Isotropic Brain MRI Reconstruction from Orthogonal Scans Using 3D Convolutional Neural Network
Abstract
:1. Introduction
- •
- We present a simple yet efficient 3D model for isotropic MRI reconstruction that utilizes multiple orthogonal LR volumes with anisotropic resolution to generate an isotropic HR volume.
- •
- •
- The proposed model is evaluated on several simulated and real MRI datasets, and it shows significant superiority to other compared methods in terms of both quantitative evaluations and qualitative analyses.
2. Problem Formulation
3. Isotropic Super-Resolution Network
3.1. 3D Feature Extraction
3.2. Joint Linear Attention
3.3. Network Architecture
Algorithm 1: The isoSRN Model for Isotropic MRI Reconstruction |
3.4. Network Scale
4. Experimental Results
4.1. Datasets and Implementation Details
4.2. Training Example Generation
4.3. Evaluations of the Proposed Method
4.3.1. Slice Thickness
4.3.2. Noise Power
4.3.3. Pathology
4.3.4. The Number of Input Scans
4.4. Comparison with Other Methods
4.4.1. Evaluation on In Vivo Data
4.4.2. Running Time
5. Discussion and Future Work
5.1. Comparative Methods
5.2. Multiple and Fractional Scales
5.3. Generalization to Other Data
5.4. Extension to Real-World Scenarios
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, Z.; He, W.; Wu, J.; Xu, Z. The novel design of a single-sided MRI probe for assessing burn depth. Sensors 2017, 17, 526. [Google Scholar] [CrossRef] [PubMed]
- Achar, S.; Hwang, D.; Finkenstaedt, T.; Malis, V.; Bae, W.C. Deep-learning-aided evaluation of spondylolysis imaged with ultrashort echo time magnetic resonance imaging. Sensors 2023, 23, 8001. [Google Scholar] [CrossRef] [PubMed]
- Plenge, E.; Poot, D.H.; Bernsen, M.; Kotek, G.; Houston, G.; Wielopolski, P.; van der Weerd, L.; Niessen, W.J.; Meijering, E. Super-Resolut. Methods MRI: Can They Improv. Trade-Off Resolut. Signal- Ratio, Acquis. Time? Magn. Reson. Med. 2012, 68, 1983–1993. [Google Scholar] [CrossRef]
- Jia, Y.; Gholipour, A.; He, Z.; Warfield, S.K. A new sparse representation framework for reconstruction of an isotropic high spatial resolution MR volume from orthogonal anisotropic resolution scans. IEEE TMI 2017, 36, 1182–1193. [Google Scholar] [CrossRef] [PubMed]
- Aganj, I.; Lenglet, C.; Yacoub, E.; Sapiro, G.; Harel, N. A 3D wavelet fusion approach for the reconstruction of isotropic-resolution MR images from orthogonal anisotropic-resolution scans. Magn. Reson. Med. 2012, 67, 1167–1172. [Google Scholar] [CrossRef]
- Mandal, P.K.; Mahto, R.V. Deep multi-branch CNN architecture for early Alzheimer’s detection from brain MRIs. Sensors 2023, 23, 8192. [Google Scholar] [CrossRef]
- Remedios, S.W.; Han, S.; Xue, Y.; Carass, A.; Tran, T.D.; Pham, D.L.; Prince, J.L. Deep filter bank regression for super-resolution of anisotropic MR brain images. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2022, Singapore, 18–22 September 2022; pp. 613–622. [Google Scholar]
- Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.H. Deep learning for single image super-resolution: A brief review. arXiv 2018, arXiv:1808.03344. [Google Scholar]
- Zhang, K.; Zuo, W.; Zhang, L. Learning a single convolutional super-resolution network for multiple degradations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 3262–3271. [Google Scholar]
- Keys, R.G. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef]
