High Consistency Ramp Design Method for Low Noise Column Level Readout Chain
Abstract
:1. Introduction
2. Analysis of Influencing Factors of Ramp Inconsistency
2.1. Analysis of Influencing Factors of Ramp Inconsistency
2.1.1. Influence of Wire Parasitism on Global Ramp Inconsistency
2.1.2. Influence of Comparator Input MOS Capacitor on Global Ramp Inconsistency
2.2. Analysis on Influencing Factors of Multiple Ramp Inconsistency in Block Type
3. Adaptive Switched Capacitor Ramp Generator Based on Average Voltage and Voltage Controlled Oscillator
3.1. Design of Average Voltage for Distributed Multi-Ramp Circuits
3.2. High Consistency Adaptive Ramp Circuit for Large Area Array CMOS Image Sensors
4. Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, X.; Gao, C.; Su, K.; Zhou, Z.; Ma, T.; Liu, X.; Li, Q.; Wang, K. CMOS-Compatible Dual-Column Linear Image Sensor with a Gain of 105 and Dynamic Range of 120 dB. J. Abbr. 2024, 24, 7681–7689. [Google Scholar]
- Kim, H.J. 11-bit Column-Parallel Single-Slope ADC With First-Step Half-Reference Ramping Scheme for High-Speed CMOS Image Sensors. IEEE J. Solid-State Circuits 2021, 56, 2132–2141. [Google Scholar] [CrossRef]
- Zhang, Q.; Ning, N.; Zhang, Z.; Li, J.; Wu, K.; Yu, Q. A 12-Bit Two-Step Single-Slope ADC With a Constant Input-Common-Mode Level Resistor Ramp Generator. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 30, 644–655. [Google Scholar] [CrossRef]
- Li, H.; Liu, D.; Liang, Y.; Hu, A.; Nie, Z.; Zhang, C.; Li, K.; Niu, G.; Gao, L.; Tang, J. A 12-bit single slope ADC with multi-step structure and ramp calibration technique for image sensors. Microelectron. J. 2023, 139, 105919. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Y.; Xu, R.; Yu, N. High-speed fully differential two-step ADC design method for CMOS image sensor. J. Electron. Inf. Technol. 2023, 45, 595. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, N.; Wu, L. A self-compensated approach for ramp kickback noise in CMOS image sensor column parallel single slope ADC. Microelectron. J. 2022, 120, 105364. [Google Scholar] [CrossRef]
- Gu, P.; Gao, J.; Gao, Z.; Nie, K.; Xu, J. No calibration required two-step double-data-rate counter for low-power SS ADC in CMOS image sensors. Microelectron. J. 2023, 136, 1057984. [Google Scholar] [CrossRef]
- Li, C.; Han, B.; He, J.; Guo, Z.; Wu, L. A high-precision anti radiation adaptive slope generation circuit design for CMOS image sensors. J. Wuhan Univ. Sci. Ed. 2020, 66, 304–314. [Google Scholar]
- Li, M.; Long, S.; Wu, C.; Zhang, Z. A Slope Generator for Pixel Level ADC in CMOS Image Sensors. Inf. Technol. Informatiz. 2021, 11, 182–184. [Google Scholar]
- Bogaerts, J.; Lafaille, R.; Borremans, M.; Guo, J.; Ceulemans, B.; Meynants, G.; Sarhangnejad, N.; Arsinte, G.; Statescu, V.; van der Groen, S. 6.3 105 × 65 mm2 391 Mpixel CMOS image sensor with >78 dB dynamic range for airborne mapping applications. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; pp. 114–115. [Google Scholar]
- Wang, G.; Chen, Q.; Xu, J.; Nie, K. 2 μs row time 12-bit column-parallel single slope ADC for high-speed CMOS image sensor. Microelectron. J. 2023, 135, 105768. [Google Scholar] [CrossRef]
- Kodama, K.; Sato, Y.; Yorikado, Y.; Berner, R.; Mizoguchi, K.; Miyazaki, T.; Tsukamoto, M.; Matoba, Y.; Shinozaki, H.; Niwa, A.; et al. 1.22 μm 35.6 Mpixel RGB hybrid event-based vision sensor with 4.88 μm-pitch event pixels and up to 10K event frame rate by adaptive control on event sparsity. In Proceedings of the 2023 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 19–23 February 2023; pp. 92–94. [Google Scholar]
