Effects of Kitchen Cooking Height on Upper Limb Muscle Activation, Posture, and Perceived Discomfort of Chinese Older and Young Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Measurements
2.2.1. sEMG
2.2.2. Motion Capture
2.2.3. Borg CR10 Scale
2.3. Experimental Procedures
2.4. Statistical Analysis
3. Results
3.1. Muscle Activation Analysis
3.1.1. Muscle Contribution Rate
3.1.2. Muscle Activation
3.2. Posture Analysis
3.3. RPD Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Head and trunk flexion angle | |||
a. Head Flexion | b. Neck Flexion | c. Back Flexion | |
Vertical Angle between C1 and Head. | Vertical Angle between T1 and C7. | Vertical Angle between T9 and T8. | |
d. Low Back Flexion | e. Hip Flexion | ||
Vertical Angle between L1 and T12. | Vertical Angle between L5 and S1. | ||
Right arm joint angle | |||
f1. Right Shoulder Flexion | f2. Right Shoulder Abduction | f3. Right Shoulder Internal Rotation | |
The Angle of forward rotation of the AP axis of the shoulder joint | The Angle of outward rotation of the ML axis of the shoulder joint | The Angle of forward rotation of the shoulder joint about the vertical axis. | |
g1. Right Elbow Flexion | g2. Right Elbow Abduction | g3. Right Elbow Internal Rotation | |
The Angle of forward rotation of the AP axis of the elbow joint | The Angle of forward rotation of the AP axis of the elbow joint | The Angle of forward rotation of the elbow joint about the vertical axis. | |
h1. Right Wrist Flexion | h2. Right Wrist Abduction | h3. Right Wrist Internal Rotation | |
The Angle of forward rotation of the AP axis of the wrist joint | The Angle of axial rotation of wrist joint ML to ulnar side | The Angle of forward rotation of the wrist joint about the vertical axis. |
Appendix B
Joint | H1 | H2 | H3 | H4 | H5 | F | p | |
---|---|---|---|---|---|---|---|---|
a. Head Flexion | OG | 1.19 ± 3.40 e | 2.15 ± 3.39 e | 2.78 ± 3.53 e | 3.13 ± 3.56 | 4.17 ± 3.73 abc | 7.060 | <0.001 * |
YG | 2.34 ± 5.39 bcde | 3.87 ± 5.75 ae | 4.75 ± 6.61 ae | 5.43 ± 6.08 a | 6.51 ± 6.02 abc | 13.102 | <0.001 * | |
O-Y p | 0.490 | 0.325 | 0.317 | 0.216 | 0.211 | |||
c. Back Flexion | OG | 6.93 ± 0.62 e | 6.95 ± 0.59 e | 7.07 ± 0.65 e | 7.18 ± 0.61 | 7.36 ± 0.65 abc | 2.812 | 0.047 * |
YG | 6.35 ± 0.39 e | 6.47 ± 0.63 | 6.58 ± 0.61 | 6.62 ± 0.55 e | 6.84 ± 0.72 ad | 3.532 | 0.020 * | |
O-Y p | 0.005 * | 0.041 * | 0.042 * | 0.013 * | 0.047 * | |||
d. Low Back Flexion | OG | 1.45 ± 0.82 e | 1.49 ± 0.79 e | 1.64 ± 0.87 e | 1.80 ± 0.81 | 2.03 ± 0.87 abc | 2.811 | 0.047 * |
YG | 0.69 ± 0.52 e | 0.85 ± 0.84 | 0.99 ± 0.82 | 1.04 ± 0.74 e | 1.33 ± 0.96 ad | 3.535 | 0.020 * | |
O-Y p | 0.005 * | 0.041 * | 0.042 * | 0.013 * | 0.047 * | |||
e. Hip Flexion | OG | 3.28 ± 1.85 e | 2.42 ± 1.77 e | 3.71 ± 1.95 e | 4.05 ± 1.82 | 4.57 ± 1.97 abc | 2.810 | 0.047 * |
YG | 1.56 ± 1.17 e | 1.93 ± 1.89 | 2.23 ± 1.84 | 2.36 ± 1.67 e | 3.01 ± 2.17 ad | 3.529 | 0.020 * | |
O-Y p | 0.005 * | 0.041 * | 0.042 * | 0.013 * | 0.048 * | |||
f1. Right Shoulder Flexion | OG | 48.19 ± 9.89 bcde | 43.70 ± 9.64 ade | 39.01 ± 9.70 ae | 34.58 ± 8.76 ab | 32.37 ± 8.12 abc | 15.010 | <0.001 * |
YG | 42.76 ± 12.97 bcde | 37.44 ± 13.32 ade | 32.85 ± 12.34 ae | 28.43 ± 12.38 ab | 26.09 ± 11.44 abc | 16.565 | <0.001 * | |
O-Y p | 0.208 | 0.151 | 0.140 | 0.128 | 0.094 | |||
f3. Right Shoulder Internal Rotation | OG | 30.57 ± 14.17 bcde | 24.30 ± 15.72 ade | 20.33 ± 16.14 ade | 13.39 ± 14.67 abc | 11.09 ± 15.26 abc | 8.618 | <0.001 * |
