A Contactless Low-Carbon Steel Magnetostrictive Torquemeter: Numerical Analysis and Experimental Validation
Abstract
:1. Introduction
2. The Coupled Magnetoelastic Model
3. Preliminary Analysis under No-Load Condition
3.1. Sensing System Description
3.2. Sensitivity Analysis
4. Numerical Modeling of the Torquemeter
5. Experimental Validation
5.1. Experimental Setup
- One or more equal water tanks are applied to both ends;
- The water tanks are applied only at one end of the bar.
- Oscilloscope Yokogawa DL850E;
- Waveform signal generator Tektronix AFG 1022;
- Power amplifier Toellner TOE 7610;
- Two load cells Burster 8431-6002 (2 kN each cell) connected to a PC through a data acquisition board;
- customized PCB with 1 precision resistor to measure excitation current.
5.2. Pure Torque Tests
5.3. Non-Pure Torque Tests
5.4. Loading and Unloading Measurements
5.5. Experimental Sensitivity Analysis
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Svinin, M.M.; Uchiyama, M. Optimal geometric structures of force/torque sensors. Int. J. Robot. Res. 1995, 14, 560–573. [Google Scholar] [CrossRef]
- Raianov, T.A. Overview of new types of torque force sensors. Transp. Syst. Technol. 2020, 6, 5–14. [Google Scholar] [CrossRef]
- Simonelli, C.; Musolino, A.; Rizzo, R.; Jones, L.A. Development of an Innovative Magnetorheological Fluids-based Haptic Device Excited by Permanent Magnets. In Proceedings of the 2021 IEEE World Haptics Conference (WHC), Montreal, QC, Canada, 6–9 July 2021; pp. 61–66. [Google Scholar] [CrossRef]
- Simonelli, C.; Sani, L.; Gori, N.; Fernández-Muñoz, M.; Musolino, A.; Rizzo, R. Experimental Validation of a Permanent Magnets Magnetorheological Device under a Standardized Worldwide Harmonized Light-Duty Test Cycle. Actuators 2023, 12, 375. [Google Scholar] [CrossRef]
- Mudivarthi, C.; Datta, S.; Atulasimha, J.; Flatau, A.B. A bidirectionally coupled magnetoelastic model and its validation using a Galfenol unimorph sensor. Smart Mater. Struct. 2008, 17, 035005. [Google Scholar] [CrossRef]
- Parsons, M.J.; Datta, S.; Mudivarthi, C.; Na, S.M.; Flatau, A. Torque sensing using rolled galfenol patches. In Proceedings of the Smart Sensor Phenomena, Technology, Networks, and Systems 2008, San Diego, CA, USA, 9–13 March 2008; Ecke, W., Peters, K.J., Meyendorf, N.G., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2008; Volume 6933, p. 693314. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Gao, Y.; Kameari, A.; Dozono, H.; Muramatsu, K. Coupled Magneto-Mechanical Analysis Considering Permeability Variation by Stress Due to Both Magnetostriction and Electromagnetism. IEEE Trans. Magn. 2013, 49, 1621–1624. [Google Scholar] [CrossRef]
- Kai, Y.; Tsuchida, Y.; Todaka, T.; Enokizono, M. Influence of Biaxial Stress on Vector Magnetic Properties and 2-D Magnetostriction of a Nonoriented Electrical Steel Sheet Under Alternating Magnetic Flux Conditions. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Apicella, V.; Clemente, C.S.; Davino, D.; Visone, C. Experimental evaluation of external and built-in stress in Galfenol rods. Phys. B Condens. Matter 2018, 549, 53–57. [Google Scholar] [CrossRef]
- Garshelis, I.J.; Aleksonis, J.A.; Jones, C.A.; Rotay, R.M. Development of a magnetoelastic torque transducer for automotive transmission applications. SAE Trans. 1997, 106, 1107–1116. [Google Scholar]
- Garshelis, I.J.; Kari, R.J.; Tollens, S.P. A rate of change of torque sensor. IEEE Trans. Magn. 2007, 43, 2388–2390. [Google Scholar] [CrossRef]
