Phonocardiogram (PCG) Murmur Detection Based on the Mean Teacher Method
Abstract
:1. Introduction
2. Related Work
3. Method
4. Experiment
4.1. Dataset and Preprocessing
4.2. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Cardiovascular Diseases (CVDs); World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Dornbush, S.; Turnquest, A.E. Physiology, heart sounds 2023. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, January 2024. [Google Scholar] [PubMed]
- Hoeting, N.M.; McCracken, C.E.; McConnell, M.; Sallee, D.; Iannucci, G.J.; Oster, M.E. Systolic ejection click versus split first heart sound: Are our ears deceiving us? Congenit. Heart Dis. 2017, 12, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Yip, J.B.; Steigleder, T.; Grießhammer, S.; Heckel, M.; Jami, N.V.S.J.; Eskofier, B.; Ostgathe, C.; Koelpin, A. A Lightweight Robust Approach for Automatic Heart Murmurs and Clinical Outcomes Classification from Phonocardiogram Recordings. In Proceedings of the 2022 Computing in Cardiology (CinC), Tampere, Finland, 4–7 September 2022; Volume 498, pp. 1–4. [Google Scholar] [CrossRef]
- Xu, Y.; Bao, X.; Lam, H.K.; Kamavuako, E.N. Hierarchical Multi-Scale Convolutional Network for Murmurs Detection on PCG Signals. In Proceedings of the 2022 Computing in Cardiology (CinC), Tampere, Finland, 4–7 September 2022; Volume 498, pp. 1–4. [Google Scholar] [CrossRef]
- McDonald, A.; Gales, M.J.; Agarwal, A. Detection of Heart Murmurs in Phonocardiograms with Parallel Hidden Semi-Markov Models. In Proceedings of the 2022 Computing in Cardiology (CinC), Tampere, Finland, 4–7 September 2022; Volume 498, pp. 1–4. [Google Scholar] [CrossRef]
- Cai, Q.; Pan, Y.; Ngo, C.W.; Tian, X.; Duan, L.; Yao, T. Exploring object relation in mean teacher for cross-domain detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11457–11466. [Google Scholar]
- Tarvainen, A.; Valpola, H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. Adv. Neural Inf. Process. Syst. 2017, 30, 1195–1204. [Google Scholar]
- Reyna, M.A.; Kiarashi, Y.; Elola, A.; Oliveira, J.; Renna, F.; Gu, A.; Perez Alday, E.A.; Sadr, N.; Sharma, A.; Kpodonu, J.; et al. Heart murmur detection from phonocardiogram recordings: The george b. moody physionet challenge 2022. PLoS Digit. Health 2023, 2, e0000324. [Google Scholar] [CrossRef] [PubMed]
- Clifford, G.D.; Liu, C.; Moody, B.; Springer, D.; Silva, I.; Li, Q.; Mark, R.G. Classification of normal/abnormal heart sound recordings: The PhysioNet/Computing in Cardiology Challenge 2016. In Proceedings of the 2016 Computing in cardiology conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 609–612. [Google Scholar]
- Dissanayake, T.; Fernando, T.; Denman, S.; Sridharan, S.; Fookes, C. Generalized generative deep learning models for biosignal synthesis and modality transfer. IEEE J. Biomed. Health Inform. 2022, 27, 968–979. [Google Scholar] [CrossRef] [PubMed]
- Gerbarg, D.S.; Taranta, A.; Spagnuolo, M.; Hofler, J.J. Computer analysis of phonocardiograms. Prog. Cardiovasc. Dis. 1963, 5, 393–405. [Google Scholar] [CrossRef]
- El-Segaier, M.; Lilja, O.; Lukkarinen, S.; Sörnmo, L.; Sepponen, R.; Pesonen, E. Computer-based detection and analysis of heart sound and murmur. Ann. Biomed. Eng. 2005, 33, 937–942. [Google Scholar] [CrossRef]
- Delgado-Trejos, E.; Quiceno-Manrique, A.; Godino-Llorente, J.; Blanco-Velasco, M.; Castellanos-Dominguez, G. Digital auscultation analysis for heart murmur detection. Ann. Biomed. Eng. 2009, 37, 337–353. [Google Scholar] [CrossRef]
- Ahlström, C. Processing of the Phonocardiographic Signal: Methods for the Intelligent Stethoscope. Ph.D. Thesis, Institutionen för Medicinsk Teknik, Linköping, Sweden, 2006. [Google Scholar]
