Chemoresistive Gas Sensors Based on Electrospun 1D Nanostructures: Synergizing Morphology and Performance Optimization
Abstract
:1. Introduction
2. Basics of Chemoresistive Gas Sensors
2.1. Operating Principles of Gas Sensors
2.2. Gas Sensor Performance Characteristics
2.3. Materials Used in the Manufacture of Gas Sensors
2.4. One-Dimensional Nanostructures for Gas Sensors
3. Fundamentals of the Electrospinning Technique
4. Performance of Chemoresistive Gas Sensors Obtained by the ES Method
4.1. Gas-Sensitive Characteristics to Reducing Gases
4.2. Gas-Sensitive Characteristics to Oxidizing Gases
4.3. Gas-Sensitive Characteristics to Volatile Organic Compounds (VOCs)
5. Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korotcenkov, G. II–VI Semiconductor-Based Conductometric Gas Sensors: Is There a Future for These Sensors? Sensors 2024, 24, 3861. [Google Scholar] [CrossRef] [PubMed]
- Wales, D.J.; Grand, J.; Ting, V.P.; Burke, R.D.; Edler, K.J.; Bowen, C.R.; Mintova, S.; Burrows, A.D. Gas Sensing Using Porous Materials for Automotive Applications. Chem. Soc. Rev. 2015, 44, 4290–4321. [Google Scholar] [CrossRef]
- Rajagukguk, J.; Pratiwi, R.A.; Kaewnuam, E. Emission Gas Detector (EGD) for Detecting Vehicle Exhaust Based on Combined Gas Sensors. J. Phys. Conf. Ser. 2018, 1120, 012020. [Google Scholar] [CrossRef]
- Rodríguez-Aguilar, M.; Díaz De León-Martínez, L.; Gorocica-Rosete, P.; Pérez-Padilla, R.; Domínguez-Reyes, C.A.; Tenorio-Torres, J.A.; Ornelas-Rebolledo, O.; Mehta, G.; Zamora-Mendoza, B.N.; Flores-Ramírez, R. Application of Chemoresistive Gas Sensors and Chemometric Analysis to Differentiate the Fingerprints of Global Volatile Organic Compounds from Diseases. Preliminary Results of COPD, Lung Cancer and Breast Cancer. Clin. Chim. Acta 2021, 518, 83–92. [Google Scholar] [CrossRef]
- Hong, H.S.; Hoang, T.V.; Huong, N.T.; Nam, N.H.; Thinh, D.D.; Hue, N.T.; Thuan, N.D. Ultra-Low Detection Limit Chemoresistive NO2 Gas Sensor Using Single Transferred MoS2 Flake: An Advanced Nanofabrication. RSC Adv. 2022, 12, 33403–33408. [Google Scholar] [CrossRef]
- Shinde, P.V.; Xia, Q.X.; Ghule, B.G.; Shinde, N.M.; Seonghee, J.; Kim, K.H.; Mane, R.S. Hydrothermally Grown α-MnO2 Interlocked Mesoporous Micro-Cubes of Several Nanocrystals as Selective and Sensitive Nitrogen Dioxide Chemoresistive Gas Sensors. Appl. Surf. Sci. 2018, 442, 178–184. [Google Scholar] [CrossRef]
- Garg, G.; Garg, N.; Deep, A.; Soni, D. Zr-MOF and PEDOT:PSS Composite Sensor for Chemoresistive Sensing of Toluene at Room Temperature. J. Alloys Compd. 2023, 956, 170309. [Google Scholar] [CrossRef]
- Nadekar, B.; Khollam, Y.B.; Shaikh, S.F.; Wavhal, D.; Varshney, P.; Pandit, B.; More, P.S. Enhanced Ammonia/Amines Sensitivity at Room Temperature Using Plasma Polymerized Polyvinyl Acetate-Reduced Graphene Oxide Composite Film Sensors. Surf. Interfaces 2023, 42, 103453. [Google Scholar] [CrossRef]
- Lin, M.; Huang, Y.; Liu, Y.; Liu, N.; Lei, Z.; Huang, C.; Cao, J.; Ouyang, X.; Zhou, Y. A Durable Gas Sensor Based on AgVO3/TiO2 Nanoheterostructures to Ethanol Gas. J. Alloys Compd. 2023, 961, 171103. [Google Scholar] [CrossRef]
- Zhang, G.; Li, C.; Cheng, F.; Chen, J. ZnFe2O4 Tubes: Synthesis and Application to Gas Sensors with High Sensitivity and Low-Energy Consumption. Sens. Actuators B Chem. 2007, 120, 403–410. [Google Scholar] [CrossRef]
- Mustaffa, S.N.A.; Ariffin, N.A.; Khalaf, A.L.; Yaacob, M.H.; Tamchek, N.; Paiman, S.; Sagadevan, S. Sensing Mechanism of an Optimized Room Temperature Optical Hydrogen Gas Sensor Made of Zinc Oxide Thin Films. J. Mater. Res. Technol. 2020, 9, 10624–10634. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, Y.; Liu, R.; Liu, Z.; Jin, S.; Zhang, L.; Zhao, T.; Fa, H.; Yin, W. A Portable Electrochemical Room-Temperature Sensor Based on Flower-like Structure UIO-66-NH2@MoS2 Composite for Ammonia Detection. Sens. Actuators B Chem. 2024, 413, 135868. [Google Scholar] [CrossRef]
- Mirzaei, A.; Sun, G.-J.; Lee, J.K.; Lee, C.; Choi, S.; Kim, H.W. Hydrogen Sensing Properties and Mechanism of NiO-Nb2O5 Composite Nanoparticle-Based Electrical Gas Sensors. Ceram. Int. 2017, 43, 5247–5254. [Google Scholar] [CrossRef]
- Huang, S.; Zhao, X.; Hao, C.; Ma, Z.; Wang, H.; Zhang, A.; Zhang, W.; Li, L.; Zhang, W. Multifunctional PVDF/CeO2@PDA Nanofiber Textiles with Piezoelectric and Piezo-Phototronic Properties for Self-Powered Piezoelectric Sensor and Photodetector. Chem. Eng. J. 2024, 482, 148950. [Google Scholar] [CrossRef]
- Mineo, G.; Moulaee, K.; Neri, G.; Mirabella, S.; Bruno, E. H2 Detection Mechanism in Chemoresistive Sensor Based on Low-Cost Synthesized WO3 Nanorods. Sens. Actuators B Chem. 2021, 348, 130704. [Google Scholar] [CrossRef]
- Rebholz, J.; Weimar, U.; Barsan, N. Influence of Conduction Mechanism Changes on the Sensor Performance of SMOX Based Gas Sensors. Procedia Eng. 2014, 87, 20–23. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Wang, X.; Wang, J.; Gaskov, A.M.; Akbar, S.A. Reduced Graphene Oxide (rGO) Decorated TiO2 Microspheres for Selective Room-Temperature Gas Sensors. Sens. Actuators B Chem. 2016, 230, 330–336. [Google Scholar] [CrossRef]
- Lv, D.; Shen, W.; Chen, W.; Wang, Y.; Tan, R.; Zhao, M.; Song, W. Emerging Poly(Aniline Co-Pyrrole) Nanocomposites by in-Situ Polymerized for High-Performance Flexible Ammonia Sensor. Sens. Actuators A Phys. 2023, 349, 114078. [Google Scholar] [CrossRef]
- Yao, P.-C.; Niu, J.-S.; Dai, G.-Y.; Jian, J.-J.; Hsu, W.-C.; Lin, K.-W.; Liu, W.-C. Ammonia Sensing Characteristics of an ITO-V2O5 Based Chemoresistive Dual-Type Gas Sensors (CDGS) Decorated with Platinum Nanoparticles. Sens. Actuators B Chem. 2023, 392, 134071. [Google Scholar] [CrossRef]
- Zang, D.; Wei, X.; Liu, Q.; Li, Y.; You, R. In-Situ Growth of ZnO@ZnWO4 Heterojunction with Flower-like Structure by Chemical Vapor Deposition for H2S Gas Sensor. Appl. Surf. Sci. 2025, 679, 161149. [Google Scholar] [CrossRef]
- Abdulsattar, M.A.; Jabbar, R.H.; Al-Seady, M.A. Ethanol Properties Effects on Its Reaction with Mo-Doped SnO2 Clusters: A Gas Sensor Model. Results Surf. Interfaces 2024, 17, 100291. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Cheng, M.-C.; Tsai, D.-C.; Shieu, F.-S. Silver nanowires@TiO2 Core-Shell for Room-Temperature 1000 ppm NH3 Gas Sensors. J. Mater. Res. Technol. 2024, 31, 3079–3089. [Google Scholar] [CrossRef]
- Kareem, M.H.; Hussein, H.T.; Abdul Hussein, A.M. Study of the Effect of CNTs, and (CNTs-ZnO) on the Porous Silicon as Sensor for Acetone Gas Detection. Optik 2022, 259, 168825. [Google Scholar] [CrossRef]
- Esmaeili, C.; Ashtiani, S.; Regmi, C.; Laposa, A.; Voves, J.; Kroutil, J.; Friess, K.; Povolny, V.; Lotfian, S. Preparation and Characterisation of NH3 Gas Sensor Based on PANI/Fe-Doped CeO Nanocomposite. Heliyon 2024, 10, e34801. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Wu, H.; Chu, X.; Liang, S.; He, L. The Room Temperature Ethanol Gas Sensors Based on MoS2-CuGaO2 Composite Prepared by Hydrothermal Method. Talanta 2024, 277, 126287. [Google Scholar] [CrossRef]
- Oosthuizen, D.N.; Motaung, D.E.; Swart, H.C. Gas Sensors Based on CeO2 Nanoparticles Prepared by Chemical Precipitation Method and Their Temperature-Dependent Selectivity towards H2S and NO2 Gases. Appl. Surf. Sci. 2020, 505, 144356. [Google Scholar] [CrossRef]
- Khamfoo, K.; Staerz, A.; Boepple, M.; Wisitsoraat, A.; Liewhiran, C.; Weimar, U.; Barsan, N. Operando DRIFT Measurements on Flame-Spray-Made Zn2SnO4 Nanoparticles Based Environmental Sensors. Sens. Actuators B Chem. 2022, 371, 132495. [Google Scholar] [CrossRef]
- Yousefi, H.R.; Hashemi, B.; Mirzaei, A.; Roshan, H.; Sheikhi, M.H. Effect of Ag on the ZnO Nanoparticles Properties as an Ethanol Vapor Sensor. Mater. Sci. Semicond. Process. 2020, 117, 105172. [Google Scholar] [CrossRef]
- Chen, C.; Xie, G.; Dai, J.; Li, W.; Cai, Y.; Li, J.; Zhang, Q.; Tai, H.; Jiang, Y.; Su, Y. Integrated Core-Shell Structured Smart Textiles for Active NO2 Concentration and Pressure Monitoring. Nano Energy 2023, 116, 108788. [Google Scholar] [CrossRef]