- Arai, T.; Yasue, T.; Kitamura, K.; Shimamoto, H.; Kosugi, T.; Jun, S.W.; Aoyama, S.; Hsu, M.C.; Yamashita, Y.; Sumi, H.; et al. A 1.1-μm 33-Mpixel 240- fps 3-D-Stacked CMOS Image Sensor with Three-Stage Cyclic-Cyclic-SAR Analog-to-Digital Converters. IEEE Trans. Electron. Devices 2017, 64, 4992–5000. [Google Scholar] [CrossRef]
- Tham, K.V.; Ulaganathan, C.; Nambiar, N.; Greenwell, R.L.; Britton, C.L.; Ericson, M.N.; Holleman, J.; Blalock, B.J. PVT Compensation for Wilkinson Single-Slope Measurement Systems. IEEE Trans. Nucl. Sci. 2012, 59, 2444–2450. [Google Scholar] [CrossRef]
- Khan, S.; Azeemuddin, S.; Sohel, M.A. High-speed CMOS ramp generator using proteretic comparator. In Proceedings of the 2021 IEEE Asia Pacific Conference on Circuit and Systems (APCCAS), Batu Ferringhi Beach, Penang, Malaysia, 22–26 November 2021; pp. 5–8. [Google Scholar]
- Sordo-Ibáñez, S.; Piñero-García, B.; Espejo-Meana, S.; Ragel-Morales, A.; Ceballos-Cáceres, J.; Munoz-Diaz, M.; Carranza-González, L.; Arias-Drake, A.; Mora-Gutierrez, J.M.; Lagos-Florido, M.A. An adaptive approach to on-chip CMOS ramp generation for high resolution single-slope ADCs. In Proceedings of the 2013 European Conference on Circuit Theory and Design (ECCTD), Dresden, Germany, 8–12 September 2013; pp. 1–4. [Google Scholar]
- Padash, M.; Yargholi, M.; Baghini, M.S. An Opamp-Less PVT Compensation Structure for Ramp Generator Circuit. J. Circuits Syst. Comput. 2021, 30, 2150032. [Google Scholar] [CrossRef]
- Zhang, N.; Yao, S.; Zhang, Y. An adaptive ramp generator for ADC built-in self-test. Trans. Tianjin Univ. 2008, 14, 178–181. [Google Scholar] [CrossRef]
- Li, C.; Han, B.; He, J.; Guo, Z.; Wu, L. A Highly Linear CMOS Image Sensor Design Based on an Adaptive Nonlinear Ramp Generator and Fully Differential Pipeline Sampling Quantization with a Double Auto-Zeroing Technique. Sensors 2020, 20, 1046. [Google Scholar] [CrossRef]
- Lim, W.; Hwang, J.; Kim, D.; Jeon, S.; Son, S.; Song, M. A low noise CMOS image sensor with a 14-bit two-step single-slope ADC and a column self-calibration technique. In Proceedings of the 2014 21st IEEE International Conference on Electronics, Circuits and Systems(ICECS), Marseille, France, 7–10 December 2014; pp. 48–51. [Google Scholar]
- Cheng, X.; Zeng, X.; Feng, Q. Analysis and improvement of ramp gain error in single-ramp single-slope ADCs for CMOS image sensors. Microelectron. J. 2016, 58, 23–31. [Google Scholar] [CrossRef]
- Nie, K.; Zha, W.; Shi, X.; Li, J.; Xu, J.; Ma, J. A Single Slope ADC With Row-Wise Noise Reduction Technique for CMOS Image Sensor. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2873–2882. [Google Scholar] [CrossRef]
- Hsu, P.H.; Lee, Y.R.; Chen, C.H.; Hung, C.C. A Low-Noise Area-Efficient Column-Parallel ADC With an Input Triplet for a 120-dB High Dynamic Range CMOS Image Sensor. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2023, 31, 1939–1949. [Google Scholar] [CrossRef]
- Zhang, Q.; Ning, N.; Li, J.; Yu, Q.; Wu, K.; Zhang, Z. A 12-Bit Column-Parallel Two-Step Single-Slope ADC with a Foreground Calibration for CMOS Image Sensors. IEEE Access 2020, 8, 172467–172480. [Google Scholar] [CrossRef]