- Kumar, D.; Carvalho, P.; Antunes, M.; Henriques, J.; Melo, A.S.E.; Schmidt, R.; Habetha, J. Third Heart Sound Detection Using Wavelet Transform-Simplicity Filter. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 1277–1281. [Google Scholar] [CrossRef]
- Eslamizadeh, G.; Barati, R. Heart murmur detection based on wavelet transformation and a synergy between artificial neural network and modified neighbor annealing methods. Artif. Intell. Med. 2017, 78, 23–40. [Google Scholar] [CrossRef]
- Varghees, V.N.; Ramachandran, K. Effective heart sound segmentation and murmur classification using empirical wavelet transform and instantaneous phase for electronic stethoscope. IEEE Sens. J. 2017, 17, 3861–3872. [Google Scholar] [CrossRef]
- Potes, C.; Parvaneh, S.; Rahman, A.; Conroy, B. Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 621–624. [Google Scholar]
- Chorba, J.S.; Shapiro, A.M.; Le, L.; Maidens, J.; Prince, J.; Pham, S.; Kanzawa, M.M.; Barbosa, D.N.; Currie, C.; Brooks, C.; et al. Deep learning algorithm for automated cardiac murmur detection via a digital stethoscope platform. J. Am. Heart Assoc. 2021, 10, e019905. [Google Scholar] [CrossRef]
- Abduh, Z.; Nehary, E.A.; Wahed, M.A.; Kadah, Y.M. Classification of heart sounds using fractional fourier transform based mel-frequency spectral coefficients and traditional classifiers. Biomed. Signal Process. Control 2020, 57, 101788. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Liu, C.; Zeng, Q.; Zheng, Y.; Chu, X.; Yao, L.; Wang, J.; Jiao, Y.; Karmakar, C. A fusion framework based on multi-domain features and deep learning features of phonocardiogram for coronary artery disease detection. Comput. Biol. Med. 2020, 120, 103733. [Google Scholar] [CrossRef] [PubMed]
- Megalmani, D.R.; Shailesh, B.; Rao, A.; Jeevannavar, S.S.; Ghosh, P.K. Unsegmented heart sound classification using hybrid CNN-LSTM neural networks. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 31Oct–4 November 2021; pp. 713–717. [Google Scholar]
- Bao, X.; Xu, Y.; Kamavuako, E.N. The effect of signal duration on the classification of heart sounds: A deep learning approach. Sensors 2022, 22, 2261. [Google Scholar] [CrossRef] [PubMed]
- Almanifi, O.R.A.; Ab Nasir, A.F.; Razman, M.A.M.; Musa, R.M.; Majeed, A.P.A. Heartbeat murmurs detection in phonocardiogram recordings via transfer learning. Alex. Eng. J. 2022, 61, 10995–11002. [Google Scholar] [CrossRef]
- Lee, J.; Kang, T.; Kim, N.; Han, S.; Won, H.; Gong, W.; Kwak, I.Y. Deep learning based heart murmur detection using frequency-time domain features of heartbeat sounds. In Proceedings of the 2022 Computing in Cardiology (CinC), Tampere, Finland, 4–7 September 2022; Volume 498, pp. 1–4. [Google Scholar]
- Walker, B.; Krones, F.; Kiskin, I.; Parsons, G.; Lyons, T.; Mahdi, A. Dual Bayesian ResNet: A deep learning approach to heart murmur detection. In Proceedings of the 2022 Computing in Cardiology (CinC), Tampere, Finland, 4–7 September 2022; Volume 498, pp. 1–4. [Google Scholar]
- Panah, D.S.; Hines, A.; McKeever, S. Exploring wav2vec 2.0 model for heart murmur detection. In Proceedings of the 2023 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finland, 4–8 September 2023; pp. 1010–1014. [Google Scholar]
- Kamson, A.P.; Lewis, M.C.; Sunil, B.V.; Jeevannavar, S.S.; Sawant, A.; Ghosh, P.K. E2E Multi-Scale CNN with LSTM for Murmur Detection in PCG or Noise Identification. In Proceedings of the 2023 International Conference on Electrical, Communication and Computer Engineering (ICECCE), Dubai, United Arab Emirates, 30–31 December 2023; pp. 1–6. [Google Scholar]
- Bondareva, E.; Rizos, G.; Han, J.; Mascolo, C. Embracing the Imaginary: Deep Complex-valued Networks for Heart Murmur Detection. In Proceedings of the 2023 Computing in Cardiology (CinC), Atlanta, GA, USA, 1–4 October 2023; Volume 50, pp. 1–4. [Google Scholar]