- Freedman, G.; Fattal, R. Image and video upscaling from local self-examples. TOG 2011, 30, 12:1–12:11. [Google Scholar] [CrossRef]
- Irani, M.; Peleg, S. Image sequence enhancement using multiple motions analysis. In Proceedings of the CVPR, Champaign, IL, USA, 15–18 June 1992; pp. 216–221. [Google Scholar]
- Timofte, R.; Rothe, R.; Gool, L.V. Seven ways to improve example-based single image super resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1865–1873. [Google Scholar]
- Yang, J.; Wright, J.; Huang, T.; Ma, Y. Image super-resolution as sparse representation of raw image patches. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Yang, J.; Wang, Z.; Lin, Z.; Cohen, S.; Huang, T.S. Coupled dictionary training for image super-resolution. IEEE Trans. Image Process. 2012, 21, 3467–3478. [Google Scholar] [CrossRef]
- Bustin, A.; Voilliot, D.; Menini, A.; Felblinger, J.; de Chillou, C.; Burschka, D.; Bonnemains, L.; Odille, F. Isotropic Reconstr. MR Images Using 3D Patch-Based Self-Similarity Learn. IEEE Trans. Med. Imaging 2018, 37, 1932–1942. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, Y.; Zhang, T.; Zou, X. Channel splitting network for single MR image super-resolution. IEEE Trans. Image Process. 2019, 28, 5649–5662. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Hoi, S.C.H. Deep learning for image super-resolution: A survey. arXiv 2019, arXiv:1902.06068. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. TPAMI 2016, 38, 295–307. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.E.; Denker, J.S.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar]
- Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the ECCV, Amsterdam, The Netherlands, 11–14 October 2016; pp. 630–645. [Google Scholar]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the ECCV, Amsterdam, The Netherlands, 11–14 October 2016; pp. 391–407. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Annual Conference on Neural Information Processing Systems 2014, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar]
- Zhao, X.; Liao, Y.; Li, Y.; Zhang, T.; Zou, X. FC2N: Fully channel-concatenated network for single image super-resolution. arXiv 2019, arXiv:1907.03221. [Google Scholar]
- Dai, T.; Cai, J.; Zhang, Y.; Xia, S.; Zhang, L. Second-order attention network for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 11065–11074. [Google Scholar]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. SwinIR: Image restoration using swin transformer. In Proceedings of the CVPR Workshop, Virtual, 25 June 2021; pp. 1833–1844. [Google Scholar]
- Zhou, L.; Cai, H.; Gu, J.; Li, Z.; Liu, Y.; Chen, X.; Qiao, Y.; Dong, C. Efficient image super-resolution using vast-receptive-field attention. In Proceedings of the ECCV Workshops, New Orleans, LA, USA, 19–20 June 2022; pp. 256–272. [Google Scholar]
- Zhou, Y.; Li, Z.; Guo, C.L.; Bai, S.; Cheng, M.M.; Hou, Q. Srformer: Permuted self-attention for single image super-resolution. In Proceedings of the 2023 International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 12780–12791. [Google Scholar]
- Ullah, F.; Ansari, S.U.; Hanif, M.; Ayari, M.A.; Chowdhury, M.E.H.; Khandakar, A.A.; Khan, M.S. Brain MR image enhancement for tumor segmentation using 3D U-Net. Sensors 2021, 21, 7528. [Google Scholar] [CrossRef] [PubMed]