- Daniel, L. An Analytical Model for the Effect of Multiaxial Stress on the Magnetic Susceptibility of Ferromagnetic Materials. IEEE Trans. Magn. 2013, 49, 2037–2040. [Google Scholar] [CrossRef]
- Sipilä, P.T.; Lynass, M.R.; Samper, V.D.; Ronghui, Z.H.O.U. Non-Contact Magnetostrictive Sensors and Methods of Operation of Such Sensors. U.S. Patent No. 11,486,773, 1 November 2022. [Google Scholar]
- Sipila, P.T.; Boeld, C. SMD-Coil-Based Torque-Sensor for Tangential Field Measurement. U.S. Patent No. 10,871,409, 22 December 2020. [Google Scholar]
- Lu, D.T.; Sipila, P.T.; Uber, C.J. System and Method for Torque Transducer and Temperature Sensor. U.S. Patent No. 10,024,742, 17 July 2018. [Google Scholar]
- Ronghui, Z.H.O.U.; Sipila, P.T.; Lu, D.T.; Fu, X. Calibration Apparatus, Calibration Method, and Measuring System. U.S. Patent No. 10,809,315, 20 October 2020. [Google Scholar]
- Atulasimha, J.; Flatau, A.B. A review of magnetostrictive iron–gallium alloys. Smart Mater. Struct. 2011, 20, 043001. [Google Scholar] [CrossRef]
- Pérez-Aparicio, J.L.; Sosa, H. A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials. Smart Mater. Struct. 2004, 13, 493–502. [Google Scholar] [CrossRef]
- Benatar, J.G. FEM Implementations of Magnetostrictive-Based Applications; University of Maryland: College Park, MD, USA, 2005. [Google Scholar]
- Aydin, U.; Rasilo, P.; Martin, F.; Singh, D.; Daniel, L.; Belahcen, A.; Rekik, M.; Hubert, O.; Kouhia, R.; Arkkio, A. Magneto-mechanical modeling of electrical steel sheets. J. Magn. Magn. Mater. 2017, 439, 82–90. [Google Scholar] [CrossRef]
- Daniel, L. An analytical model for the magnetostriction strain of ferromagnetic materials subjected to multiaxial stress. Eur. Phys. J. Appl. Phys. 2018, 83, 30904. [Google Scholar] [CrossRef]
- Moses, A. Effects of applied stress on the magnetic properties of high permeability silicon-iron. IEEE Trans. Magn. 1979, 15, 1575–1579. [Google Scholar] [CrossRef]
- Apicella, V.; Clemente, C.S.; Davino, D.; Leone, D.; Visone, C. Analysis and Modeling of a passive force sensor based on Villari effect. Math. Comput. Simul. 2021, 183, 234–243. [Google Scholar] [CrossRef]
- Dapino, M.J.; Smith, R.C.; Calkins, F.T.; Flatau, A.B. A Coupled Magnetomechanical Model for Magnetostrictive Transducers and its Application to Villari-Effect Sensors. J. Intell. Mater. Syst. Struct. 2002, 13, 737–747. [Google Scholar] [CrossRef]
- Sipila, P.T.; Clark, S.; Hatch, C.T.; Campbell, L.A. Proximity and Strain Sensing. U.S. Patent No. 9,146,163, 29 September 2015. [Google Scholar]
- Lu, D.T.; Sipilä, P.T.; Turnbeaugh, L.R. Systems and Methods for Determining Mechanical Stress of Machinery. U.S. Patent No. 10,113,921, 30 October 2018. [Google Scholar]
- Campbell, L.A.; Sipilä, P.T. Non-Contact Magnetostrictive Sensing Systems and Methods. U.S. Patent No. 9,212,958, 15 December 2015. [Google Scholar]
- Calkins, F.T.; Flatau, A.B.; Dapino, M.J. Overview of Magnetostrictive Sensor Technology. J. Intell. Mater. Syst. Struct. 2007, 18, 1057–1066. [Google Scholar] [CrossRef]
- Baudendistel, T.A.; Turner, M.L. A Novel Inverse-Magnetostrictive Force Sensor. IEEE Sens. J. 2007, 7, 245–250. [Google Scholar] [CrossRef]
- Aydin, U.; Rasilo, P.; Singh, D.; Lehikoinen, A.; Belahcen, A.; Arkkio, A. Coupled Magneto-Mechanical Analysis of Iron Sheets Under Biaxial Stress. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Apicella, V.; Clemente, C.S.; Davino, D.; Leone, D.; Visone, C. Review of Modeling and Control of Magnetostrictive Actuators. Actuators 2019, 8, 45. [Google Scholar] [CrossRef]
- Ansys Maxwell. Available online: https://www.ansys.com/ (accessed on 15 July 2024).