- Li, F.; Zhang, T.; Gao, X.; Wang, R.; Li, B. Coaxial Electrospinning Heterojunction SnO2/Au-Doped In2O3 Core-Shell Nanofibers for Acetone Gas Sensor. Sens. Actuators B Chem. 2017, 252, 822–830. [Google Scholar] [CrossRef]
- Walden, R.; Aazem, I.; Hinder, S.; Brennan, B.; Goswami, A.; McGranaghan, G.; Pillai, S.C. Parametric Optimisation of PDMS/PMMA Nanofibers Prepared Using Emulsion Electrospinning Technique. Results Mater. 2024, 22, 100576. [Google Scholar] [CrossRef]
- Switz, A.; Mishra, A.; Jabech, K.; Prasad, A. Affordable Lab-Scale Electrospinning Setup with Interchangeable Collectors for Targeted Fiber Formation. HardwareX 2024, 17, e00501. [Google Scholar] [CrossRef] [PubMed]
- Sukowati, R.; Agung, B.H.; Rohman, Y.M.; Sabandar, M.G.; Waresindo, W.X.; Hapidin, D.A.; Edikresnha, D.; Khairurrijal, K. Optimization of Electrospinning Process Parameters Using Box-Behnken Design for Nylon-6 Nanofibers Fabrication. Mater. Today Proc. 2024, S2214785324001329. [Google Scholar] [CrossRef]
- Alagh, A.; Annanouch, F.E.; Umek, P.; Bittencourt, C.; Sierra-Castillo, A.; Haye, E.; Colomer, J.F.; Llobet, E. CVD Growth of Self-Assembled 2D and 1D WS2 Nanomaterials for the Ultrasensitive Detection of NO2. Sens. Actuators B Chem. 2021, 326, 128813. [Google Scholar] [CrossRef]
- Yang, J.; Han, W.; Ma, J.; Wang, C.; Shimanoe, K.; Zhang, S.; Sun, Y.; Cheng, P.; Wang, Y.; Zhang, H.; et al. Sn Doping Effect on NiO Hollow Nanofibers Based Gas Sensors about the Humidity Dependence for Triethylamine Detection. Sens. Actuators B Chem. 2021, 340, 129971. [Google Scholar] [CrossRef]
- Walker, J.; Karnati, P.; Akbar, S.A.; Morris, P.A. Selectivity Mechanisms in Resistive-Type Metal Oxide Heterostructural Gas Sensors. Sens. Actuators B Chem. 2022, 355, 131242. [Google Scholar] [CrossRef]
- Bai, H.; Guo, H.; Feng, C.; Wang, J.; Liu, B.; Xie, Z.; Guo, F.; Chen, D.; Zhang, R.; Zheng, Y. A Room-Temperature Chemiresistive NO2 Sensor Based on One-Step Synthesized SnO2 Nanospheres Functionalized with Pd Nanoparticles and rGO Nanosheets. Appl. Surf. Sci. 2022, 575, 151698. [Google Scholar] [CrossRef]
- Nam, B.; Ko, T.-K.; Hyun, S.-K.; Lee, C. CO Sensing Properties of Chemiresistive In2O3/SnO2 Composite Nanoparticle Sensors. J. Nanosci. Nanotechnol. 2020, 20, 4344–4348. [Google Scholar] [CrossRef]
- Munsif, S.; Ayub, K.; Nur-e-Alam, M.; Ahmed, S.; Ahmad, A.; Ul-Haq, Z. Sensing of H2S, NO2, SO2, and O3 through Pristine and Ni-Doped Zn12O12 Nanocage. Comput. Theor. Chem. 2023, 1229, 114305. [Google Scholar] [CrossRef]
- Al-Hashem, M.; Akbar, S.; Morris, P. Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review. Sens. Actuators B Chem. 2019, 301, 126845. [Google Scholar] [CrossRef]
- Isaac, N.A.; Pikaar, I.; Biskos, G. Metal Oxide Semiconducting Nanomaterials for Air Quality Gas Sensors: Operating Principles, Performance, and Synthesis Techniques. Microchim Acta 2022, 189, 196. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Kim, J.; Lee, J. Rational Design of Semiconductor-Based Chemiresistors and Their Libraries for Next-Generation Artificial Olfaction. Adv. Mater. 2020, 32, 2002075. [Google Scholar] [CrossRef] [PubMed]
- Ciftyurek, E.; Li, Z.; Schierbaum, K. Adsorbed Oxygen Ions and Oxygen Vacancies: Their Concentration and Distribution in Metal Oxide Chemical Sensors and Influencing Role in Sensitivity and Sensing Mechanisms. Sensors 2022, 23, 29. [Google Scholar] [CrossRef]
- Staerz, A.; Weimar, U.; Barsan, N. Current State of Knowledge on the Metal Oxide Based Gas Sensing Mechanism. Sens. Actuators B Chem. 2022, 358, 131531. [Google Scholar] [CrossRef]
- Hassan, M.; Liang, Z.; Liu, S.; Hussain, S.; Qiao, G.; Liu, G. Temperature-Driven n- to p- type Transition of a Chemiresistive NiO/CdS-CdO NO2 Gas Sensor. Sens. Actuators B Chem. 2024, 398, 134755. [Google Scholar] [CrossRef]
- Choi, J.H.; Seo, J.S.; Jeong, H.E.; Song, K.; Baeck, S.-H.; Shim, S.E.; Qian, Y. Effects of Field-Effect and Schottky Heterostructure on p-Type Graphene-Based Gas Sensor Modified by n-Type In2O3 and Phenylenediamine. Appl. Surf. Sci. 2022, 578, 152025. [Google Scholar] [CrossRef]
- Sinha, M.; Neogi, S.; Mahapatra, R.; Krishnamurthy, S.; Ghosh, R. Material Dependent and Temperature Driven Adsorption Switching (p- to n- type) Using CNT/ZnO Composite-Based Chemiresistive Methanol Gas Sensor. Sens. Actuators B Chem. 2021, 336, 129729. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Chen, K.-C.; Tsai, T.-Y.; Hsueh, T.-J. Fabrication of Gas Sensor Based on p-Type ZnO Nanoparticles and n-Type ZnO Nanowires. Sens. Actuators B Chem. 2013, 182, 190–196. [Google Scholar] [CrossRef]
- Marikutsa, A.; Rumyantseva, M.; Konstantinova, E.A.; Gaskov, A. The Key Role of Active Sites in the Development of Selective Metal Oxide Sensor Materials. Sensors 2021, 21, 2554. [Google Scholar] [CrossRef]
- Giraud, F.; Geantet, C.; Guilhaume, N.; Loridant, S.; Gros, S.; Porcheron, L.; Kanniche, M.; Bianchi, D. Individual Amounts of Lewis and Brønsted Acid Sites on Metal Oxides from NH3 Adsorption Equilibrium: Case of TiO2 Based Solids. Catal. Today 2021, 373, 69–79. [Google Scholar] [CrossRef]
- Wu, H.; Huang, H.; Zhou, J.; Hong, D.; Ikram, M.; Rehman, A.U.; Li, L.; Shi, K. One-Step Synthesis of Ordered Pd@TiO2 Nanofibers Array Film as Outstanding NH3 Gas Sensor at Room Temperature. Sci. Rep. 2017, 7, 14688. [Google Scholar] [CrossRef] [PubMed]
- Serban, B.-C.; Brezeanu, M.; Cobianu, C.; Costea, S.; Buiu, O.; Stratulat, A.; Varachiu, N. Materials Selection for Gas Sensing. An HSAB Perspective. In Proceedings of the 2014 International Semiconductor Conference (CAS), Sinaia, Romania, 13–15 October 2014; pp. 21–30. [Google Scholar] [CrossRef]
- Gole, J.L.; Ozdemir, S. Nanostructure-Directed Physisorption vs. Chemisorption at Semiconductor Interfaces: The Inverse of the HSAB Concept. ChemPhysChem 2010, 11, 2573–2581. [Google Scholar] [CrossRef]
- Gole, J.L.; Ozdemir, S. Novel Concept for the Formation of Sensitive, Selective, Rapidly Responding Conductometric Sensors. MRS Proc. 2010, 1253, 1253-K07-05. [Google Scholar] [CrossRef]
- Wisitsoraat, A.; Tuantranont, A.; Comini, E.; Sberveglieri, G.; Wlodarski, W. Characterization of n-type and p-type Semiconductor Gas Sensors Based on NiOx Doped TiO2 Thin Films. Thin Solid Film. 2009, 517, 2775–2780. [Google Scholar] [CrossRef]
- Galatsis, K.; Cukrov, L.; Wlodarski, W.; McCormick, P.; Kalantar-zadeh, K.; Comini, E.; Sberveglieri, G. p- and n-type Fe-Doped SnO2 Gas Sensors Fabricated by the Mechanochemical Processing Technique. Sens. Actuators B Chem. 2003, 93, 562–565. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, D.; Zhang, D.; Liu, Y.; Sun, M.; Sun, M.; Li, J. Construction of Ag2O/WO3-Based Hollow Microsphere p-n Heterojunction for Continuous Detection of ppb-Level H2S Gas Sensor. J. Alloys Compd. 2024, 1003, 175735. [Google Scholar] [CrossRef]
- Ding, Y.; Du, B.; Guo, X.; Dong, Y.; Zhang, M.; Jin, W.; Gao, C.; Peng, D.; He, Y. An Ultrasensitive NO2 Gas Sensor Based on a NiO-SnO2 Composite with a Sub-ppb Detection Limit at Room Temperature. Sens. Actuators B Chem. 2024, 414, 135916. [Google Scholar] [CrossRef]
- Cai, Z.; Park, S. Fabrication of Selective and Highly Sensitive Triethylamine Gas Sensor Using In2O3–SnO2 Hollow Nanospheres in Room Temperature Activated by UV Irradiation. J. Mater. Res. Technol. 2023, 26, 6581–6596. [Google Scholar] [CrossRef]
- Lee, J.; Gam, D.-Y.; Nam, K.E.; Cho, S.J.; Kim, H. Feasibility Study of a Resistive-Type Sodium Aerosol Detector with ZnO Nanowires for Sodium-Cooled Fast Reactors. Nucl. Eng. Technol. 2023, 55, 2373–2379. [Google Scholar] [CrossRef]
- Hongsith, N.; Chansuriya, S.; Koenrobket, S.; Unai, S.; Wongrat, E.; Prasatkhetragarn, A. Investigating of Transition State on the Pd–Au Decorated ZnO Nanoparticle Layers for Gas Sensor Application. Heliyon 2023, 9, e19402. [Google Scholar] [CrossRef]
- Li, S.; He, J.; Man, Y.; Li, L.; Li, S.; Li, N.; Zhao, Q. A First-Principles Study into Pt-Embedded NiS2 Monolayer as an Outstanding Gas Sensor upon CO and HCHO Dry-Type Reactors. Comput. Theor. Chem. 2023, 1226, 114203. [Google Scholar] [CrossRef]
- Tian, X.; Yin, M.; Zhang, L.; Qiu, T.; Xu, D.; Qiu, J. Mesoporous ZnO@CO3O4 Nanosphere for Sensitive Detection of 3-Hydroxy-2-Butanone. J. Photochem. Photobiol. 2022, 11, 100135. [Google Scholar] [CrossRef]