YG | 11.72 ± 13.71 e | 10.40 ± 13.88 e | 6.94 ± 10.95 | 3.41 ± 12.27 | 1.10 ± 13.88 ab | 2.838 | 0.045 * | |
O-Y p | <0.001 * | 0.016 * | 0.013 * | 0.053 | 0.071 | |||
g1. Right Elbow Flexion | OG | 70.89 ± 12.02 cde | 67.10 ± 12.89 de | 62.85 ± 11.83 ade | 57.67 ± 9.72 abce | 53.47 ± 9.13 abcd | 9.831 | <0.001 * |
YG | 77.66 ± 16.72 bcde | 70.49 ± 14.22 ade | 68.50 ± 14.09 ade | 62.76 ± 14.49 abce | 55.89 ± 12.98 abcd | 17.968 | <0.001 * | |
O-Y p | 0.213 | 0.500 | 0.245 | 0.269 | 0.559 | |||
g2. Right Elbow Abduction | OG | 31.19 ± 8.93 | 32.22 ± 9.24 | 32.46 ± 8.22 | 32.03 ± 7.30 | 29.56 ± 7.54 | 2.095 | 0.112 |
YG | 44.38 ± 9.86 | 43.33 ± 10.17 | 43.84 ± 11.53 e | 42.21 ± 10.88 e | 39.24 ± 10.39 cd | 3.812 | 0.015 * | |
O-Y p | <0.001 * | 0.004 * | 0.004 * | 0.005 * | 0.007 * | |||
h1. Right Wrist Flexion | OG | 1.69 ± 4.94 cde | 3.54 ± 6.07 ce | 5.61 ± 6.48 ab | 5.60 ± 7.31 a | 7.65 ± 6.33 ab | 12.680 | <0.001 * |
YG | 3.97 ± 12.43 bcde | 6.96 ± 12.19 acde | 9.10 ± 13.55 abde | 12.24 ± 12.61 abc | 12.84 ± 11.93 abc | 24.449 | <0.001 * | |
O-Y p | 0.514 | 0.338 | 0.376 | 0.089 | 0.148 | |||
h3. Right Wrist Internal Rotation | OG | 11.24 ± 11.92 | 11.84 ± 12.08 | 11.96 ± 12.76 de | 9.30 ± 12.30 c | 8.92 ± 13.45 c | 4.011 | 0.012 * |
YG | 11.54 ± 11.87 | 11.13 ± 12.81 | 11.24 ± 12.42 | 11.57 ± 10.63 | 10.05 ± 11.40 | 0.912 | 0.472 | |
O-Y p | 0.945 | 0.877 | 0.876 | 0.592 | 0.806 |
References
- Chun, M.Y.; Cho, B.-J.; Yoo, S.H.; Oh, B.; Kang, J.-S.; Yeon, C. Association between sleep duration and musculoskeletal pain The Korea National Health and Nutrition Examination Survey 2010–2015. Medicine 2018, 97, e13656. [Google Scholar] [CrossRef] [PubMed]
- Kinge, J.M.; Knudsen, A.K.; Skirbekk, V.; Vollset, S.E. Musculoskeletal disorders in Norway: Prevalence of chronicity and use of primary and specialist health care services. Bmc Musculoskelet. Disord. 2015, 16, 75. [Google Scholar] [CrossRef] [PubMed]
- Kenny, G.P.; Yardley, J.E.; Martineau, L.; Jay, O. Physical work capacity in older adults: Implications for the aging worker. Am. J. Ind. Med. 2008, 51, 610–625. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, S.-J.; Kim, S.-K.; Giddings, V.L.; Robinson, S.R. Home environmental barriers for low-income elderly renters. J. Archit. Plan. Res. 2019, 36, 15–34. [Google Scholar]
- Fu, Y.Y.; Chui, E.W.T. Determinants of Patterns of Need for Home and Community-Based Care Services Among Community-Dwelling Older People in Urban China: The Role of Living Arrangement and Filial Piety. J. Appl. Gerontol. 2020, 39, 712–721. [Google Scholar] [CrossRef]
- Maguire, M.; Peace, S.; Nicolle, C.; Marshall, R.; Sims, R.; Percival, J.; Lawton, C. Kitchen Living in Later Life: Exploring Ergonomic Problems, Coping Strategies and Design Solutions. Int. J. Des. 2014, 8, 73–91. [Google Scholar]
- Varnai, A.; Nienhaus, A.; Groneberg, D.A.; Ohlendorf, D. Posture of employees exemplified by a hospital canteen kitchen. An objective task analysis. Man. Med. 2019, 57, 144–151. [Google Scholar] [CrossRef]
- Carrasquillo, V.; Armstrong, T.J.; Hu, S.J. Field Observation of Hospital Food Service Workers and the Relationship between Customer Demand and Biomechanical Stress: A Case Study. Iise Trans. Occup. Ergon. Hum. Factors 2022, 10, 47–58. [Google Scholar] [CrossRef]
- Subramaniam, S.; Murugesan, S. Investigation of work-related musculoskeletal disorders among male kitchen workers in South India. Int. J. Occup. Saf. Ergon. 2015, 21, 524–531. [Google Scholar] [CrossRef]
