Laser Scan Compression for Rail Inspection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Scan Measurement and Frame Collection
2.1.1. Laser Triangulation Scanner
2.1.2. Rail Track Inspection Scans
2.1.3. Rail Geometry Scans
2.1.4. Scan Fusion
2.1.5. Frame Collection
2.2. Compression Algorithm
2.2.1. General Description of the Compression Algorithm
2.2.2. Range Conversion
2.2.3. Delta Encoding
2.2.4. Conversion to Image Format
2.3. Decompression
3. Results
3.1. Rail Track Inspection Scan Compression Tests
- Precision scaler;
- Frame length;
- Compression approach: compressing scans from each sensor independently vs. compressing the concatenated scans from all sensors.
3.2. Rail Geometry Scan Compression Tests
- Numerical precision scaler;
- Frame length;
- Compressing scans from every sensor independently vs. compressing concatenated scans from every sensor.
3.3. Scan Compression Effect on Rail Geometry Computation
4. Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, F.; Qian, Y.; Shi, Y. Real-time railroad track components inspection based on the improved YOLOv4 framework. Autom. Constr. 2021, 125, 103596. [Google Scholar] [CrossRef]
- Jing, G.; Qin, X.; Wang, H.; Deng, C. Developments, challenges, and perspectives of railway inspection robots. Autom. Constr. 2022, 138, 104242. [Google Scholar] [CrossRef]
- Bin Osman, M.H.; Kaewunruen, S.; Jack, A. Optimisation of schedules for the inspection of railway tracks. Proc. Inst. Mech. Eng. Pt. F J. Rail Rapid Transit 2018, 232, 1577–1587. [Google Scholar] [CrossRef]
- Chenariyan Nakhaee, M.; Hiemstra, D.; Stoelinga, M.; van Noort, M. The recent applications of machine learning in rail track maintenance: A survey. In Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; pp. 91–105. [Google Scholar]
- Issa, M.; Remy, S.; Ducellier, G.; Landes, B. Updating a Railway Infrastructure Digital Twin by The Integration of a Variety of Data Sources. Transp. Res. Procedia 2023, 72, 666–673. [Google Scholar] [CrossRef]
- McCollough, J.D.; Sargsyan, G.; Luo, Z. The impact of declining birth rates on future infrastructure maintenance costs per capita. J. Econ. Stud. 2023, 50, 1121–1129. [Google Scholar] [CrossRef]
- Falamarzi, A.; Moridpour, S.; Nazem, M. A review on existing sensors and devices for inspecting railway infrastructure. J. Kejuruter. 2019, 31, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Guede, C.; Andrivon, P.; Marvie, J.E.; Ricard, J.; Redmann, B.; Chevet, J.C. V-PCC: Performance evaluation of the first MPEG Point Cloud Codec. In Proceedings of the SMPTE 2020 Annual Technical Conference and Exhibition, Los Angeles, CA, USA, 10–12 November 2020. [Google Scholar]
- GitHub—MPEGGroup/mpeg-pcc-tmc13: Geometry Based Point Cloud Compression (G-PCC) Test Model—github.com. Available online: https://github.com/MPEGGroup/mpeg-pcc-tmc13/tree/master (accessed on 14 February 2024).
- Houshiar, H.; Nüchter, A. 3D point cloud compression using conventional image compression for efficient data transmission. In Proceedings of the 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT), Sarajevo, Bosnia and Herzegovina, 29–31 October 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Jóźków, G. Terrestrial Laser Scanning Data Compression Using JPEG-2000. J. Photogramm. Remote Sens. Geoinf. Sci. 2017, 85, 293–305. [Google Scholar] [CrossRef]
- Zhou, X.; Qi, C.R.; Zhou, Y.; Anguelov, D. RIDDLE: Lidar Data Compression with Range Image Deep Delta Encoding. arXiv 2022, arXiv:2206.01738v1. [Google Scholar] [CrossRef]
- Nenci, F.; Spinello, L.; Stachniss, C. Effective compression of range data streams for remote robot operations using H.264. In In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 3794–3799. [Google Scholar] [CrossRef]
- Blais, F. Review of 20 years of range sensor development. J. Electron. Imaging 2004, 13, 231. [Google Scholar] [CrossRef]
- Royo, S.; Ballesta-Garcia, M. An overview of lidar imaging systems for autonomous vehicles. Appl. Sci. 2019, 9, 4093. [Google Scholar] [CrossRef]
- RIEGL VMX-RAIL. Produktdetail—riegl.com. Available online: http://www.riegl.com/nc/products/mobile-scanning/produktdetail/product/scanner/67/ (accessed on 7 February 2024).
- Blais, F.; Rioux, M.; Beraldin, J.A. Practical considerations for A design of A high precision 3-D laser scanner system. In Proceedings of the Optomechanical and Electro-Optical Design of Industrial Systems, Dearborn, MI, USA, 28–29 June 1988; Bieringer, R.J., Harding, K.G., Eds.; SPIE: Bellingham, WA, USA, 1988. [Google Scholar]
- Kwoczynska, B.; Sagan, W.; Dziura, K. Elaboration and Modeling of the Railway Infrastructure Using Data from Airborne and Mobile Laser Scanning. In Proceedings of the 2016 Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 2–4 June 2016; Volume 23, pp. 106–115. [Google Scholar] [CrossRef]
- Pavemetrics | Laser Rail Inspection System (LRAIL)—pavemetrics.com. Available online: https://www.pavemetrics.com/applications/rail-inspection/laser-rail-inspection-system/#! (accessed on 7 February 2024).