- To, D.T.H.; Park, J.Y.; Yang, B.; Myung, N.V.; Choa, Y.-H. Nanocrystalline ZnO Quantum Dot-Based Chemiresistive Gas Sensors: Improving Sensing Performance towards NO2 and H2S by Optimizing Operating Temperature. Sens. Actuators Rep. 2023, 6, 100166. [Google Scholar] [CrossRef]
- Fadojutimi, P.; Masemola, C.; Nkabinde, S.S.; Maubane-Nkadimeng, M.; Linganiso, E.C.; Tetana, Z.N.; Moloto, N.; Moma, J.; Gqoba, S. Room Temperature Sensing of Alcohol Vapours Using Novel Radially Aligned Nanorutile Titania. Sens. Actuators Rep. 2023, 5, 100154. [Google Scholar] [CrossRef]
- Alfalasi, W.; Feng, Y.P.; Tit, N. Designing a Functionalized 2D-TMD (MoX2, X = S, Se) Hosting Half-Metallicity for Selective Gas-Sensing Applications: Atomic-Scale Study. Acta Mater. 2023, 246, 118655. [Google Scholar] [CrossRef]
- Luo, S.; Chen, R.; Wang, J.; Xiang, L. Conductometric Methane Gas Sensors Based on ZnO/Pd@ZIF-8: Effect of Dual Filtering of ZIF-8 to Increase the Selectivity. Sens. Actuators B Chem. 2023, 383, 133600. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Hilal, M.; Cai, Z. Core–Shell SnO2/NiO p–n Heterojunction Composite for Enhanced Triethylamine Gas Sensitivity and Selectivity. J. Mater. Sci. Mater. Electron. 2024, 35, 1421. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, S.; Pal, R.; Vidhani, B.; Supreet. A Novel Gas Sensor Based on Activated Charcoal and Polyaniline Composites for Selective Sensing of Methanol Vapors. Sens. Actuators A Phys. 2023, 353, 114210. [Google Scholar] [CrossRef]
- Kumar, S.; Lawaniya, S.D.; Agarwal, S.; Yu, Y.-T.; Nelamarri, S.R.; Kumar, M.; Mishra, Y.K.; Awasthi, K. Optimization of Pt Nanoparticles Loading in ZnO for Highly Selective and Stable Hydrogen Gas Sensor at Reduced Working Temperature. Sens. Actuators B Chem. 2023, 375, 132943. [Google Scholar] [CrossRef]
- Singh, S.; Adalati, R.; Gurawal, P.; Malik, G.; Kaur, D.; Chandra, R. Highly Efficient NO2 Gas Sensor Based on Sputter-Grown Nanocrystalline MoO3 Thin Films. Mater. Lett. 2024, 369, 136762. [Google Scholar] [CrossRef]
- Kim, K.B.; Moon, Y.K.; Kim, T.-H.; Yu, B.-H.; Li, H.-Y.; Kang, Y.C.; Yoon, J.-W. Highly Selective and Sensitive Detection of Carcinogenic Benzene Using a Raisin Bread-Structured Film Comprising Catalytic Pd-Co3O4 and Gas-Sensing SnO2 Hollow Spheres. Sens. Actuators B Chem. 2023, 386, 133750. [Google Scholar] [CrossRef]
- Hong, J.; Lee, S.; Seo, J.; Pyo, S.; Kim, J.; Lee, T. A Highly Sensitive Hydrogen Sensor with Gas Selectivity Using a PMMA Membrane-Coated Pd Nanoparticle/Single-Layer Graphene Hybrid. ACS Appl. Mater. Interfaces 2015, 7, 3554–3561. [Google Scholar] [CrossRef] [PubMed]
- Domènech-Gil, G.; Samà, J.; Fàbrega, C.; Gràcia, I.; Cané, C.; Barth, S.; Romano-Rodríguez, A. Highly Sensitive SnO2 Nanowire Network Gas Sensors. Sens. Actuators B Chem. 2023, 383, 133545. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, N.; Casotto, A.; Sangaletti, L.; Comini, E. Tailoring the Surface Chemistry of ZnO Nanowires via Mixed Self-Assembly of Organosilanes for Selective Acetone Detection. Sens. Actuators B Chem. 2023, 384, 133653. [Google Scholar] [CrossRef]
- Kwon, Y.M.; Oh, B.; Purbia, R.; Chae, H.Y.; Han, G.H.; Kim, S.-W.; Choi, K.-J.; Lee, Y.; Kim, J.J.; Baik, J.M. High-Performance and Self-Calibrating Multi-Gas Sensor Interface to Trace Multiple Gas Species with Sub-Ppm Level. Sens. Actuators B Chem. 2023, 375, 132939. [Google Scholar] [CrossRef]
- Plugotarenko, N.K.; Myasoedova, T.N.; Novikov, S.P.; Mikhailova, T.S. Comparative Analysis of Derivative Parameters of Chemoresistive Sensor Signals for Gas Concentration Estimation. Chemosensors 2022, 10, 126. [Google Scholar] [CrossRef]
- Suriyawong, S.; Khumphon, J.; Rattanakam, R.; Chaopanich, P.; Thongmee, S.; Youngjan, S.; Khemthong, P.; Kityakarn, S. Engineering Three-Dimensionally Ordered Mesoporous Structure of TiO2 for the Fast Responsive NH3 Gas Sensor at Ambient Conditions. Colloids Surf. A Physicochem. Eng. Asp. 2023, 666, 131281. [Google Scholar] [CrossRef]
- Qiu, P.; Qin, Y.; Zhu, L. Memristive Gas Sensor (Gasistor) Based on Ag/Ordered TiO2 Nanorods/FTO Sandwich Structure for Evaluation of Ethanol Concentration in Mixed Ambient. Sens. Actuators B Chem. 2024, 421, 136548. [Google Scholar] [CrossRef]
- Meng, F.; Li, G.; Ji, H.; Shen, Y.; Yuan, Z. Detection and Identification of the Gas Mixtures of N-Propyl Alcohol and Iso-Propyl Alcohol Based on ZnO Sensor under Dynamic Temperature Modulation. Sens. Actuators B Chem. 2025, 422, 136583. [Google Scholar] [CrossRef]
- Goel, N.; Kunal, K.; Kushwaha, A.; Kumar, M. Metal Oxide Semiconductors for Gas Sensing. Eng. Rep. 2023, 5, e12604. [Google Scholar] [CrossRef]
- Huo, X.; Shan, X.; Pan, Q.; Cao, Z.; Cong, Z.; Song, J.; Jiang, J.; Ma, Q.; Jia, L.; Gao, J. Solution-Processable Quinoidal Compounds Containing Heterocycle for Air-Stable N-type Organic Field-Effect Transistors and Gas Sensors. Sens. Actuators B Chem. 2024, 403, 135184. [Google Scholar] [CrossRef]
- Vishnuraj, R.; Karuppanan, K.K.; Aleem, M.; Pullithadathil, B. Boosting the Performance of NO2 Gas Sensors Based on n–n Type Mesoporous ZnO@In2O3 Heterojunction Nanowires: In Situ Conducting Probe Atomic Force Microscopic Elucidation of Room Temperature Local Electron Transport. Nanoscale Adv. 2020, 2, 4785–4797. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.N.; Hong, B.; Chen, H.D.; Gao, M.H.; Xu, J.C.; Han, Y.B.; Yang, Y.T.; Jin, H.X.; Jin, D.F.; Peng, X.L.; et al. Highly Improved Ethanol Gas Response of N-Type α-Fe2O3 Bunched Nanowires Sensor with High-Valence Donor-Doping. J. Alloys Compd. 2020, 827, 154248. [Google Scholar] [CrossRef]
- Chiu, C.-C.; Kuo, C.-K.; Chu, P.-Y.; Shih, D.-H.; Liu, W.-C. Study of a Palladium Nanoparticle/ In-Zn-O Thin Film-Based Hydrogen Gas Sensor. Sens. Actuators B Chem. 2024, 415, 136015. [Google Scholar] [CrossRef]
- Wu, X.; Xiong, S.; Gong, Y.; Gong, Y.; Wu, W.; Mao, Z.; Liu, Q.; Hu, S.; Long, X. MOF-SMO Hybrids as a H2S Sensor with Superior Sensitivity and Selectivity. Sens. Actuators B Chem. 2019, 292, 32–39. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.-H.; Vivod, D.; Kim, S.; Mirzaei, A.; Zahn, D.; Park, C.; Kim, S.S.; Halik, M. Chemical-Recognition-Driven Selectivity of SnO2-Nanowire-Based Gas Sensors. Nano Today 2021, 40, 101265. [Google Scholar] [CrossRef]
- Yang, L.; Qin, J.; Cui, S.; Liu, W. Silver Nanoparticle Functionalized Heterojunction NiO/SnO2 Nanotubes for Comprehensive Sensitization of Acetone Sensor. Sens. Actuators B Chem. 2024, 417, 136208. [Google Scholar] [CrossRef]
- Adhikari, A.; Tiwary, P.; Rana, D.; Halder, A.; Nath, J.; Basu, A.; Ghoshal, D.; Kar, P.; Chakraborty, A.K.; Chattopadhyay, D. Na-Cholate Micelle Mediated Synthesis of Polypyrrole Nanoribbons for Ethanol Sensing. J. Environ. Chem. Eng. 2020, 8, 104249. [Google Scholar] [CrossRef]
- Travlou, N.A.; Rodríguez-Castellón, E.; Bandosz, T.J. Sensing of NH3 on Heterogeneous Nanoporous Carbons in the Presence of Humidity. Carbon 2016, 100, 64–73. [Google Scholar] [CrossRef]
- Golovakhin, V.; Litvinova, V.I.; Manakhov, A.; Latypova, A.R.; Novgorodtseva, O.N.; Ukhina, A.V.; Ishchenko, A.V.; Al-Qasim, A.S.; Maksimovskiy, E.A.; Bannov, A.G. Conductive Polymer-Multi-Walled Carbon Nanotube Composites for Gas Sensors and Supercapacitors. Mater. Today Commun. 2024, 39, 109163. [Google Scholar] [CrossRef]
- Zhang, J.; Maimaitiyiming, X. Study on Phenyl Series of Polymers Wrapping of Different Diameters of Semiconducting Single-Walled Carbon Nanotubes for Ammonia Gas Sensors. Sens. Actuators B Chem. 2024, 405, 135278. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Zhao, Y.; Liu, X.; Guo, Y.; Chen, J.; Wang, W.; Zhang, R.; Zhang, Y.; Liu, X.; et al. Influence of Pt or Au Doping on Improving the Detection of CO by ZnO: A First-Principles Calculations Study. Chem. Phys. 2023, 570, 111908. [Google Scholar] [CrossRef]
- Szary, M.J. Toward High Selectivity of Sensor Arrays: Enhanced Adsorption Interaction and Selectivity of Gas Detection (N2, O2, NO, CO, CO2, NO2, SO2, AlH3, NH3, and PH3) on Transition Metal Dichalcogenides (MoS2, MoSe2, and MoTe2). Acta Mater. 2024, 274, 120016. [Google Scholar] [CrossRef]