- Rohr, M.; Müller, B.; Dill, S.; Güney, G.; Hoog Antink, C. Multiple instance learning framework can facilitate explainability in murmur detection. PLoS Digit. Health 2024, 3, e0000461. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Chen, Y.; Chien, C. On the analysis of data augmentation methods for spectral imaged based heart sound classification using convolutional neural networks. BMC Med Inform. Decis. Mak. 2022, 22, 226. [Google Scholar] [CrossRef]
- Bachman, P.; Alsharif, O.; Precup, D. Learning with pseudo-ensembles. Adv. Neural Inf. Process. Syst. 2014, 27, 3365–3373. [Google Scholar]
- Laine, S.; Aila, T. Temporal ensembling for semi-supervised learning. arXiv 2016, arXiv:1610.02242. [Google Scholar]
- Sajjadi, M.; Javanmardi, M.; Tasdizen, T. Regularization with stochastic transformations and perturbations for deep semi-supervised learning. Adv. Neural Inf. Process. Syst. 2016, 29. [Google Scholar]
- Patwa, A.; Rahman, M.M.U.; Al-Naffouri, T.Y. Heart murmur and abnormal pcg detection via wavelet scattering transform & a 1d-cnn. arXiv 2023, arXiv:2303.11423. [Google Scholar]
- Kazemnejad, A.; Gordany, P.; Sameni, R. EPHNOGRAM: A simultaneous electrocardiogram and phonocardiogram database. PhysioNet 2021. [Google Scholar] [CrossRef]
- Noponen, A.L.; Lukkarinen, S.; Angerla, A.; Sepponen, R. Phono-spectrographic analysis of heart murmur in children. BMC Pediatr. 2007, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.; Renna, F.; Costa, P.D.; Nogueira, M.; Oliveira, C.; Ferreira, C.; Jorge, A.; Mattos, S.; Hatem, T.; Tavares, T.; et al. The CirCor DigiScope dataset: From murmur detection to murmur classification. IEEE J. Biomed. Health Inform. 2021, 26, 2524–2535. [Google Scholar] [CrossRef] [PubMed]
Parameter Name | Parameter Value | Parameter Description |
---|---|---|
Optimizer | Adam | Neural Network optimizer |
Learning Rate | 1 × 10−3 | learning rate for optimizer |
Batch Size | 16 | Number of samples per iteration. |
EMA k | 0.98 | Smoothing coefficient in Exponential Moving Average. |
Weight con init | 0.7 | Initial value for consistency loss in mean teacher. |
Weight con end | 1 | Final value for consistency loss in mean teacher. |
Murmur Expert | ||||
Murmur Classifier | Present | Unknown | Absent | |
Present | ||||
Unknown | ||||
Absent |
Data Split | Result Measurements | ||||
---|---|---|---|---|---|
Model | Labeled Data | Unlabeled Data | Validation Data | Murmur Score | AUC |
Full Supervise | 20% v2022 | / | 20% v2022 | 0.7020 ± 0.0026 | 0.7951 ± 0.0008 |
Semi Supervise | 20% v2022 | 20% v2022 | 20% v2022 | 0.7298 ± 0.0035 | 0.8217 ± 0.0009 |
Semi Supervise | 20% v2022 | 40% v2022 | 20% v2022 | 0.7418 ± 0.0021 | 0.8398 ± 0.0013 |
Semi Supervise | 20% v2022 | 60% v2022 | 20% v2022 | 0.7540 ± 0.0040 | 0.8562 ± 0.0007 |
Full Supervise (Current SOTA) | 80% v2022 | / | 20% v2022 | 0.8074 ± 0.0010 | 0.8936 ± 0.0011 |
Semi Supervise (Ours) | 80% v2022 | 100% v2016-e | 20% v2022 | 0.8180 ± 0.0006 | 0.9004 ± 0.0019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Fu, Z.; Ding, Y.; Chen, X.; Ding, K. Phonocardiogram (PCG) Murmur Detection Based on the Mean Teacher Method. Sensors 2024, 24, 6646. https://doi.org/10.3390/s24206646
Luo Y, Fu Z, Ding Y, Chen X, Ding K. Phonocardiogram (PCG) Murmur Detection Based on the Mean Teacher Method. Sensors. 2024; 24(20):6646. https://doi.org/10.3390/s24206646
Chicago/Turabian StyleLuo, Yi, Zuoming Fu, Yantian Ding, Xiaojian Chen, and Kai Ding. 2024. "Phonocardiogram (PCG) Murmur Detection Based on the Mean Teacher Method" Sensors 24, no. 20: 6646. https://doi.org/10.3390/s24206646
APA StyleLuo, Y., Fu, Z., Ding, Y., Chen, X., & Ding, K. (2024). Phonocardiogram (PCG) Murmur Detection Based on the Mean Teacher Method. Sensors, 24(20), 6646. https://doi.org/10.3390/s24206646