- Morishita, F.; Saito, W.; Iizuka, Y.; Kato, N.; Otake, R.; Ito, M. A 30.2-μVrms Horizontal Streak Noise 8.3-Mpixel 60-Frames/s CMOS Image Sensor With Skew-Relaxation ADC and On-Chip Testable Ramp Generator for Surveillance Camera. IEEE J. Solid-State Circuits 2022, 57, 3103–3113. [Google Scholar] [CrossRef]
- Guy, M.; Wolfs, B.; Bogaerts, J.; Li, P.; Li, Z.; Li, Y.; Creten, Y.; Ruythooren, K.; Francis, P.; Lafaille, R.; et al. A 47 Mpixel 36.4 × 27.6 mm2 30 fps global shutter image sensor. In Proceedings of the International Image Sensor Workshop (IISW), Hiroshima, Japan, 30 May–2 June 2017; pp. 410–413. [Google Scholar]
- Park, W.; Piao, C.; Lee, H.; Choi, J. CMOS Image Sensor With Two-Step Single-Slope ADCs and a Detachable Super Capacitive DAC. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 849–853. [Google Scholar] [CrossRef]
- Lin, C.W.; Lin, S.F.; Chen, Y.W. Linearity enhancement technique of ramp generator for ADC testing. IEICE Electron. Express 2013, 10, 20130179. [Google Scholar] [CrossRef]
- Totsuka, H.; Tsuboi, T.; Muto, T.; Yoshida, D.; Matsuno, Y.; Ohmura, M.; Takahashi, H.; Sakurai, K.; Ichikawa, T.; Yuzurihara, H.; et al. 6.4 An APS-H-Size 250 Mpixel CMOS image sensor using column single-slope ADCs with dual-gain amplifiers. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; pp. 116–117. [Google Scholar]
- Jun, J.; Seo, H.; Kwon, H.; Lee, J.; Yoon, B.; Lee, Y.; Kim, Y.; Joo, W.; Lee, J.; Koh, K. A 0.7 μm-Pitch 108 Mpixel Nonacell-Based CMOS Image Sensor with Decision-Feedback Technique. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 27 May–1 June 2022; pp. 283–287. [Google Scholar]
- Cho, J.; Choo, H.; Lee, S.; Yoon, S.; Kam, G.; Kim, S. Design of a CMOS Image Sensor with Bi-Directional Gamma-Corrected Digital-Correlated Double Sampling. Sensors 2023, 23, 1031. [Google Scholar] [CrossRef]
Performance | [10] | [12] | [29] | [30] | This Work |
---|---|---|---|---|---|
Process | 65 nm 1P4M | 90 nm CMOS | 130 nm 1P4M | 65 nm CMOS | 55 nm 1P4M |
Pixel resolution | 26,456 (H) × 15,072(V) | 35.6 Mpix | 19,712(H) × 12,752(V) | 12,000(H) × 9000(V) | 8192(H) × 8192(V) |
Pixel size | 3.9 × 3.9 | 1.22 × 1.22 | 1.5 × 1.5 | 0.7 × 0.7 | 10 × 10 |
Chip area | 101.84(H) × 58.50(V) | 11.4(H) × 10.5(V) | 32.84(H) × 25.84(V) | — | 88(H) × 89(V) |
ADC | 14bits-SS ADC | 10-bits-SS ADC | 12bits-SS ADC | 10bits-SS ADC | 12bits-SS ADC |
Frame rate | 1 fps | 59 fps | 5 fps | 10 fps | 10 fps (50 fps@HMD) |
Temporal noise | 3.7 | 1.57 | 7.1 | 1.4 s | 5.4 |
Full well capacity | 31.5 k | 7.773 k | 7.55 k | — | 400 k |
CFPN | 0.028% (8.8 ) | — | — | 0.00467% | 0.000037% (0.15 ) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Li, L.; Xu, R.; Liu, S.; Yu, N.; Yang, Y.; Wu, L. High Consistency Ramp Design Method for Low Noise Column Level Readout Chain. Sensors 2024, 24, 7057. https://doi.org/10.3390/s24217057
Guo Z, Li L, Xu R, Liu S, Yu N, Yang Y, Wu L. High Consistency Ramp Design Method for Low Noise Column Level Readout Chain. Sensors. 2024; 24(21):7057. https://doi.org/10.3390/s24217057
Chicago/Turabian StyleGuo, Zhongjie, Lin Li, Ruiming Xu, Suiyang Liu, Ningmei Yu, Yuan Yang, and Longsheng Wu. 2024. "High Consistency Ramp Design Method for Low Noise Column Level Readout Chain" Sensors 24, no. 21: 7057. https://doi.org/10.3390/s24217057
APA StyleGuo, Z., Li, L., Xu, R., Liu, S., Yu, N., Yang, Y., & Wu, L. (2024). High Consistency Ramp Design Method for Low Noise Column Level Readout Chain. Sensors, 24(21), 7057. https://doi.org/10.3390/s24217057