- Parangusan, H.; Bhadra, J.; Al-Qudah, R.A.; Elhadrami, E.C.; Al-Thani, N.J. Comparative Study on Gas-Sensing Properties of 2D (MoS2, WS2)/PANI Nanocomposites-Based Sensor. Nanomaterials 2022, 12, 4423. [Google Scholar] [CrossRef]
- Kumar, A.N.; Pal, K. Amine-Functionalized Stable Nb2CTx MXene toward Room Temperature Ultrasensitive NO2 Gas Sensor. Mater. Adv. 2022, 3, 5151–5162. [Google Scholar] [CrossRef]
- Song, X.; Liu, T.; Gu, K.; Luo, Z.; Zhang, M. Highly Selective and Ultra-Sensitive Gas Sensor Based on Fe2O3/Ti3C2Tx MXene Heterostructure for ppb-level n-butanol Detection. J. Alloys Compd. 2024, 976, 173153. [Google Scholar] [CrossRef]
- Casanova-Chafer, J.; Garcia-Aboal, R.; Atienzar, P.; Llobet, E. Unraveling the Gas-Sensing Mechanisms of Lead-Free Perovskites Supported on Graphene. ACS Sens. 2022, 7, 3753–3763. [Google Scholar] [CrossRef]
- Xie, T.; Li, F.; Song, P.; Fang, M.; Duan, L.; Zhang, Q.; Geng, W. High Responsive n-butanol Gas Sensor Based on MOFs-Derived Cr2O3/RGO p-p Heterojunctions Materials. J. Alloys Compd. 2024, 1002, 175271. [Google Scholar] [CrossRef]
- Montoro, C.; Kim, J.-Y.; Mirzaei, A.; Lee, J.-H.; Sayegh, S.; Makhoul, E.; Iatsunskyi, I.; Coy, E.; Bechelany, M.; Kim, H.W.; et al. MOF-Derived Metal Oxide (Cu, Ni, Zn) Gas Sensors with Excellent Selectivity towards H2S, CO and H2 Gases. Compos. Part B Eng. 2024, 283, 111637. [Google Scholar] [CrossRef]
- Shah, S.; Hussain, S.; Khan, L.A.; Yusuf, K.; Manavalan, R.K.; Tianyan, Y.; Zhang, X.; Liu, G.; Qiao, G. ppb-Level H2 Gas-Sensor Based on Porous Ni-MOF Derived NiO@CuO Nanoflowers for Superior Sensing Performance. Mater. Res. Bull. 2024, 180, 113021. [Google Scholar] [CrossRef]
- Matatagui, D.; Sainz-Vidal, A.; Gràcia, I.; Figueras, E.; Cané, C.; Saniger, J.M. Chemoresistive Gas Sensor Based on ZIF-8/ZIF-67 Nanocrystals. Sens. Actuators B Chem. 2018, 274, 601–608. [Google Scholar] [CrossRef]
- Kandhare, N.; Mathe, V.L.; Bhagwat, S. Room Temperature NO2 Gas Sensor Using H-WO3 Nanorod Based Thin Films. Mater. Sci. Eng. B 2024, 305, 117422. [Google Scholar] [CrossRef]
- Lv, H.; Dai, J.; Fang, O.; Wang, A.; Sun, W.; Liu, Z. Structure-Dependent Biomorphology Co3O4-In2O3 Nanorods for Expired Acetone Gas Sensor. Surf. Interfaces 2024, 49, 104376. [Google Scholar] [CrossRef]
- Lai, L.-T.; Hsueh, H.-T.; Chiu, C.-H.; Cheng, T.-C.; Chang, S.-J. Thermal Oxidation CuO Nanowire Gas Sensor for Ozone Detection Applications. Sens. Actuators Rep. 2024, 8, 100228. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Yu, Q.; Zhao, L.; Sun, P.; Wang, T.; Liu, F.; Yan, X.; Gao, Y.; Liang, X.; et al. One Step Synthesis of Branched SnO2/ZnO Heterostructures and Their Enhanced Gas-Sensing Properties. Sens. Actuators B Chem. 2019, 281, 415–423. [Google Scholar] [CrossRef]
- Ghorbani, G.; Taghipour, F. UV-Activated Chemiresistive Gas Sensor Response Curve Analysis for the Fast Measurement of Toxic Gases. Sens. Actuators B Chem. 2024, 419, 136396. [Google Scholar] [CrossRef]
- Cai, Z.; Goo, E.; Park, S. Hydrogen Sensing Performance and Its Enhanced Sensing Mechanisms of Hollow Structured-SnO2 Nanospheres Activated by Noble Metal Nanoparticles. J. Mater. Res. Technol. 2021, 15, 1716–1731. [Google Scholar] [CrossRef]
- Ramanathan, R.; Nagarajan, S.; Sathiyamoorthy, S.; Manavaimaran, B.; Barshilia, H.C.; Mallik, R.C. A Highly Sensitive and Room Temperature Ethanol Gas Sensor Based on Spray Deposited Sb Doped SnO2 Thin Films. Mater. Adv. 2024, 5, 293–305. [Google Scholar] [CrossRef]
- Kou, X.; Xie, N.; Chen, F.; Wang, T.; Guo, L.; Wang, C.; Wang, Q.; Ma, J.; Sun, Y.; Zhang, H.; et al. Superior Acetone Gas Sensor Based on Electrospun SnO2 Nanofibers by Rh Doping. Sens. Actuators B Chem. 2018, 256, 861–869. [Google Scholar] [CrossRef]
- Van Hoang, N.; Hung, C.M.; Hoa, N.D.; Van Duy, N.; Van Hieu, N. Facile On-Chip Electrospinning of ZnFe2O4 Nanofiber Sensors with Excellent Sensing Performance to H2S down ppb Level. J. Hazard. Mater. 2018, 360, 6–16. [Google Scholar] [CrossRef]
- Han, L.; Zhang, S.; Zhang, B.; Zhang, B.; Wang, Y.; Bala, H.; Zhang, Z. Dual-Selective Detection of CO and CH4 Based on Hierarchical Porous In2O3 Nanoflowers with Pd Modification. J. Mater. 2022, 8, 545–555. [Google Scholar] [CrossRef]
- Krishnakumar, T.; Jayaprakash, R.; Pinna, N.; Donato, N.; Bonavita, A.; Micali, G.; Neri, G. CO Gas Sensing of ZnO Nanostructures Synthesized by an Assisted Microwave Wet Chemical Route. Sens. Actuators B Chem. 2009, 143, 198–204. [Google Scholar] [CrossRef]
- Wei, S.; Yu, Y.; Zhou, M. CO Gas Sensing of Pd-Doped ZnO Nanofibers Synthesized by Electrospinning Method. Mater. Lett. 2010, 64, 2284–2286. [Google Scholar] [CrossRef]
- Altinkok, C.; Sagdic, G.; Daglar, O.; Ercan Ayra, M.; Yuksel Durmaz, Y.; Durmaz, H.; Acik, G. A New Strategy for Direct Solution Electrospinning of Phosphorylated Poly(Vinyl Chloride)/Polyethyleneimine Blend in Alcohol Media. Eur. Polym. J. 2023, 183, 111750. [Google Scholar] [CrossRef]
- Perez-Puyana, V.M.; Romero, A.; Guerrero, A.; Moroni, L.; Wieringa, P.A. Enabling Low Molecular Weight Electrospinning through Binary Solutions of Polymer Blends. Next Mater. 2025, 6, 100306. [Google Scholar] [CrossRef]
- Joy, N.; Anuraj, R.; Viravalli, A.; Dixit, H.N.; Samavedi, S. Coupling between Voltage and Tip-to-Collector Distance in Polymer Electrospinning: Insights from Analysis of Regimes, Transitions and Cone/Jet Features. Chem. Eng. Sci. 2021, 230, 116200. [Google Scholar] [CrossRef]
- Singh, R.K.; Lye, S.W.; Miao, J. Holistic Investigation of the Electrospinning Parameters for High Percentage of β-Phase in PVDF Nanofibers. Polymer 2021, 214, 123366. [Google Scholar] [CrossRef]
- Rosman, N.; Wan Salleh, W.N.; Jamalludin, M.R.; Adam, M.R.; Ismail, N.H.; Jaafar, J.; Harun, Z.; Ismail, A.F. Electrospinning Parameters Evaluation of PVDF-ZnO/Ag2CO3/Ag2O Composite Nanofiber Affect on Porosity by Using Response Surface Methodology. Mater. Today Proc. 2021, 46, 1824–1830. [Google Scholar] [CrossRef]
- Chen, L.; Yu, Q.; Pan, C.; Song, Y.; Dong, H.; Xie, X.; Li, Y.; Liu, J.; Wang, D.; Chen, X. Chemiresistive Gas Sensors Based on Electrospun Semiconductor Metal Oxides: A Review. Talanta 2022, 246, 123527. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, Y.; Li, A.; Wei, L.; Wang, L.; Qin, X.; Yu, J. Mass Production of High-Quality Nanofibers via Constructing Pre-Taylor Cones with High Curvature on Needleless Electrospinning. Mater. Des. 2021, 197, 109247. [Google Scholar] [CrossRef]
- Martin, P.; Zussman, E. Charge Transport in Electrospinning of Polyelectrolyte Solutions. Soft Matter 2024, 20, 5572–5582. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Sarma, S. Taylor Cone Height as a Tool to Understand Properties of Electrospun PVDF Nanofibers. J. Electrost. 2022, 120, 103770. [Google Scholar] [CrossRef]
- Di Bonito, L.P.; Kyriacou, P.; Di Colandrea, A.; Di Natale, F.; Ruoppolo, G.; Krasia-Christoforou, T. Design and Production of Functionalized Electrospun Fibers for Palladium Recovery. ACS Appl. Polym. Mater. 2024, 6, 9406–9419. [Google Scholar] [CrossRef] [PubMed]
- Beachley, V.; Wen, X. Effect of Electrospinning Parameters on the Nanofiber Diameter and Length. Mater. Sci. Eng. C 2009, 29, 663–668. [Google Scholar] [CrossRef]
- Kočí, J.; Míka Havlík, M.; Procházka, V.; Klusoňová, N.; Sedláčková, E. The Effect of Solution Viscosity on the Quality of Electroactive Nanofibers Produced by Electrospinning. Monatsh. Chem. 2024, 155, 349–352. [Google Scholar] [CrossRef]
- Rajeev, M.; Helms, C.C. A Study of the Relationship between Polymer Solution Entanglement and Electrospun PCL Fiber Mechanics. Polymers 2023, 15, 4555. [Google Scholar] [CrossRef]
- Rabello, L.G.; Alvares, M.R.N.; Ribeiro, R.C.D.C.; Jardim, P.M.; Thiré, R.M.D.S.M. Correlation between Solution Relative Viscosity and the Microstructural Properties of the Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)—PHBV Solution Blow Spun Mats. Express Polym. Lett. 2023, 17, 1239–1256. [Google Scholar] [CrossRef]
- Ewaldz, E.; Randrup, J.; Brettmann, B. Solvent Effects on the Elasticity of Electrospinnable Polymer Solutions. ACS Polym. Au 2022, 2, 108–117. [Google Scholar] [CrossRef]
