Machine Learning-Empowered Real-Time Acoustic Trapping: An Enabling Technique for Increasing MRI-Guided Microbubble Accumulation
Abstract
:1. Introduction
- (1)
- Development of the first machine learning-empowered model to facilitate the generation of acoustic traps in 2D heterogeneous media. This approach delivers accurate generation of multiple types of traps (e.g., focal beam and twin trap).
- (2)
- High computation efficiency for enabling rapid phase-amplitude (PA) modulation on transducer array. The model can predict time-of-flight (ToF) and pressure amplitude within 10 ms to modulate all elements, which is significantly faster (four orders of magnitude) than the existing method (e.g., TRM).
- (3)
- FE-based validations on the prediction performance using MR images, based on three factors, i.e., sample density, element diameters, and penetration depths, supporting our model’s potential for medical applications. FE modeling further demonstrates the capacity of twin traps for trapping microbubbles (negative acoustic contrast factor).
2. Materials and Methods
2.1. Learning-Based Trap Generation Model
2.2. FE-Based Dataset Collection
2.3. Model Training
2.4. FE-Based Trap Visualization
2.5. FE-Based Microbubbles Trapping
42 × (sin(2πt) + abs(sin(2πt))) × exp(−20 × (t − round(t − 0.5))) × 1.35/(1 + exp(130t + 10)))
3. Results and Discussion
3.1. ToF Prediction
3.2. Phase-Only Modulation for Focal Beam
3.3. Phase-Only Modulation for Twin Trap
3.4. Phase–Amplitude Modulation
3.5. Computation Efficiency
3.6. Microbubble Trapping Capacity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Graham, S.J.; Bronskill, M.J.; Henkelman, R.M. Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle. Magn. Reson. Med. 1998, 39, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Jagannathan, J.; Sanghvi, N.K.; Crum, L.A.; Yen, C.-P.; Medel, R.; Dumont, A.S.; Sheehan, J.P.; Steiner, L.; Jolesz, F.; Kassell, N.F. High intensity focused ultrasound surgery (HIFU) of the brain: A historical perspective: With modern applications. Neurosurgery 2009, 64, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Wijlemans, J.; Bartels, L.; Deckers, R.; Ries, M.; Mali, W.; Moonen, C.; van den Bosch, M.A. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumours. Cancer Imaging 2012, 12, 387–394. [Google Scholar] [CrossRef]
- Liu, L.; Wang, T.; Lei, B. High-intensity focused ultrasound (HIFU) ablation versus surgical interventions for the treatment of symptomatic uterine fibroids: A meta-analysis. Eur. Radiol. 2022, 32, 1195–1204. [Google Scholar] [CrossRef]
- Mehta, R.I.; Carpenter, J.S.; Mehta, R.I.; Haut, M.W.; Wang, P.; Ranjan, M.; Najib, U.; D’haese, P.-F.; Rezai, A.R. Ultrasound-mediated blood–brain barrier opening uncovers an intracerebral perivenous fluid network in persons with Alzheimer’s disease. Fluids Barriers CNS 2023, 20, 46. [Google Scholar] [CrossRef]
- Wrede, P.; Aghakhani, A.; Bozuyuk, U.; Yildiz, E.; Sitti, M. Acoustic Trapping and Manipulation of Hollow Microparticles under Fluid Flow Using a Single-Lens Focused Ultrasound Transducer. ACS Appl. Mater. Interfaces 2023, 15, 52224–52236. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. Acoustical tweezers. J. Acoust. Soc. Am. 1991, 89, 2140–2143. [Google Scholar] [CrossRef]