- Duong, S.T.; Phung, S.L.; Bouzerdoum, A.; Ang, S.P.; Schira, M.M. Correcting susceptibility artifacts of MRI sensors in brain scanning: A 3D anatomy-guided deep learning approach. Sensors 2021, 21, 2314. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Li, K.; Fu, Y. MR image super-resolution with squeeze and excitation reasoning attention network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021), Nashville, TN, USA, 20–25 June 2021; pp. 13425–13434. [Google Scholar]
- Mao, Y.; Jiang, L.; Chen, X.; Li, C. Disc-diff: Disentangled conditional diffusion model for multi-contrast mri super-resolution. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2023, Vancouver, BC, Canada, 8–12 October 2023; Springer: Cham, Switzerland, 2023; pp. 387–397. [Google Scholar]
- Zhang, J.; Chi, Y.; Lyu, J.; Yang, W.; Tian, Y. Dual arbitrary scale super-resolution for multi-contrast MRI. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2023, Vancouver, BC, Canada, 8–12 October 2023; pp. 282–292. [Google Scholar]
- Li, G.; Lv, J.; Tian, Y.; Dou, Q.; Wang, C.; Xu, C.; Qin, J. Transformer-empowered multi-scale contextual matching and aggregation for multi-contrast MRI super-resolution. In Proceedings of the 2022 IEEE CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 20636–20645. [Google Scholar]
- Pham, C.H.; Tor-Díeza, C.; Meunierb, H.; Bednarek, N.; Fablet, R.; Passat, N.; Rousseau, F. Multiscale Brain MRI Super-Resolut. Using Deep 3D Convolutional Networks. Comput. Med Imaging Graph. 2019, 77, 101647. [Google Scholar] [CrossRef]
- Niu, B.; Wen, W.; Ren, W.; Zhang, X.; Yang, L.; Wang, S.; Zhang, K.; Cao, X.; Shen, H. Single image super-resolution via a holistic attention network. In Proceedings of the ECCV, Glasgow, UK, 23–28 August 2020; Volume 12357, pp. 191–207. [Google Scholar]
- Mei, Y.; Fan, Y.; Zhou, Y. Image super-resolution with non-local sparse attention. In Proceedings of the 2021 IEEE CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 3517–3526. [Google Scholar]
- Huang, P.; Li, C.; He, P.; Xiao, H.; Ping, Y.; Feng, P.; Tian, S.; Chen, H.; Mercaldo, F.; Santone, A.; et al. MamlFormer: Priori-experience guiding transformer network via manifold adversarial multi-modal learning for laryngeal histopathological grading. Inf. Fusion 2024, 108, 102333. [Google Scholar] [CrossRef]
- Huang, P.; Xiao, H.; He, P.; Li, C.; Guo, X.; Tian, S.; Feng, P.; Chen, H.; Sun, Y.; Mercaldo, F.; et al. LA-ViT: A Network with Transformers Constrained by Learned-Parameter-Free Attention for Interpretable Grading in a New Laryngeal Histopathology Image Dataset. IEEE J. Biomed. Health Inform. 2024, 28, 3557–3570. [Google Scholar] [CrossRef]
- Pan, H.; Peng, H.; Xing, Y.; Jiayang, L.; Hualiang, X.; Sukun, T.; Peng, F. Breast tumor grading network based on adaptive fusion and microscopic imaging. Opto-Electron. Eng. 2023, 50, 220158. [Google Scholar]
- Yu, J.; Fan, Y.; Yang, J.; Xu, N.; Wang, Z.; Wang, X.; Huang, T. Wide activation for efficient and accurate image super-resolution. arXiv 2018, arXiv:1808.08718. [Google Scholar]
- Oktay, O.; Bai, W.; Lee, M.; Guerrero, R.; Kamnitsas, K.; Caballero, J.; de Marvao, A.; Cook, S.; O’Regan, D.; Rueckert, D. Multi-input cardiac image super-resolution using convolutional neural networks. In Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, Athens, Greece, 17–21 October 2016; pp. 246–254. [Google Scholar]