- Liu, Z.; Ramakrishna, S.; Ahmed, I.; Rudd, C.; Liu, X. Rheological, Surface Tension and Conductivity Insights on the Electrospinnability of Poly(Lactic-Co-Glycolic Acid)-Hyaluronic Acid Solutions and Their Correlations with the Nanofiber Morphological Characteristics. Polymers 2022, 14, 4411. [Google Scholar] [CrossRef]
- Rathore, P.; Schiffman, J.D. Effect of pH Value on the Electrical Properties of PEDOT:PSS-Based Fiber Mats. ACS Eng. Au 2023, 3, 527–536. [Google Scholar] [CrossRef]
- Ruiz Rocha, J.E.; Moreno Tovar, K.R.; Navarro Mendoza, R.; Gutiérrez Granados, S.; Cavaliere, S.; Giaume, D.; Barboux, P.; Jaime Ferrer, J.S. Critical Electrospinning Parameters for Synthesis Control of Stabilized Polyacrylonitrile Nanofibers. Nanomaterials 2023, 13, 2648. [Google Scholar] [CrossRef] [PubMed]
- Sheikhi, S.; Ghassemi, A.; Sajadi, S.M.; Hashemian, M. Comparison of the Mechanical Characteristics of Produced Nanofibers by Electrospinning Process Based on Different Collectors. Heliyon 2024, 10, e23841. [Google Scholar] [CrossRef] [PubMed]
- Ura, D.P.; Stachewicz, U. Direct Electrospinning of Short Polymer Fibers: Factors Affecting Size and Quality. Compos. Part A Appl. Sci. Manuf. 2024, 181, 108138. [Google Scholar] [CrossRef]
- SalehHudin, H.S.; Mohamad, E.N.; Afifi, A.M.; Mahadi, W.N.L.W. Simulation and Experimental Study of Parameters in Multiple-Nozzle Electrospinning: Effects of Voltage and Nozzle Configuration on the Electric Field and Electrospun Jet Attributes. J. Manuf. Process. 2023, 85, 544–555. [Google Scholar] [CrossRef]
- Najim, M.A.; Khalil, B.I.; Hameed, A.A. Characterizing Optimum Electrospinning Conditions for Graft Urethanized Poly(Vinyl Alcohol)(U-PVA). Heliyon 2022, 8, e11423. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Z.; Wang, Z.; Chen, M.; Dong, M.; Han, X. Necklace-like Fiber Composite Membrane for High-Efficiency Particulate Matter Capture. Appl. Surf. Sci. 2017, 425, 220–226. [Google Scholar] [CrossRef]
- Ghosh, S.; Yadav, A.; Gurave, P.M.; Srivastava, R.K. Unique Fiber Morphologies from Emulsion Electrospinning—A Case Study of Poly(ε-Caprolactone) and Its Applications. Colloids Interfaces 2023, 7, 19. [Google Scholar] [CrossRef]
- Zaarour, B.; Zhu, L.; Huang, C.; Jin, X. Controlling the Secondary Surface Morphology of Electrospun PVDF Nanofibers by Regulating the Solvent and Relative Humidity. Nanoscale Res. Lett. 2018, 13, 285. [Google Scholar] [CrossRef] [PubMed]
- Fatimah, I.; Sari, T.I.; Anggoro, D. Effect of Concentration and Nozzle-Collector Distance on the Morphology of Nanofibers. KEM 2020, 860, 315–319. [Google Scholar] [CrossRef]
- Hoogesteijn Von Reitzenstein, N.; Sonmez Baghirzade, B.; Pruitt, E.; Hristovski, K.; Westerhoff, P.; Apul, O.G. Comparing the Morphologies and Adsorption Behavior of Electrospun Polystyrene Composite Fibers with 0D Fullerenes, 1D Multiwalled Carbon Nanotubes and 2D Graphene Oxides. Chem. Eng. J. Adv. 2022, 9, 100199. [Google Scholar] [CrossRef]
- Fioravanti, A.; Morandi, S.; Pedrazzo, A.R.; Cecone, C.; Manzoli, M.; Zanetti, M.; Bracco, P.; Mazzocchi, M.; Lettieri, S.; Marani, P.; et al. Investigation of the Key Parameters for Gas Sensing through Comparison of Electrospun and Sol-Gel Semiconducting Oxides. Ceram. Int. 2022, 48, 20948–20960. [Google Scholar] [CrossRef]
- Phuoc, P.H.; Van Hoang, N.; Hung, N.M.; Hung, P.T.; Hoat, P.D.; Van Hieu, N. On-Chip CuFe2O4 Nanofiber for Conductometric NO2 and H2S Gas-Sensors. Sens. Actuators B Chem. 2023, 380, 133306. [Google Scholar] [CrossRef]
- Reddy, C.S.; Murali, G.; Reddy, A.S.; Park, S.; In, I. GO Incorporated SnO2 Nanotubes as Fast Response Sensors for Ethanol Vapor in Different Atmospheres. J. Alloys Compd. 2020, 813, 152251. [Google Scholar] [CrossRef]
- Platonov, V.; Rumyantseva, M.; Khmelevsky, N.; Gaskov, A. Electrospun ZnO/Pd Nanofibers: CO Sensing and Humidity Effect. Sensors 2020, 20, 7333. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xie, Y.; Chen, T.; Lu, Q.; Ur Rehman, S.; Zhu, L. Rationally Designed Mesoporous In2O3 Nanofibers Functionalized Pt Catalysts for High-Performance Acetone Gas Sensors. Sens. Actuators B Chem. 2019, 298, 126871. [Google Scholar] [CrossRef]
- Hong, S.-Z.; Huang, Q.-Y.; Wu, T.-M. The Room Temperature Highly Sensitive Ammonia Gas Sensor Based on Polyaniline and Nitrogen-Doped Graphene Quantum Dot-Coated Hollow Indium Oxide Nanofiber Composite. Polymers 2021, 13, 3676. [Google Scholar] [CrossRef]
- Sharma, H.J.; Jamkar, D.V.; Kondawar, S.B. Electrospun Nanofibers of Conducting Polyaniline/Al-SnO2 Composites for Hydrogen Sensing Applications. Procedia Mater. Sci. 2015, 10, 186–194. [Google Scholar] [CrossRef]
- Andre, R.; Kwak, D.; Dong, Q.; Zhong, W.; Correa, D.; Mattoso, L.; Lei, Y. Sensitive and Selective NH3 Monitoring at Room Temperature Using ZnO Ceramic Nanofibers Decorated with Poly(Styrene Sulfonate). Sensors 2018, 18, 1058. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, J.-Y.; Kim, J.-H.; Kim, S. Enhanced Hydrogen Detection in ppb-Level by Electrospun SnO2-Loaded ZnO Nanofibers. Sensors 2019, 19, 726. [Google Scholar] [CrossRef]
- Platonov, V.; Nasriddinov, A.; Rumyantseva, M. Electrospun ZnO/Pd Nanofibers as Extremely Sensitive Material for Hydrogen Detection in Oxygen Free Gas Phase. Polymers 2022, 14, 3481. [Google Scholar] [CrossRef]
- Cai, Z.; Park, J.; Park, S. Porous In2O3–ZnO Nanofiber-Based Sensor for Ultrasensitive Room-Temperature Detection of Toluene Gas under UV Illumination. J. Mater. Res. Technol. 2023, 24, 2482–2499. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K. The Role of Grain Size on the Thermal Instability of Nanostructured Metal Oxides Used in Gas Sensor Applications and Approaches for Grain-Size Stabilization. Prog. Cryst. Growth Charact. Mater. 2012, 58, 167–208. [Google Scholar] [CrossRef]
- Song, L.; Yang, L.; Wang, Z.; Liu, D.; Luo, L.; Zhu, X.; Xi, Y.; Yang, Z.; Han, N.; Wang, F.; et al. One-Step Electrospun SnO2/MOx Heterostructured Nanomaterials for Highly Selective Gas Sensor Array Integration. Sens. Actuators B Chem. 2019, 283, 793–801. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Z.; Wang, J.; Liu, J.; Zhao, W.; Zhang, J.; Yan, W. Synergistic Effect of ZIF-8 and Pt-Functionalized NiO/In2O3 Hollow Nanofibers for Highly Sensitive Detection of Formaldehyde. Nanomaterials 2024, 14, 841. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zhou, Q.; Wang, C.; Wei, Z.; Xu, L.; Gui, Y. Electrospun ZnO–SnO2 Composite Nanofibers and Enhanced Sensing Properties to SF6 Decomposition Byproduct H2S. Front. Chem. 2018, 6, 540. [Google Scholar] [CrossRef]
- Liu, W.; Xu, L.; Sheng, K.; Zhou, X.; Dong, B.; Lu, G.; Song, H. A Highly Sensitive and Moisture-Resistant Gas Sensor for Diabetes Diagnosis with Pt@In2O3 Nanowires and a Molecular Sieve for Protection. NPG Asia Mater. 2018, 10, 293–308. [Google Scholar] [CrossRef]
- Shao, H.; Huang, M.; Fu, H.; Wang, S.; Wang, L.; Lu, J.; Wang, Y.; Yu, K. Hollow WO3/SnO2 Hetero-Nanofibers: Controlled Synthesis and High Efficiency of Acetone Vapor Detection. Front. Chem. 2019, 7, 785. [Google Scholar] [CrossRef]
- Avossa, J.; Paolesse, R.; Di Natale, C.; Zampetti, E.; Bertoni, G.; De Cesare, F.; Scarascia-Mugnozza, G.; Macagnano, A. Electrospinning of Polystyrene/Polyhydroxybutyrate Nanofibers Doped with Porphyrin and Graphene for Chemiresistor Gas Sensors. Nanomaterials 2019, 9, 280. [Google Scholar] [CrossRef]
- Wu, W.-Y.; Ting, J.-M.; Huang, P.-J. Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection. Nanoscale Res. Lett. 2009, 4, 513. [Google Scholar] [CrossRef]
- Sun, H.; Yao, Y.; Yang, R.; Yan, Z.; Cao, C.; Deng, Y.; Wu, S.; Liu, S.; Xu, Q.; Qin, Y. A ZnO Gas Sensor with an Abnormal Response to Hydrogen. Energies 2023, 16, 5847. [Google Scholar] [CrossRef]
- Du, X.; Xing, R.; Lin, Y.; Chen, M.; Chen, Z.; Zhou, S. Reduced Greenhouse Gas Emission by Reactive Oxygen Species during Composting. Bioresour. Technol. 2024, 404, 130910. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, A.; Bir Barman, P.; Kumar Hazra, S. Role of Catalyst Oxidation States in the Selective Detection of Reducing Gases: A Comparative Study of Nanocomposites Based on Au and Chemically/Thermally Reduced Graphene Oxide. Mater. Sci. Eng. B 2024, 308, 117605. [Google Scholar] [CrossRef]