- Yuan, Z.; Lu, C.; Liu, C.; Bai, X.; Zhao, L.; Feng, S.; Liu, Y. Ultrasonic tweezer for multifunctional droplet manipulation. Sci. Adv. 2023, 9, eadg2352. [Google Scholar] [CrossRef]
- Ozcelik, A.; Rufo, J.; Guo, F.; Gu, Y.; Li, P.; Lata, J.; Huang, T.J. Acoustic tweezers for the life sciences. Nat. Methods 2018, 15, 1021–1028. [Google Scholar] [CrossRef]
- Marzo, A.; Seah, S.A.; Drinkwater, B.W.; Sahoo, D.R.; Long, B.; Subramanian, S. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 2015, 6, 8661. [Google Scholar] [CrossRef]
- Hu, Q.; Ma, T.; Zhang, Q.; Wang, J.; Yang, Y.; Cai, F.; Zheng, H. 3-D acoustic tweezers using a 2-D matrix array with time-multiplexed traps. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 3646–3653. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.J.; Morahan, B.; Garcia-Bustos, J.; Doerig, C.; Plebanski, M.; Neild, A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 2015, 6, 8686. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Shung, K.K.; Lim, H.G. Ultrasonic High-Resolution Imaging and Acoustic Tweezers Using Ultrahigh Frequency Transducer: Integrative Single-Cell Analysis. Sensors 2023, 23, 1916. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, Y.; Liu, D.; Wang, Y.; Lu, M.; Zhang, Q.; Huang, J.; Li, Y.; Ma, T.; Yan, F.; et al. In-vivo programmable acoustic manipulation of genetically engineered bacteria. Nat. Commun. 2023, 14, 3297. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, T.; Zhang, Q.; Huang, J.; Hu, Q.; Li, Y.; Wang, C.; Zheng, H. 3D Acoustic Manipulation of Living Cells and Organisms Based on 2D Array. IEEE Trans. Biomed. Eng. 2022, 69, 2342–2352. [Google Scholar] [CrossRef] [PubMed]
- Lo, W.-C.; Fan, C.-H.; Ho, Y.-J.; Lin, C.-W.; Yeh, C.-K. Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles. Proc. Natl. Acad. Sci. USA 2021, 118, e2023188118. [Google Scholar] [CrossRef]
- Chowdhury, S.M.; Abou-Elkacem, L.; Lee, T.; Dahl, J.; Lutz, A.M. Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook. J. Control. Release 2020, 326, 75–90. [Google Scholar] [CrossRef]
- Thanou, M.; Gedroyc, W. MRI-Guided Focused Ultrasound as a New Method of Drug Delivery. J. Drug Deliv. 2013, 2013, 616197. [Google Scholar] [CrossRef]
- Conteduca, D.; Brunetti, G.; Barth, I.; Quinn, S.D.; Ciminelli, C.; Krauss, T.F. Multiplexed Near-Field Optical Trapping Exploiting Anapole States. ACS Nano 2023, 17, 16695–16702. [Google Scholar] [CrossRef]
- Brunetti, G.; Sasanelli, N.; Armenise, M.N.; Ciminelli, C. Nanoscale Optical Trapping by Means of Dielectric Bowtie. Photonics 2022, 9, 425. [Google Scholar] [CrossRef]
- Zeng, B.F.; Deng, R.; Zou, Y.L.; Huo, C.A.; Wang, J.Y.; Yang, W.M.; Liang, Q.M.; Qiu, S.J.; Feng, A.; Shi, J.; et al. Optical Trapping of a Single Molecule of Length Sub-1 nm in Solution. CCS Chem. 2023, 5, 830–840. [Google Scholar] [CrossRef]
- Hölzel, R.; Calander, N.; Chiragwandi, Z.; Willander, M.; Bier, F.F. Trapping Single Molecules by Dielectrophoresis. Phys. Rev. Lett. 2005, 95, 128102. [Google Scholar] [CrossRef] [PubMed]