- Chen, X.; Wang, X.; Zhou, J.; Qiao, Y.; Dong, C. Activating more pixels in image super-resolution transformer. In Proceedings of the 2023 Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 22367–22377. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the 2018 Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Han, D.; Pan, X.; Han, Y.; Song, S.; Huang, G. Flatten Transformer: Vision Transformer using focused linear attention. In Proceedings of the 2023 International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 5961–5971. [Google Scholar]
- Glasser, M.F.; Sotiropoulos, S.N.; Wilson, J.A.; Coalson, T.S.; Fischl, B.; Andersson, J.L.; Xu, J.; Jbabdi, S.; Webster, M.; Polimeni, J.R.; et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 2013, 80, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Cocosco, C.A.; Kollokian, V.; Kwan, R.K.S.; Pike, G.B.; Evans, A.C. Brainweb: Online interface to a 3D MRI simulated brain database. NeuroImage 1997, 5, S425. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the ICLR, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Manjón, J.V.; Coupé, P.; Buades, A.; Fonov, V.; Collins, D.L. Non-local MRI upsampling. Med. Image Anal. 2010, 14, 784–792. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Greenshields, I.R. A nonlocal maximum likelihood estimation method for rician noise reduction in MR images. IEEE Trans. Med. Imaging 2009, 28, 165–172. [Google Scholar] [PubMed]
- Gudbjartsson, H.; Patz, S. The Rician distribution of noisy MRI data. Magn. Reson. Med. 2010, 34, 910–914. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Cheng, J.; Wang, L.; Yap, P.T.; Shen, D. LRTV: MR image super-resolution with low-rank and total variation regularizations. IEEE Trans. Med Imaging 2015, 34, 2459–2466. [Google Scholar] [CrossRef] [PubMed]
Datasets | Mode | Dims | # Volumes | Voxel Size | Source |
---|---|---|---|---|---|
HCPtest [53] | T1/T2 | 260 × 311 × 260 | 50 | 0.7 mm | HCP |
Sim-H [54] | T1/T2 | 217 × 181 × 181 | 2 | 1.0 mm | Brainweb |
Sim-P [54] | T1/T2 | 217 × 181 × 181 | 4 | 1.0 mm | Brainweb |
Set7 (Collected) | T1 | 256 × 256 × 154 | 7 | 1.0 mm | in vivo |
Methods | Type | SR × 2 | SR × 3 | SR × 4 | SR × 5 | SR × 6 | SR × 7 |
---|---|---|---|---|---|---|---|
CubeAvg [4] | T1 | 45.61/0.9937 | 40.19/0.9803 | 37.45/0.9648 | 35.66/0.9482 | 34.22/0.9292 | 33.29/0.9130 |
NLM [56] | 46.44/0.9949 | 40.95/0.9834 | 38.42/0.9716 | 36.35/0.9559 | 34.85/0.9329 | 33.72/0.9220 | |
SRCNN3D [20] | 53.10/0.9986 | 45.66/0.9928 | 42.20/0.9850 | 39.87/0.9754 | 38.14/0.9646 | 36.86/0.9538 | |
isoSRN [Ours] | 57.19/0.9993 | 49.35/0.9965 | 46.23/0.9933 | 44.33/0.9901 | 42.84/0.9866 | 41.78/0.9834 | |
isoSRN+ [Ours] | 57.29/0.9993 | 49.46/0.9966 | 46.34/0.9934 | 44.44/0.9903 | 42.95/0.9869 | 41.92/0.9838 | |
CubeAvg [4] | T2 | 41.01/0.9920 | 35.58/0.9736 | 33.10/0.9543 | 31.53/0.9345 | 30.25/0.9121 | 29.41/0.8932 |
NLM [56] | 41.77/0.9935 | 36.36/0.9784 | 33.99/0.9632 | 32.11/0.9437 | 30.77/0.9235 | 29.77/0.9036 | |
SRCNN3D [20] | 49.29/0.9985 | 40.91/0.9909 | 37.23/0.9800 | 34.86/0.9662 | 33.12/0.9507 | 31.94/0.9360 | |
isoSRN [Ours] | 55.02/0.9994 | 45.51/0.9961 | 41.91/0.9919 | 39.77/0.9875 | 38.13/0.9825 | 36.91/0.9776 | |
isoSRN+ [Ours] | 55.19/0.9994 | 45.66/0.9962 | 42.05/0.9921 | 39.92/0.9878 | 38.28/0.9829 | 37.08/0.9783 |
Rician Noise | Scale | ||||||
---|---|---|---|---|---|---|---|
CubeAvg [4] | SR × 5 | 26.50/0.9206 | 26.45/0.8979 | 26.30/0.8546 | 26.07/0.8184 | 25.77/0.7902 | 25.43/0.7668 |
NLM [56] | 27.21/0.9352 | 27.17/0.9142 | 27.05/0.8739 | 26.86/0.8413 | 26.62/0.8166 | 26.33/0.7966 | |
isoSRN [Ours] | 37.80/0.9923 | 36.86/0.9899 | 36.18/0.9882 | 35.67/0.9856 | 35.21/0.9828 | 34.81/0.9810 | |