- Jiang, D.; Chen, Q.; Ding, D.; Zhou, Y.; Xie, W.; Xia, F.; Li, M.; Wei, J.; Chen, Y.; Deng, S. Derivation of Human Health and Odor Risk Control Values for Soil Ammonia Nitrogen by Incorporating Solid-Liquid Partitioning, Ammonium/Ammonia Equilibrium: A Case Study of a Retired Nitrogen Fertilizer Site in China. Ecotoxicol. Environ. Saf. 2024, 273, 116133. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; He, X.; Shi, Z.; Li, S. Adsorption and Sensing Behavior of Cr-Doped WS2 Monolayer for Hazardous Gases in Agricultural Greenhouses: A DFT Study. Mater. Today Commun. 2024, 40, 109405. [Google Scholar] [CrossRef]
- Cheng, Y.-F.; Song, S.-X.; Ma, H.-H.; Su, J.; Han, T.-F.; Shen, Z.-W.; Meng, X.-R. Hybrid H2/Ti Dust Explosion Hazards during the Production of Metal Hydride TiH2 in a Closed Vessel. Int. J. Hydrogen Energy 2019, 44, 11145–11152. [Google Scholar] [CrossRef]
- Jimenez, A.; Groth, K.M. Hazards Associated with Pressure Relief Devices in Hydrogen Systems. J. Loss Prev. Process Ind. 2024, 91, 105380. [Google Scholar] [CrossRef]
- Zhang, J.; Li, T.; Zhang, H.; Huang, Z.; Zeng, W.; Zhou, Q. Ni Decorated ReS2 Monolayer as Gas Sensor or Adsorbent for Agricultural Greenhouse Gases NH3, NO2 and Cl2: A DFT Study. Mater. Today Chem. 2024, 38, 102114. [Google Scholar] [CrossRef]
- Chen, L.; Song, Y.; Yu, Q.; Dong, H.; Pan, C.; Wang, D.; Liu, J.; Chen, X. High-Performance Acetone Sensor Based on Electrospun Tb-Doped α-Fe2O3 Nanotubes. Ceram. Int. 2022, 48, 26828–26835. [Google Scholar] [CrossRef]
- Cui, X.; Lu, Z.; Wang, Z.; Zeng, W.; Zhou, Q. Highly Sensitive SF6 Decomposition Byproducts Sensing Platform Based on CuO/ZnO Heterojunction Nanofibers. Chemosensors 2023, 11, 58. [Google Scholar] [CrossRef]
- Han, W.; Yang, J.; Jiang, B.; Wang, X.; Wang, C.; Guo, L.; Sun, Y.; Liu, F.; Sun, P.; Lu, G. Conductometric ppb-Level CO Sensors Based on In2O3 Nanofibers Co-Modified with Au and Pd Species. Nanomaterials 2022, 12, 3267. [Google Scholar] [CrossRef]
- Hong, S.-Z.; Huang, Q.-Y.; Wu, T.-M. Facile Synthesis of Polyaniline/Carbon-Coated Hollow Indium Oxide Nanofiber Composite with Highly Sensitive Ammonia Gas Sensor at the Room Temperature. Sensors 2022, 22, 1570. [Google Scholar] [CrossRef] [PubMed]
- Naresh, B.; Krishna, K.G.; Rajasekhar, D.; Kuchi, C.; Kummara, S.K.; Reddy, P.S. Synthesis and Characterization of rGO Wrapped 1-D NiO Nanofibers for Ammonia Gas Sensing Application. Surf. Interfaces 2023, 40, 103012. [Google Scholar] [CrossRef]
- Fan, S.X.; Tang, W. Synthesis, Characterization and Mechanism of Electrospun Carbon Nanofibers Decorated with ZnO Nanoparticles for Flexible Ammonia Gas Sensors at Room Temperature. Sens. Actuators B Chem. 2022, 362, 131789. [Google Scholar] [CrossRef]
- Cai, Z.; Park, S. Ultrasensitive Hydrogen Sensor Based on Porous-Structured Pd-Decorated In2O3 Nanoparticle-Embedded SnO2 Nanofibers. Sens. Actuators B Chem. 2022, 367, 132090. [Google Scholar] [CrossRef]
- Konuk Ege, G.; Akay, Ö.; Yüce, H. A Chemosensitive Based Ammonia Gas Sensor with PANI/PEO- ZnO Nanofiber Composites Sensing Layer. MI 2023, in press. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, J.-Y.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Significant Enhancement of Hydrogen-Sensing Properties of ZnO Nanofibers through NiO Loading. Nanomaterials 2018, 8, 902. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Fu, J.; Liu, R.; He, H.; Ma, J.; Yu, M.; Ramakrishna, S.; Long, Y. Electrospinning of Ultrafine Conducting Polymer Composite Nanofibers with Diameter Less than 70 Nm as High Sensitive Gas Sensor. Materials 2018, 11, 1744. [Google Scholar] [CrossRef]
- Fan, C.; Sun, F.; Wang, X.; Huang, Z.; Keshvardoostchokami, M.; Kumar, P.; Liu, B. Synthesis of ZnO Hierarchical Structures and Their Gas Sensing Properties. Nanomaterials 2019, 9, 1277. [Google Scholar] [CrossRef]
- Liu, P.; Wu, S.; Zhang, Y.; Zhang, H.; Qin, X. A Fast Response Ammonia Sensor Based on Coaxial PPy–PAN Nanofiber Yarn. Nanomaterials 2016, 6, 121. [Google Scholar] [CrossRef]
- Liu, H.; Wang, F.; Hu, K.; Zhang, B.; He, L.; Zhou, Q. Superior Hydrogen Sensing Property of Porous NiO/SnO2 Nanofibers Synthesized via Carbonization. Nanomaterials 2019, 9, 1250. [Google Scholar] [CrossRef]
- Ning, X.; Tang, D.; Zhang, M. Directly Electrospinning Submillimeter Continuous Fibers on Tubes to Fabricate H2S Detectors with Fast and High Response. Nano Mater. Sci. 2022, 4, 376–382. [Google Scholar] [CrossRef]
- Nair, K.G.; Vishnuraj, R.; Pullithadathil, B. Integrated Co-Axial Electrospinning for a Single-Step Production of 1D Aligned Bimetallic Carbon fibers@AuNPs–PtNPs/NiNPs–PtNPs towards H2 Detection. Mater. Adv. 2022, 3, 443–455. [Google Scholar] [CrossRef]
- Phuoc, P.H.; Hung, C.M.; Van Toan, N.; Van Duy, N.; Hoa, N.D.; Van Hieu, N. One-Step Fabrication of SnO2 Porous Nanofiber Gas Sensors for Sub-ppm H2S Detection. Sens. Actuators A Phys. 2020, 303, 111722. [Google Scholar] [CrossRef]
- Hwang, S.-H.; Kim, Y.K.; Hong, S.H.; Lim, S.K. Cu/CuO@ZnO Hollow Nanofiber Gas Sensor: Effect of Hollow Nanofiber Structure and p-n Junction on Operating Temperature and Sensitivity. Sensors 2019, 19, 3151. [Google Scholar] [CrossRef] [PubMed]
- Busacca, C.; Donato, A.; Lo Faro, M.; Malara, A.; Neri, G.; Trocino, S. CO Gas Sensing Performance of Electrospun Co3O4 Nanostructures at Low Operating Temperature. Sens. Actuators B Chem. 2020, 303, 127193. [Google Scholar] [CrossRef]
- Li, H.-M.; Li, G.-X.; Li, L. Comparative Investigation on Combustion Characteristics of ADN-Based Liquid Propellants in Inert Gas and Oxidizing Gas Atmospheres with Resistive Ignition Method. Fuel 2023, 334, 126742. [Google Scholar] [CrossRef]
- Yoo, J.-M.; Lee, Y.-R.; Kim, D.; Jeong, M.-J.; Stockwell, W.R.; Kundu, P.K.; Oh, S.-M.; Shin, D.-B.; Lee, S.-J. New Indices for Wet Scavenging of Air Pollutants (O3, CO, NO2, SO2, and PM10) by Summertime Rain. Atmos. Environ. 2014, 82, 226–237. [Google Scholar] [CrossRef]
- Li, Y.; Fan, B.; Deng, G.; Zhang, H.; Zhang, J.; Du, H.; Shi, K. Effect of NO2 on SO2–SO42− Conversion in Atmosphere: Evidence from Long-Term Precipitation. Atmos. Environ. 2024, 334, 120707. [Google Scholar] [CrossRef]
- Galvao, E.S.; Reis Junior, N.C.; Goulart, E.V.; Kumar, P.; Santos, J.M. Refining Children’s Exposure Assessment to NO2, SO2, and O3: Incorporating Indoor-to-Outdoor Concentration Ratios and Individual Daily Routine. Chemosphere 2024, 364, 143155. [Google Scholar] [CrossRef]
- Van Hoang, N.; Duc, L.M.; Hiep, N.T.; Hung, N.M.; Nguyen, C.V.; Hung, P.T.; Hoat, P.D.; Vo, V.K.; Heo, Y.-W. Optimization of Synthesis Conditions and Sensing Performance of Electrospun NiFe2O4 Nanofibers for H2S and NO2 Detection. J. Alloys Compd. 2023, 936, 168276. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, S.; Xia, Y.; Yu, P.; Xu, Y.; Dong, Y.; Wei, Q.; Wang, J. High-Performance Room-Temperature NO2 Gas Sensor Based on Au-Loaded SnO2 Nanowires under UV Light Activation. Nanomaterials 2022, 12, 4062. [Google Scholar] [CrossRef] [PubMed]
- Saasa, V.; Orasugh, J.T.; Mwakikunga, B.; Ray, S.S. Electrospun rGO-PVDF/WO3 Composite Fibers for SO2 Sensing. Mater. Sci. Semicond. Process. 2024, 181, 108631. [Google Scholar] [CrossRef]
- Vishnuraj, R.; Aleem, M.; Nair, K.G.; Pullithadathil, B. 1D Aligned, n–p and n–n Type ZnO Heterojunction Nanofibers for NO2 Sensors: Exploration of Conduction Mechanism Using in Situ Impedance Spectroscopy. Mater. Adv. 2023, 4, 3010–3025. [Google Scholar] [CrossRef]
- Zou, B.; Guo, Y.; Shen, N.; Xiao, A.; Li, M.; Zhu, L.; Wan, P.; Sun, X. Sulfophenyl-Functionalized Reduced Graphene Oxide Networks on Electrospun 3D Scaffold for Ultrasensitive NO2 Gas Sensor. Sensors 2017, 17, 2954. [Google Scholar] [CrossRef]
- Bonyani, M.; Zebarjad, S.M.; Janghorban, K.; Kim, J.-Y.; Kim, H.W.; Kim, S.S. Au-Decorated Polyaniline-ZnO Electrospun Composite Nanofiber Gas Sensors with Enhanced Response to NO2 Gas. Chemosensors 2022, 10, 388. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Y. Synthesis, Growth Kinetics and Ultra-Sensitive Performance of Electrospun WO3 Nanofibers for NO2 Detection. Appl. Surf. Sci. 2023, 608, 155112. [Google Scholar] [CrossRef]