- Bespalova, M.I.; Mahanta, S.; Krishnan, M. Single-molecule trapping and measurement in solution. Curr. Opin. Chem. Biol. 2019, 51, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Wu, M.; Hao, Y.; Tian, L.; He, Z.; Au, K.W.S.; Taylor, R.H.; Iordachita, I.; Chan, J.Y.K.; et al. Intra-operative image-guided interventional robotics—Where are we now and where are we going? In Machine Learning, Medical AI and Robotics: Translating Theory into the Clinic; Vardhanabhuti, V., Kwok, K.-W., Chan, J.Y.K., Dou, Q., Eds.; IOP Publishing: Bristol, UK, 2023. [Google Scholar]
- Rizzitelli, S.; Giustetto, P.; Cutrin, J.; Castelli, D.D.; Boffa, C.; Ruzza, M.; Menchise, V.; Molinari, F.; Aime, S.; Terreno, E. Sonosensitive theranostic liposomes for preclinical in vivo MRI-guided visualization of doxorubicin release stimulated by pulsed low intensity non-focused ultrasound. J. Control. Release 2015, 202, 21–30. [Google Scholar] [CrossRef]
- Baek, H.; Lockwood, D.; Mason, E.J.; Obusez, E.; Poturalski, M.; Rammo, R.; Nagel, S.J.; Jones, S.E. Clinical intervention using focused ultrasound (FUS) stimulation of the brain in diverse neurological disorders. Front. Neurol. 2022, 13, 880814. [Google Scholar] [CrossRef]
- Dai, J.; He, Z.; Fang, G.; Wang, X.; Li, Y.; Cheung, C.-L.; Liang, L.; Iordachita, I.I.; Chang, H.-C.; Kwok, K.-W. A Robotic Platform to Navigate MRI-guided Focused Ultrasound System. IEEE Robot. Autom. Lett. 2021, 6, 5137–5144. [Google Scholar] [CrossRef]
- Kyriakou, A.; Neufeld, E.; Werner, B.; Paulides, M.M.; Szekely, G.; Kuster, N. A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound. Int. J. Hyperth. 2014, 30, 36–46. [Google Scholar] [CrossRef]
- Holman, R.; Lorton, O.; Guillemin, P.C.; Desgranges, S.; Santini, F.; Preso, D.B.; Farhat, M.; Contino-Pépin, C.; Salomir, R. Perfluorocarbon emulsion enhances MR-ARFI displacement and temperature in vitro: Evaluating the response with MRI, NMR, and hydrophone. Front. Oncol. 2023, 12, 1025481. [Google Scholar] [CrossRef] [PubMed]
- Rieke, V.; Butts Pauly, K. MR thermometry. J. Magn. Reson. Imaging 2008, 27, 376–390. [Google Scholar] [CrossRef]
- Gu, J.; Jing, Y. mSOUND: An Open Source Toolbox for Modeling Acoustic Wave Propagation in Heterogeneous Media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 1476–1486. [Google Scholar] [CrossRef]
- Schneider, M. Characteristics of SonoVuetrade mark. Echocardiography 1999, 16, 743–746. [Google Scholar] [CrossRef]
- Melde, K.; Mark, A.G.; Qiu, T.; Fischer, P. Holograms for acoustics. Nature 2016, 537, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, M.A.; Maxwell, A.D.; Wang, Y.-N.; Cunitz, B.W.; Khokhlova, V.A.; Sapozhnikov, O.A.; Bailey, M.R. Noninvasive acoustic manipulation of objects in a living body. Proc. Natl. Acad. Sci. USA 2020, 117, 16848–16855. [Google Scholar] [CrossRef]
- Jooss, V.M.; Bolten, J.S.; Huwyler, J.; Ahmed, D. In vivo acoustic manipulation of microparticles in zebrafish embryos. Sci. Adv. 2022, 8, eabm2785. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Hasegawa, K.; Abe, Y. Contactless Fluid Manipulation in Air: Droplet Coalescence and Active Mixing by Acoustic Levitation. Sci. Rep. 2018, 8, 10221. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, Z.; Zhang, P.; Naquin, T.D.; Mai, J.; Wu, Y.; Yang, S.; Gu, Y.; Bachman, H.; Liang, Y.; et al. Generating multifunctional acoustic tweezers in Petri dishes for contactless, precise manipulation of bioparticles. Sci. Adv. 2020, 6, eabb0494. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, Y.; Hoshi, T.; Rekimoto, J. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays. PLoS ONE 2014, 9, e97590. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, S. Compact Acoustic Rainbow Trapping in a Bioinspired Spiral Array of Graded Locally Resonant Metamaterials. Sensors 2019, 19, 788. [Google Scholar] [CrossRef]