isoSRN+ [Ours] | 38.02/0.9929 | 37.24/0.9909 | 36.65/0.9894 | 36.15/0.9873 | 35.70/0.9841 | 35.29/0.9829 | |
CubeAvg [4] | SR × 7 | 23.68/0.8500 | 23.59/0.8294 | 23.52/0.7899 | 23.41/0.7567 | 23.26/0.7307 | 23.08/0.7089 |
NLM [56] | 24.07/0.8668 | 24.05/0.8477 | 24.00/0.8127 | 23.92/0.7839 | 23.81/0.7615 | 23.67/0.7434 | |
isoSRN [Ours] | 33.43/0.9789 | 32.75/0.9760 | 32.34/0.9729 | 32.05/0.9688 | 31.81/0.9666 | 31.51/0.9627 | |
isoSRN+ [Ours] | 33.68/0.9809 | 33.24/0.9788 | 32.83/0.9755 | 32.60/0.9722 | 32.33/0.9701 | 32.05/0.9662 |
Methods | Type | SR × 2 | SR × 3 | SR × 4 | SR × 5 | SR × 6 | SR × 7 |
---|---|---|---|---|---|---|---|
CubeAvg [4] | T1 | 44.10/0.9977 | 37.46/0.9901 | 33.44/0.9760 | 30.65/0.9557 | 28.75/0.9329 | 27.17/0.9043 |
NLM [56] | 44.39/0.9980 | 38.04/0.9921 | 34.32/0.9816 | 31.52/0.9642 | 29.55/0.9444 | 27.73/0.9151 | |
SRCNN3D [20] | 51.23/0.9995 | 43.47/0.9970 | 38.31/0.9903 | 35.11/0.9799 | 32.71/0.9650 | 30.56/0.9421 | |
isoSRN [Ours] | 56.58/0.9998 | 48.93/0.9990 | 44.79/0.9977 | 41.91/0.9953 | 39.71/0.9921 | 37.47/0.9868 | |
isoSRN+ [Ours] | 56.75/0.9998 | 49.14/0.9991 | 45.00/0.9978 | 42.12/0.9956 | 39.96/0.9925 | 37.77/0.9878 | |
CubeAvg [4] | T2 | 44.10/0.9977 | 37.46/0.9901 | 33.44/0.9760 | 30.65/0.9557 | 28.75/0.9329 | 27.17/0.9043 |
NLM [56] | 44.39/0.9980 | 38.04/0.9921 | 34.32/0.9816 | 31.52/0.9642 | 29.55/0.9444 | 27.73/0.9151 | |
SRCNN3D [20] | 50.97/0.9995 | 43.11/0.9969 | 38.24/0.9907 | 34.96/0.9789 | 32.67/0.9638 | 30.39/0.9407 | |
isoSRN [Ours] | 55.98/0.9998 | 48.54/0.9991 | 44.33/0.9975 | 41.49/0.9950 | 39.31/0.9916 | 37.01/0.9858 | |
isoSRN+ [Ours] | 56.18/0.9998 | 48.75/0.9991 | 44.56/0.9976 | 41.71/0.9953 | 39.57/0.9920 | 37.31/0.9867 |
Methods | Type | SR × 2 | SR × 3 | SR × 4 | SR × 5 | SR × 6 | SR × 7 |
---|---|---|---|---|---|---|---|
CubeAvg [4] | T1 | 43.12/0.9927 | 38.23/0.9797 | 35.75/0.9656 | 34.07/0.9499 | 32.84/0.9334 | 32.07/0.9200 |
NLM [56] | 44.62/0.9946 | 39.03/0.9825 | 36.65/0.9716 | 34.63/0.9559 | 33.34/0.9414 | 32.29/0.9266 | |
SRCNN3D [20] | 49.58/0.9980 | 42.96/0.9913 | 39.75/0.9828 | 37.55/0.9720 | 35.93/0.9599 | 34.79/0.9481 | |
ReCNN [41] | 52.46/0.9988 | 46.18/0.9953 | 43.22/0.9913 | 41.18/0.9866 | 39.59/0.9809 | 38.46/0.9752 | |
VDSR3D [23] | 52.42/0.9988 | 46.38/0.9955 | 43.50/0.9917 | 41.52/0.9875 | 39.95/0.9822 | 38.88/0.9773 | |
isoSRN [Ours] | 53.23/0.9990 | 46.76/0.9958 | 43.90/0.9924 | 42.04/0.9887 | 40.56/0.9843 | 39.51/0.9802 | |
isoSRN+ [Ours] | 53.35/0.9991 | 46.87/0.9960 | 44.02/0.9926 | 42.16/0.9890 | 40.68/0.9847 | 39.63/0.9806 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Xiao, C.; Zhu, H. Isotropic Brain MRI Reconstruction from Orthogonal Scans Using 3D Convolutional Neural Network. Sensors 2024, 24, 6639. https://doi.org/10.3390/s24206639
Tian J, Xiao C, Zhu H. Isotropic Brain MRI Reconstruction from Orthogonal Scans Using 3D Convolutional Neural Network. Sensors. 2024; 24(20):6639. https://doi.org/10.3390/s24206639
Chicago/Turabian StyleTian, Jinsha, Canjun Xiao, and Hongjin Zhu. 2024. "Isotropic Brain MRI Reconstruction from Orthogonal Scans Using 3D Convolutional Neural Network" Sensors 24, no. 20: 6639. https://doi.org/10.3390/s24206639
APA StyleTian, J., Xiao, C., & Zhu, H. (2024). Isotropic Brain MRI Reconstruction from Orthogonal Scans Using 3D Convolutional Neural Network. Sensors, 24(20), 6639. https://doi.org/10.3390/s24206639