- Lahlou, H.; Claramunt, S.; Monereo, O.; Prades, D.; Fernandez-Sanjuá, J.-M.; Bonet, N.; Ramos, F.-M.; Cirera, A. Preparation of Palladium Oxide Nanoparticles Supported on Tin Oxide Nanofibers via Modified Electrospinning for Ultra-Low ppb NO2 Detection. Mater. Today Proc. 2021, 36, 1–9. [Google Scholar] [CrossRef]
- Guo, J.; Li, W.; Zhao, X.; Hu, H.; Wang, M.; Luo, Y.; Xie, D.; Zhang, Y.; Zhu, H. Highly Sensitive, Selective, Flexible and Scalable Room-Temperature NO2 Gas Sensor Based on Hollow SnO2/ZnO Nanofibers. Molecules 2021, 26, 6475. [Google Scholar] [CrossRef]
- Khalifa, M.; Anandhan, S. Highly Sensitive and Wearable NO2 Gas Sensor Based on PVDF Nanofabric Containing Embedded Polyaniline/g-C3N4 Nanosheet Composites. Nanotechnology 2021, 32, 485504. [Google Scholar] [CrossRef]
- Morais, P.V.; Suman, P.H.; Silva, R.A.; Orlandi, M.O. High Gas Sensor Performance of WO3 Nanofibers Prepared by Electrospinning. J. Alloys Compd. 2021, 864, 158745. [Google Scholar] [CrossRef]
- Viet, N.N.; Thong, L.V.; Dang, T.K.; Phuoc, P.H.; Chien, N.H.; Hung, C.M.; Hoa, N.D.; Van Duy, N.; Van Toan, N.; Son, N.T.; et al. MoS2 Nanosheets-Decorated SnO2 Nanofibers for Enhanced SO2 Gas Sensing Performance and Classification of CO, NH3 and H2 Gases. Anal. Chim. Acta 2021, 1167, 338576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhai, Z.; Wang, J.; Hao, X.; Sun, Y.; Yu, S.; Lin, X.; Qin, Y.; Li, C. Zr-MOF Combined with Nanofibers as an Efficient and Flexible Capacitive Sensor for Detecting SO2. ChemNanoMat 2021, 7, 1117–1124. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Chen, Q.; Tian, E.; Han, N.; Mo, J. Preconcentrating Sensor Systems toward Indoor Low-Concentration VOC Detection by Goal-Oriented, Sequential, Inverse Design Strategy. Build. Environ. 2024, 254, 111372. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, Y.; Chai, X.; Xu, L.; Zhang, L.; Ning, P.; Huang, J.; Tian, S. Interaction of Inhalable Volatile Organic Compounds and Pulmonary Surfactant: Potential Hazards of VOCs Exposure to Lung. J. Hazard. Mater. 2019, 369, 512–520. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, M.; Wang, M.; Fan, C.; Tao, L.; Ma, W.; Sui, S.; Liu, T.; Jia, L.; Guo, X. Revealing the Dual Impact of VOCs on Recycled Rubber Workers: Health Risk and Odor Perception. Ecotoxicol. Environ. Saf. 2024, 283, 116824. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Guan, X.; Peng, Y.; Gong, A.; Xie, H.; Chen, S.; Zhang, Q.; Zhang, X.; Wang, W.; Wang, Q. Characterization of VOC Emissions and Health Risk Assessment in the Plastic Manufacturing Industry. J. Environ. Manag. 2024, 357, 120730. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Z.; Wang, J.; Liu, J.; Zhang, J.; Yan, W. Pt-Embedded Metal–Organic Frameworks Deriving Pt/ZnO-In2O3 Electrospun Hollow Nanofibers for Enhanced Formaldehyde Gas Sensing. Chemosensors 2024, 12, 93. [Google Scholar] [CrossRef]
- Ma, S.; Guo, J.; Zhang, H.; Shao, X.; Zhang, D. A Room Temperature Trimethylamine Gas Sensor Based on Electrospinned Molybdenum Oxide Nanofibers/Ti3C2Tx MXene Heterojunction. Nanomaterials 2024, 14, 537. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Zhang, H.; Chen, C.; Zhang, D. Enhanced Sensing Performance of Electrospun Tin Dioxide Nanofibers Decorated with Cerium Dioxide Nanoparticles for the Detection of Liquefied Petroleum Gas. Chemosensors 2022, 10, 497. [Google Scholar] [CrossRef]
- Dong, S.; Jin, X.; Wei, J.; Wu, H. Electrospun ZnSnO3/ZnO Composite Nanofibers and Its Ethanol-Sensitive Properties. Metals 2022, 12, 196. [Google Scholar] [CrossRef]
- Qu, C.; Zhao, P.; Wu, C.; Zhuang, Y.; Liu, J.; Li, W.; Liu, Z.; Liu, J. Electrospun PAN/PANI Fiber Film with Abundant Active Sites for Ultrasensitive Trimethylamine Detection. Sens. Actuators B Chem. 2021, 338, 129822. [Google Scholar] [CrossRef]
- Cui, S.; Qin, J.; Liu, W. Ultrafine Pt-Doped SnO2 Mesopore Nanofibers-Based Gas Sensor for Enhanced Acetone Sensing. Chin. J. Anal. Chem. 2023, 51, 100188. [Google Scholar] [CrossRef]
- Du, H.; Li, X.; Yao, P.; Wang, J.; Sun, Y.; Dong, L. Zinc Oxide Coated Tin Oxide Nanofibers for Improved Selective Acetone Sensing. Nanomaterials 2018, 8, 509. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Abideen, Z.; Zheng, Y.; Kim, S. Improvement of Toluene-Sensing Performance of SnO2 Nanofibers by Pt Functionalization. Sensors 2016, 16, 1857. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, N.N.; Shivamurthy, B.; Anandhan, S.; Rajendra, B.V.; Basanna, J.C.R.; Srivathsa, M. An Investigation on the Acetone and Ethanol Vapor-Sensing Behavior of Sol–Gel Electrospun ZnO Nanofibers Using an Indigenous Setup. ACS Omega 2023, 8, 49057–49066. [Google Scholar] [CrossRef]
- Baek, J.W.; Han, S.; Lee, S.E.; Ahn, J.; Park, C.; Nam, J.S.; Kim, Y.H.; Shin, E.; Kim, M.; Jang, J.-S.; et al. Cobalt-Doped Ceria Sensitizer Effects on Metal Oxide Nanofibers: Heightened Surface Reactivity for High-Performing Chemiresistive Sensors. ACS Nano 2024, acsnano.4c03168. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, H.; Lu, H.; Li, G.; Gao, J.; Yang, Z.; Tian, Y.; Zhang, M.; Wang, C.; He, Z. Porous Bimetallic Mo-W Oxide Nanofibers Fabricated by Electrospinning with Enhanced Acetone Sensing Performances. J. Alloys Compd. 2019, 779, 531–542. [Google Scholar] [CrossRef]
- Vu, D.L.; Lin, T.-F.; Lin, T.-H.; Wu, M.-C. Highly-Sensitive Detection of Volatile Organic Compound Vapors by Electrospun PANI/P3TI/PMMA Fibers. Polymers 2020, 12, 455. [Google Scholar] [CrossRef]
- Can, N. Electrospun CuO Nanofibers for Room Temperature Volatile Organic Compound Sensing Applications. Mater. Chem. Phys. 2018, 213, 6–13. [Google Scholar] [CrossRef]
- Hu, Q.; Huang, B.; Li, Y.; Zhang, S.; Zhang, Y.; Hua, X.; Liu, G.; Li, B.; Zhou, J.; Xie, E.; et al. Methanol Gas Detection of Electrospun CeO2 Nanofibers by Regulating Ce3+/ Ce4+ Mole Ratio via Pd Doping. Sens. Actuators B Chem. 2020, 307, 127638. [Google Scholar] [CrossRef]
- Mehrabi, P.; Hui, J.; Janfaza, S.; O’Brien, A.; Tasnim, N.; Najjaran, H.; Hoorfar, M. Fabrication of SnO2 Composite Nanofiber-Based Gas Sensor Using the Electrospinning Method for Tetrahydrocannabinol (THC) Detection. Micromachines 2020, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Kishore, K.R.; Teddu, L.B.; Balamurugan, D.; Gopalakrishnan, J.B. Electrospun Co3O4 Nanoparticles and Its Methanol Detection Property. Appl. Nanosci. 2021, 11, 637–655. [Google Scholar] [CrossRef]
- Joke, O.F.; Rotimi, I.A.; Makhatha, M.E.; Olaoye, O.P.; Yetunde, S.A.; Joy, O.O.; Victoria, O.T.; Bayode, A.T.; Ayantunde, A.A. Investigation of the Gas Sensing Potential of Electrospun Expanded Polystyrene/Reduced Graphene Oxide Nanofiber Composites. In Chemical and Materials Sciences—Developments and Innovations; Bhowmik, P.K., Ed.; B P International: Hooghly, West Bengal, India, 2024; Volume 2, pp. 1–17. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Wang, W.; Li, G.; Li, P.; Lian, K.; Zhang, W.; Zhuiykov, S.; Hu, J.; Chen, L. Electrospinning Preparation of Pd@Co3O4-ZnO Composite Nanofibers and Their Highly Enhanced VOC Sensing Properties. Mater. Res. Bull. 2019, 109, 255–264. [Google Scholar] [CrossRef]
- Shi, J.; Xu, C.; Han, Y.; Han, H. Enhanced Anaerobic Degradation of Nitrogen Heterocyclic Compounds with Methanol, Sodium Citrate, Chlorella, Spirulina, and Carboxymethylcellulose as Co-Metabolic Substances. J. Hazard. Mater. 2020, 384, 121496. [Google Scholar] [CrossRef]
- Khot, L.R.; Panigrahi, S.; Sengupta, P. Development and Evaluation of Chemoresistive Polymer Sensors for Low Concentration Detection of Volatile Organic Compounds Related to Food Safety Applications. Sens. Instrumen. Food Qual. 2010, 4, 20–34. [Google Scholar] [CrossRef]
- Jenkins, J.D.; Luke, M.; Thernstrom, S. Getting to Zero Carbon Emissions in the Electric Power Sector. Joule 2018, 2, 2498–2510. [Google Scholar] [CrossRef]