- Cao, H.X.; Jung, D.; Lee, H.-S.; Du Nguyen, V.; Choi, E.; Kang, B.; Park, J.-O.; Kim, C.-S. Holographic Acoustic Tweezers for 5-DoF Manipulation of Nanocarrier Clusters toward Targeted Drug Delivery. Pharmaceutics 2022, 14, 1490. [Google Scholar] [CrossRef]
- Marzo, A.; Drinkwater, B.W. Holographic acoustic tweezers. Proc. Natl. Acad. Sci. USA 2019, 116, 84–89. [Google Scholar]
- Zhong, C.; Jia, Y.; Jeong, D.C.; Guo, Y.; Liu, S. AcousNet: A Deep Learning Based Approach to Dynamic 3D Holographic Acoustic Field Generation from Phased Transducer Array. IEEE Robot. Autom. Lett. 2022, 7, 666–673. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, T.; Li, S.; Zhang, Q.; Huang, J.; Liu, Y.; Zhuang, J.; Li, Y.; Du, X.; Niu, L.; et al. Self-Navigated 3D Acoustic Tweezers in Complex Media Based on Time Reversal. Research 2021, 2021, 9781394. [Google Scholar] [CrossRef]
- White, J.; Clement, G.T.; Hynynen, K. Transcranial ultrasound focus reconstruction with phase and amplitude correction. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 1518–1522. [Google Scholar] [CrossRef]
- Pedersoli, F.; Fang, J.; Boas, E.; Park, J.J. Operator radiation exposure during radioembolisation of the liver: Transfemoral versus transradial access using real-time dose monitoring. Radiat. Prot. Dosim. 2023, 19, 2344–2348. [Google Scholar] [CrossRef] [PubMed]
- Gralinski, I.; Alan, T.; Neild, A. Non-contact acoustic trapping in circular cross-section glass capillaries: A numerical study. J. Acoust. Soc. Am. 2012, 132, 2978–2987. [Google Scholar] [CrossRef]
- Bancel, T.; Houdouin, A.; Annic, P.; Rachmilevitch, I.; Shapira, Y.; Tanter, M.; Aubry, J.-F. Comparison Between Ray-Tracing and Full-Wave Simulation for Transcranial Ultrasound Focusing on a Clinical System Using the Transfer Matrix Formalism. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2554–2565. [Google Scholar] [CrossRef] [PubMed]
- Lukovic, J.; Henke, L.; Gani, C.; Kim, T.K.; Stanescu, T.; Hosni, A.; Lindsay, P.; Erickson, B.; Khor, R.; Eccles, C.; et al. MRI-Based Upper Abdominal Organs-at-Risk Atlas for Radiation Oncology. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 743–753. [Google Scholar] [CrossRef]
- Akshaya, R.; Tej Prakash, S. POCUS in Abdominal Trauma: Old Gadget, New Insights. In Abdominal Trauma—New Solutions to Old Problems; Garbuzenko, V.D., Ed.; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar]
- Cheung, C.-L.; Ho, J.D.-L.; Vardhanabhuti, V.; Chang, H.-C.; Kwok, K.-W. Design and Fabrication of Wireless Multilayer Tracking Marker for Intraoperative MRI-Guided Interventions. IEEE/ASME Trans. Mechatron. 2020, 25, 1016–1025. [Google Scholar] [CrossRef]
- Cheung, C.-L.; Wu, M.; Fang, G.; Ho, J.D.L.; Liang, L.; Tan, K.V.; Lin, F.-H.; Chang, H.-C.; Kwok, K.-W. Omnidirectional Monolithic Marker for Intra-Operative MR-Based Positional Sensing in Closed MRI. IEEE Trans. Med. Imaging 2024, 43, 439–448. [Google Scholar] [CrossRef]