- Consolo, V.; Musolino, A.; Rizzo, R.; Sani, L.; Simonelli, C. Use of a Tubular Linear Induction Motor in a HVDC Breaker. In Proceedings of the 2021 13th International Symposium on Linear Drives for Industry Applications (LDIA), Wuhan, China, 1–3 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Gori, N.; Simonelli, C.; Musolino, A.; Rizzo, R.; Díez Jiménez, E.; Sani, L. Design and Optimization of a Permanent Magnet-Based Spring–Damper System. Actuators 2023, 12, 291. [Google Scholar] [CrossRef]
- Sipila, P.T.; Campbell, L.A.; Lu, D.T. System and Method of Magnetic Shielding for Sensors. U.S. Patent No. 10,444,086, 15 October 2019. [Google Scholar]
- COMSOL Multiphysics. Available online: https://www.comsol.com/ (accessed on 15 July 2024).
- Mouas, L.; Mohellebi, H.; Ould Ouali, S.H. Experimental study and numerical simulation of magnetization involved in S235 sheets used in the construction of ship hulls. Results Phys. 2019, 14, 102430. [Google Scholar] [CrossRef]
- Yaghi, A.; Hyde, T.; Becker, A.; Williams, J.; Sun, W. Residual stress simulation in welded sections of P91 pipes. J. Mater. Process. Technol. 2005, 167, 480–487. [Google Scholar] [CrossRef]
- Atulasimha, J.; Flatau, A.B. Experimental Actuation and Sensing Behavior of Single-crystal Iron-Gallium Alloys. J. Intell. Mater. Syst. Struct. 2008, 19, 1371–1381. [Google Scholar] [CrossRef]
- Restorff, J.; Wun-Fogle, M.; Clark, A. Measurement of d15 in Fe100-xGax (x = 12.5, 15, 18.4, 22), Fe50Co50, and Fe81Al19 highly textured polycrystalline rods. J. Appl. Phys. 2008, 103, 07B305. [Google Scholar] [CrossRef]
- Mailhé, B.J.; Bernard, L.D.; Daniel, L.; Sadowski, N.; Batistela, N.J. Modified-SST for Uniaxial Characterization of Electrical Steel Sheets Under Controlled Induced Voltage and Constant Stress. IEEE Trans. Instrum. Meas. 2020, 69, 9756–9765. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clemente, C.S.; Simonelli, C.; Gori, N.; Musolino, A.; Rizzo, R.; Raugi, M.; Torri, A.; Sani, L. A Contactless Low-Carbon Steel Magnetostrictive Torquemeter: Numerical Analysis and Experimental Validation. Sensors 2024, 24, 6949. https://doi.org/10.3390/s24216949
Clemente CS, Simonelli C, Gori N, Musolino A, Rizzo R, Raugi M, Torri A, Sani L. A Contactless Low-Carbon Steel Magnetostrictive Torquemeter: Numerical Analysis and Experimental Validation. Sensors. 2024; 24(21):6949. https://doi.org/10.3390/s24216949
Chicago/Turabian StyleClemente, Carmine Stefano, Claudia Simonelli, Nicolò Gori, Antonino Musolino, Rocco Rizzo, Marco Raugi, Alessandra Torri, and Luca Sani. 2024. "A Contactless Low-Carbon Steel Magnetostrictive Torquemeter: Numerical Analysis and Experimental Validation" Sensors 24, no. 21: 6949. https://doi.org/10.3390/s24216949
APA StyleClemente, C. S., Simonelli, C., Gori, N., Musolino, A., Rizzo, R., Raugi, M., Torri, A., & Sani, L. (2024). A Contactless Low-Carbon Steel Magnetostrictive Torquemeter: Numerical Analysis and Experimental Validation. Sensors, 24(21), 6949. https://doi.org/10.3390/s24216949