- Track Inspection System V-CUBE—mermecgroup.com. Available online: https://www.mermecgroup.com/measuring-trains-br-and-systems/track-inspection/524/track-inspection-v-cube.php (accessed on 7 February 2024).
- De Becker, D.; Dobrzanski, J.; Justham, L.; Goh, Y. A laser scanner based approach for identifying rail surface squat defects. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2020, 235, 763–773. [Google Scholar] [CrossRef]
- Xiong, Z.; Li, Q.; Mao, Q.; Zou, Q. A 3D Laser Profiling System for Rail Surface Defect Detection. Sensors 2017, 17, 1791. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Dai, X.; Yang, E.; Wang, K.C. Convolutional neural network for detecting railway fastener defects using a developed 3D laser system. Int. J. Rail Transp. 2020, 9, 424–444. [Google Scholar] [CrossRef]
- Mauz, F.; Wigger, R.; Gota, A.E.; Kuffa, M. Automatic Detection of the Running Surface of Railway Tracks Based on Laser Profilometer Data and Supervised Machine Learning. Sensors 2024, 24, 2638. [Google Scholar] [CrossRef] [PubMed]
- Fox-Ivey, R.; Nguyen, T.V.; Laurent, J. Laser Triangulation for Track Change and Defect Detection; Technical Report DOT/FRA/ORD-20/08; Pavemetrics Systems, Inc.: Quebec, QC, Canada, 2020. [Google Scholar]
- Peng, L.; Zheng, S.; Li, P.; Wang, Y.; Zhong, Q. A comprehensive detection system for track geometry using fused vision and inertia. IEEE Trans. Instrum. Meas. 2021, 70, 1–15. [Google Scholar] [CrossRef]
- Escalona, J.L.; Urda, P.; Muñoz, S. A Track Geometry Measuring System based on multibody kinematics, inertial sensors and computer vision. Sensors 2021, 21, 683. [Google Scholar] [CrossRef] [PubMed]
- Boronakhin, A.M.; Filatov, Y.V.; Larionov, D.Y.; Podgornaya, L.N.; Tkachenko, A.N.; Shalymov, R.V.; Yen, N.T. Fusion of inertial and optical data for monitoring the geometry of the rail track. IOP Conf. Ser. Mater. Sci. Eng. 2020, 984, 012009. [Google Scholar] [CrossRef]
- KEYENCE CORPORATION OF AMERICA—keyence.com. Available online: https://www.keyence.com/ (accessed on 8 February 2024).
- Home|Micro-Epsilon—micro-epsilon.com. Available online: https://www.micro-epsilon.com/ (accessed on 8 February 2024).
- Measurement Sensors and Systems, Development and Fabrication | Riftek—riftek.com. Available online: https://riftek.com/ (accessed on 8 February 2024).
- Industrial Cameras and CMOS Image Sensors | Photonfocus AG—photonfocus.com. Available online: https://www.photonfocus.com/ (accessed on 8 February 2024).
- Siekański, P.; Magda, K.; Malowany, K.; Rutkiewicz, J.; Styk, A.; Krzesłowski, J.; Kowaluk, T.; Zagórski, A. On-line laser triangulation scanner for wood logs surface geometry measurement. Sensors 2019, 19, 1074. [Google Scholar] [CrossRef] [PubMed]
- Standard BS EN 13848-1:2019; CEN-CENELEC Management Centre. Railway Applications—Track—Track Geometry Quality—Part 1: Characterization of Track Geometry. European Committee for Standarization: Brussels, Belgium, 2019.
- Wang, P.; Wang, Y.; Tang, H.; Gao, M.; Chen, R.; Xu, J. Error theory of chord-based measurement system regarding track geometry and improvement by high frequency sampling. Measurement 2018, 115, 204–216. [Google Scholar] [CrossRef]
- Delta Encoding—dspguide.com. Available online: https://www.dspguide.com/ch27/4.htm (accessed on 16 February 2024).
- Portable Network Graphics (PNG) Specification (Third Edition)—w3.org. Available online: https://www.w3.org/TR/png-3/ (accessed on 15 February 2024).
- Standard BS EN 13848-2:2020; CEN-CENELEC Management Centre. Railway Applications—Track—Track Geometry Quality—Part 2: Measuring Systems—Track Recording Vehicles. European Committee for Standarization: Brussels, Belgium, 2020.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hauck, J.; Gniado, P. Laser Scan Compression for Rail Inspection. Sensors 2024, 24, 6722. https://doi.org/10.3390/s24206722
Hauck J, Gniado P. Laser Scan Compression for Rail Inspection. Sensors. 2024; 24(20):6722. https://doi.org/10.3390/s24206722
Chicago/Turabian StyleHauck, Jeremiasz, and Piotr Gniado. 2024. "Laser Scan Compression for Rail Inspection" Sensors 24, no. 20: 6722. https://doi.org/10.3390/s24206722
APA StyleHauck, J., & Gniado, P. (2024). Laser Scan Compression for Rail Inspection. Sensors, 24(20), 6722. https://doi.org/10.3390/s24206722