- Prado, T.d.A.; Moura, H.L.; Passarin, T.A.; Guarneri, G.A.; Pires, G.P.; Pipa, D.R. A straightforward method to evaluate the directivity function of ultrasound imaging systems. NDT E Int. 2021, 119, 102402. [Google Scholar] [CrossRef]
- Kang, S.-T.; Yeh, C.-K. Potential-well model in acoustic tweezers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Zhu, B.; Wang, X.; Jiang, Z.; Wu, M.; Liang, L.; Xie, X.; Lam, J.; Chang, H.-C.; Kwok, K.-W. Learning-Based Efficient Phase-Amplitude Modulation and Hybrid Control for MRI-Guided Focused Ultrasound Treatment. IEEE Robot. Autom. Lett. 2024, 9, 995–1002. [Google Scholar] [CrossRef]
- Hosseinkhah, N.; Goertz, D.E.; Hynynen, K. Microbubbles and Blood–Brain Barrier Opening: A Numerical Study on Acoustic Emissions and Wall Stress Predictions. IEEE Trans. Biomed. Eng. 2015, 62, 1293–1304. [Google Scholar] [CrossRef] [PubMed]
- Schot, M.; Becker, M.; Paggi, C.A.; Gomes, F.; Koch, T.; Gensheimer, T.; Johnbosco, C.; Nogueira, L.P.; van der Meer, A.; Carlson, A.; et al. Photoannealing of Microtissues Creates High-Density Capillary Network Containing Living Matter in a Volumetric-Independent Manner. Adv. Mater. 2024, 36, 2308949. [Google Scholar] [CrossRef]
- Navarro-Becerra, J.A.; Borden, M.A. Targeted Microbubbles for Drug, Gene, and Cell Delivery in Therapy and Immunotherapy. Pharmaceutics 2023, 15, 1625. [Google Scholar] [CrossRef] [PubMed]
- Fossey, D.J.; Smith, C.H.; Wischmann, K.B. A New Potting Material—Expandable Polystyrene Bead Foam. J. Cell. Plast. 1977, 13, 347–353. [Google Scholar] [CrossRef]
- Figueroa, R.L.; Zeng-Treitler, Q.; Kandula, S.; Ngo, L.H. Predicting sample size required for classification performance. BMC Med. Inform. Decis. Mak. 2012, 12, 8. [Google Scholar] [CrossRef]
Literature | Frequency | Wavelength * | Element Diameter | Element Gap | Traversed Media |
---|---|---|---|---|---|
[MHz] | [mm] | [mm] | [mm] | ||
Kang et al. (2010) [53] | 1.00 | 1.50 | 5.08 × 5.08 | 0.51 | Water |
Ghanem et al. (2020) [34] | 1.50 | 1.00 | 7.0 | 0.50 | Pig bladder, water |
Hu et al. (2021) [11] | 1.04 | 1.44 | 2.6 × 2.6 | 0.20 | Water |
Yang et al. (2022) [43] | 1.04 | 1.44 | 2.6 × 2.6 | 0.20 | Macaque skull, water |
Approach | Average Time for ToF | Average Time for Amplitude |
---|---|---|
[ms] | [ms] | |
Learning-based model | 3.5 | 5.7 |
TRM | 1.5 × e5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Liao, W. Machine Learning-Empowered Real-Time Acoustic Trapping: An Enabling Technique for Increasing MRI-Guided Microbubble Accumulation. Sensors 2024, 24, 6342. https://doi.org/10.3390/s24196342
Wu M, Liao W. Machine Learning-Empowered Real-Time Acoustic Trapping: An Enabling Technique for Increasing MRI-Guided Microbubble Accumulation. Sensors. 2024; 24(19):6342. https://doi.org/10.3390/s24196342
Chicago/Turabian StyleWu, Mengjie, and Wentao Liao. 2024. "Machine Learning-Empowered Real-Time Acoustic Trapping: An Enabling Technique for Increasing MRI-Guided Microbubble Accumulation" Sensors 24, no. 19: 6342. https://doi.org/10.3390/s24196342
APA StyleWu, M., & Liao, W. (2024). Machine Learning-Empowered Real-Time Acoustic Trapping: An Enabling Technique for Increasing MRI-Guided Microbubble Accumulation. Sensors, 24(19), 6342. https://doi.org/10.3390/s24196342