- Sun, X.; Tang, M.; Yu, M.; Fan, Y.; Qin, C.; Cao, J.; Wang, Y. UV-Activated CH4 Gas Sensor Based on Pd@Ni/ZnO Microspheres. Mater. Today Commun. 2024, 40, 109551. [Google Scholar] [CrossRef]
- Lai, T.-Y.; Fang, T.-H.; Hsiao, Y.-J.; Chan, C.-A. Characteristics of Au-Doped SnO2–ZnO Heteronanostructures for Gas Sensing Applications. Vacuum 2019, 166, 155–161. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, S.-X.; Jia, Z.; Zhang, W.; Wang, W.; Zhang, L.-C. Efficient Nanostructured Heterogeneous Catalysts by Electrochemical Etching of Partially Crystallized Fe-Based Metallic Glass Ribbons. J. Mater. Sci. Technol. 2021, 61, 159–168. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, F.; Gong, H.; Cai, C. Functional Three Helix Molecular Beacon Fluorescent “Turn-on” Probe for Simple and Sensitive Simultaneous Detection of Two HIV DNAs. Sens. Actuators B Chem. 2019, 281, 303–310. [Google Scholar] [CrossRef]
- Staerz, A.F.; Seo, H.G.; Tuller, H.L. Surface Electron Modulation of Metal Oxide-based Electrochemical Devices by Surface Additives—Linking Sensors and Fuel Cells. J. Am. Ceram. Soc. 2024, 107, 1959–1973. [Google Scholar] [CrossRef]
- Mokrushin, A.S.; Nagornov, I.A.; Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Arkhipushkin, I.A.; Simonenko, E.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Gas-Sensitive Nanostructured ZnO Films Praseodymium and Europium Doped: Electrical Conductivity, Selectivity, Influence of UV Irradiation and Humidity. Appl. Surf. Sci. 2022, 589, 152974. [Google Scholar] [CrossRef]
- Mo, X.; Zhu, C.; Zhang, Z.; Yan, X.; Han, C.; Li, J.; Attfield, J.P.; Yang, M. Nitrogen-Doped Indium Oxide Electrochemical Sensor for Stable and Selective NO2 Detection. Adv. Mater. 2024, 36, 2409294. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Xie, W.; Chen, Z.; Jiang, Y.; Liu, Y. Metal Ion Chelation-Based Color Generation for Alkaline Phosphatase-Linked High-Performance Visual Immunoassays. Sens. Actuators B Chem. 2018, 273, 35–40. [Google Scholar] [CrossRef]
- Suh, J.M.; Lee, T.H.; Hong, K.; Song, Y.G.; Cho, S.H.; Kang, C.-Y.; Shim, Y.-S.; Lee, D.; Kwon, K.C.; Jang, H.W. Extremely Sensitive and Selective NO2 Detection at Relative Humidity 90% in 2-Dimensional Tin Sulfides/SnO2 Nanorod Heterostructure. Sens. Actuators B Chem. 2022, 369, 132319. [Google Scholar] [CrossRef]
- Bhatia, A.; Na, H.S.; Nandhakumar, P.; Yu, B.; Jon, S.; Chung, J.; Yang, H. Electrochemical Detection of Interleukin-8 in Human Saliva Using a Polyenzyme Label Based on Diaphorase and Neutravidin. Sens. Actuators B Chem. 2021, 326, 128979. [Google Scholar] [CrossRef]
Characteristics | Operating Principle | Major Limitations | Potential Solutions |
---|---|---|---|
Sensitivity |
|
|
|
Selectivity |
|
| |
Response time |
|
| |
Stability |
|
|
|
Materials | ES Parameters | Target Gas | Response Time | Recovery Time | Operating T°C | Selectivity | Detection Range, ppm | Sensitive Concentration, ppm | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Flow Rate, mL/h | Voltage, kv | Needle-to- Collector Distance, cm | |||||||||
SnO2-loaded ZnO | 0.01 | 15 | 20 | H2 | – | – | 300 | H2, CO, NO2 | 0.05–5 | 5 | [150] |
ZnO | – | 22 | 22 | H2 | – | – | 210–330 | H2 | 20–100 | 100 | [160] |
PANI/PEO/ZnO | 1.3 | 25 | 20 | NH3 | 245 | 153 | RT | H2, H2S | 250 | 250 | [176] |
p-NiO-loaded n-ZnO | 0.02 | 15 | 20 | H2 | – | – | 200 | H2, H2S, CO, C6H6 | 0.1–10 | 10 | [177] |
PVA/PEDOT:PSS | 10 m s−1 | 20 | 15 | NH3 | 10 | – | RT | NH3 | 50 | 50 | [178] |
ZnO | 0.56 | 12 | 15 | H2S | 14 | 49 | 180 | H2S, VOCs, NH3 | 50 | 50 | [179] |
PPy-PAN | 0.8 | 10 | 20 | NH3 | 1 | 60 | RT | VOCs | 250–2000 | 2000 | [180] |
NiO/SnO2 | 1 | 12 | 15 | H2 | 12 | 5 | 195 | H2 | 25–100 | 25 | [181] |
CuO-SnO2 | 0.4 | 8 | 12 | H2S | 284 | 539 | 150 | NO, CO, CH4, SO2, C2H5OH | 1–10 | 10 | [182] |
CFs@NiNPs–PtNPs | 1 | 25 | 21 | H2 | 24 | 89 | RT | H2, NH3 | 10,000–40,000 | 1000 | [183] |
SnO2 | – | 17 | – | H2S | 15 | 230 | 350 | H2S, CO, H2, SO2, NH3 | 0.1–1 | 1 | [184] |
Cu/CuO@ZnO | 1.2 | 20 | 15 | CO | – | – | 400 | – | – | 100 | [185] |
Co3O4 | 0.707 | 20 | 10 | CO | 14 | 36 | 100 | CO, NO2, H2, CH4, NH3 | 5–40 | 5 | [186] |
Materials | ES Parameters | Target Gas | Response Time | Recovery Time | Operating T°C | Selectivity | Detection Range, ppm | Sensitive Concentration, ppm | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Flow Rate, mL/h | Voltage, kv | Needle-to- Collector Distance, cm | |||||||||
ZnO/Bi2O3 ZnO/In2O3 | 0.8–1 | 20 | 18 | NO2 | 5–7 | – | 200 | NO2 | 0.5–3 | 0.5 | [194] |
SFRGO | 0.5 | 20 | 15 | NO2 | – | – | RT | NO2, VOCs | 0.01–20 | 20 | [195] |
Au-PANI/ZnO | 0.5 | 16 | 14 | NO2 | – | – | 300 | H2, NO2, CO, NH3 | 10–50 | 50 | [196] |
WO3 | 0.5 | 14.5 | 15 | NO2 | 11 | 26 | 200 | NO2, VOCs | 0.2–50 | 1 | [197] |
PdOx@SnOx | 0.3 | 1.2 | – | NO2 | – | – | 325 | NO2, CO, NH3 | 0.0625–0.25 | 0.25 | [198] |
SnO2/ZnO | – | 20 | 20 | NO2 | 126 | – | RT | NO2, SO2, CO, NH3, VOCs | 0.1–2 | 0.5 | [199] |
PANI/g-C3H8/PVDF | 0.5 | 15 | 17 | NO2 | – | – | RT | NO2, NH3, VOCs | 8–108 | 108 | [200] |
WO3 | 0.06 | 20 | 15 | NO2 | 15 min | 0.8 min | 150 | NO2, H2, CO | 2–25 | 25 | [201] |
rGO-PVDF/WO3 | 0.001 | 23 | 10 | SO2 | 25 | 30 | 200 | SO2, NH3, CO2, VOCs | 5–80 | 80 | [193] |
MoS2/SnO2 | – | 17 | 13 | SO2 | – | – | 150 | SO2, CO, H2, NH3 | 1–10 | 10 | [202] |
Zr-MOF | – | – | – | SO2 | 185 | – | RT | SO2 | 1–150 | 50 | [203] |
Materials | ES Parameters | Target Gas | Response Time | Recovery Time | Operating T°C | Selectivity | Detection Range, ppm | Sensitive Concentration, ppm | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Flow Rate, mL/h | Voltage, kv | Needle-to- Collector Distance, cm | |||||||||
Pt-SnO2 | 0.003 | 15 | 15 | Acetone | 13 | 24 | 150 | VOCs | 0.1–20 | 2 | [213] |
Rh-SnO2 | 0.3 | 13 | 13 | Acetone | 2 | 64 | 200 | VOCs | 90–200 | 50 | [110] |
SnO2/ZnO | – | 20 | 15 | Acetone | 12 s | 27 s | 350 | VOCs | 1–100 | 5 | [214] |
Pt-SnO2 | 0.03 | 15 | 20 | C7H8 | – | – | 300 | C6H6, C7H8, CO | 1–10 | 10 | [215] |
ZnO | – | 18 | 20 | Acetone | 40 | 30 | 260 | VOCs | 50 | [216] | |
Co–CeO2@SnO2 | 0.3 | 16 | 10 | C5H8 | 5 s | 514 s | 350 | VOCs | 0.1–5 | 5 | [217] |
MoO3-WO3 | 1 | 20 | 15 | Acetone | – | – | 375 | VOCs, NH3·H2O | 20–1000 | 100 | [218] |
PANI/P3TI/PMMA | 0.6 | 20 | 10 | n-Butanol | 10 | – | RT | n-Butanol, CB, DMF, n-Propanol, Toluene | 100–2000 | 100 | [219] |
CuO | 0.3 | – | 12 | VOCs | – | – | RT | H2, Ethanol, LPG | 50–350 | 350 | [220] |
Pd-CeO2 | 0.5 | 15 | 15 | Methanol | 1 | 5 | 200 | H2, NH3, CO, VOCs | 5–2000 | 100 | [221] |
Au-SnO2 | 0.008 | 11 | 5 | Tetrahydrocannabinol | – | – | 350 | Tetrahydrocannabinol, Methanol | 200–1000 | 1000 | [222] |
Co3O4 | 0.016 | 7 | 7 | Methanol | 15 | 26 | 350 | VOCs | 21–2094 | 4–2094 | [223] |
EPS/rGO | 1 | 15 | 20 | Ethanol | 110 | 20 | RT | Ethanol, acetone, toluene | 10–80 | 10 | [224] |
Pd@Co3O4-ZnO | – | 10 | 10 | Ethanol | 6 | 12 | 240 | Ethanol, acetone, isopropanol | 1–2000 | 200 | [225] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imash, A.; Smagulova, G.; Kaidar, B.; Keneshbekova, A.; Kazhdanbekov, R.; Velasco, L.F.; Mansurov, Z. Chemoresistive Gas Sensors Based on Electrospun 1D Nanostructures: Synergizing Morphology and Performance Optimization. Sensors 2024, 24, 6797. https://doi.org/10.3390/s24216797
Imash A, Smagulova G, Kaidar B, Keneshbekova A, Kazhdanbekov R, Velasco LF, Mansurov Z. Chemoresistive Gas Sensors Based on Electrospun 1D Nanostructures: Synergizing Morphology and Performance Optimization. Sensors. 2024; 24(21):6797. https://doi.org/10.3390/s24216797
Chicago/Turabian StyleImash, Aigerim, Gaukhar Smagulova, Bayan Kaidar, Aruzhan Keneshbekova, Ramazan Kazhdanbekov, Leticia Fernandez Velasco, and Zulkhair Mansurov. 2024. "Chemoresistive Gas Sensors Based on Electrospun 1D Nanostructures: Synergizing Morphology and Performance Optimization" Sensors 24, no. 21: 6797. https://doi.org/10.3390/s24216797
APA StyleImash, A., Smagulova, G., Kaidar, B., Keneshbekova, A., Kazhdanbekov, R., Velasco, L. F., & Mansurov, Z. (2024). Chemoresistive Gas Sensors Based on Electrospun 1D Nanostructures: Synergizing Morphology and Performance Optimization. Sensors, 24(21), 6797. https://doi.org/10.3390/s24216797