | 24–40 70–80 75–110 | TE10 | Yes | 0.018 dB/mm (Laminated fused silica) 0.08 dB/mm (Alumina) 0.13 ± 0.02 (ARC) |
[8] | CBCPW | DC-60 | TEM | No | 0.45@60 |
[6] [4] | GCPW | DC-50 DC-110 | TEM | Yes | 0.095@50; 0.05@40 GHz; 0.23@110 GHz (Fused silica) |
[8] [9] | MSTL | DC-60 DC-110 | TEM+ TE10 | Yes | 0.12@60 (Ceramic PTFE) 0.26@110 (Rogers 6010LM) |
This work | CBCPW-SE | DC-100 | TEM | No | <0.1 dB/mm (Rogers 5880) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, T.; Gong, P.; Cheng, X.; Xiu, T.; Yao, Y. An Ultra-Broadband Conductor-Backed Coplanar Waveguide with Sine Edges. Sensors 2024, 24, 6640. https://doi.org/10.3390/s24206640
Xie T, Gong P, Cheng X, Xiu T, Yao Y. An Ultra-Broadband Conductor-Backed Coplanar Waveguide with Sine Edges. Sensors. 2024; 24(20):6640. https://doi.org/10.3390/s24206640
Chicago/Turabian StyleXie, Tingting, Pengwei Gong, Xiaohe Cheng, Tao Xiu, and Yuan Yao. 2024. "An Ultra-Broadband Conductor-Backed Coplanar Waveguide with Sine Edges" Sensors 24, no. 20: 6640. https://doi.org/10.3390/s24206640
APA StyleXie, T., Gong, P., Cheng, X., Xiu, T., & Yao, Y. (2024). An Ultra-Broadband Conductor-Backed Coplanar Waveguide with Sine Edges. Sensors, 24(20), 6640. https://doi.org/10.3390/s24206640