- Marsot, J.; Claudon, L.; Jacqmin, M. Assessment of knife sharpness by means of a cutting force measuring system. Appl. Ergon. 2007, 38, 83–89. [Google Scholar] [CrossRef]
- Tirloni, A.S.; dos Reis, D.C.; Tirloni, S.F.; Moro, A.R.P. Exertion Perception When Performing Cutting Tasks in Poultry Slaughterhouses: Risk Assessment of Developing Musculoskeletal Disorders. Int. J. Environ. Res. Public Health 2020, 17, 9534. [Google Scholar] [CrossRef] [PubMed]
- McGorry, R.W.; Dempsey, P.G.; O’Brien, N.V. The effect of workstation and task variables on forces applied during simulated meat cutting. Ergonomics 2004, 47, 1640–1656. [Google Scholar] [CrossRef] [PubMed]
- Maithani, H.; Corrales Ramon, J.A.; Lequievre, L.; Mezouar, Y.; Alric, M. Exoscarne: Assistive Strategies for an Industrial Meat Cutting System Based on Physical Human-Robot Interaction. Appl. Sci. 2021, 11, 3907. [Google Scholar] [CrossRef]
- Kishtwaria, J.; Mathur, P.; Rana, A. Ergonomic evaluation of kitchen work with reference to space designing. J. Hum. Ecol. 2007, 21, 43–46. [Google Scholar] [CrossRef]
- Kirvesoja, H.; Vayrynen, S.; Haikio, A. Three evaluations of task-surface heights in elderly people’s homes. Appl. Ergon. 2000, 31, 109–119. [Google Scholar] [CrossRef]
- Ward, J.S. Ergonomic techniques in the determination of optimum work surface heights. Appl. Ergon. 1971, 2, 171–177. [Google Scholar] [CrossRef]
- Panero, J.; Zelnik, M. Human Dimension and Interior Space: A Source Book of Design Reference Standards; Watson-Guptill: New York, NY, USA, 1979. [Google Scholar]
- Ayoub, M.M. Occupational Biomechanics (3rd ed.) Edited by Don B. Chaffin, Gunnar B. J. Andersson, & Bernard J. Martin 1999, 579 pages, $69.96 New York: John Wiley & Sons, Inc. ISBN: 0–471–24697–2. Ergon. Des. 2000, 8, 33–34. [Google Scholar] [CrossRef]
- Jeon, W.; Ramadan, A.; Whitall, J.; Alissa, N.; Westlake, K. Age-related differences in lower limb muscle activation patterns and balance control strategies while walking over a compliant surface. Sci. Rep. 2023, 13, 16555. [Google Scholar] [CrossRef]
- Smith, T.M.; Hester, G.M.; Ha, P.L.; Olmos, A.A.; Stratton, M.T.; VanDusseldorp, T.A.; Feito, Y.; Dalton, B.E. Sit-to-stand kinetics and correlates of performance in young and older males. Arch. Gerontol. Geriatr. 2020, 91, 104215. [Google Scholar] [CrossRef]
- Huntley, A.H.; Zettel, J.L.; Vallis, L.A. Effect of aging on dynamic postural stability and variability during a multi-directional lean and reach object transportation task. Arch. Gerontol. Geriatr. 2016, 66, 154–160. [Google Scholar] [CrossRef]
- Ikezoe, T.; Mori, N.; Nakamura, M.; Ichihashi, N. Age-related muscle atrophy in the lower extremities and daily physical activity in elderly women. Arch. Gerontol. Geriatr. 2011, 53, E153–E157. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhang, F. Analysis of the Hanging Actions and Operating Heights of Storage Furniture Suitable for the Elderly. Sensors 2023, 23, 3850. [Google Scholar] [CrossRef] [PubMed]
- Valipoor, S.; Pati, D.; Stock, M.S.; Bazuin, D. Safer chairs for elderly patients: Design evaluation using electromyography and force measurement. Ergonomics 2018, 61, 902–912. [Google Scholar] [CrossRef] [PubMed]
- Giorgianni, C.; Principato, F.; Spatari, G. Upper Limb Disorders in Catering Workers. Diseases 2023, 11, 12. [Google Scholar] [CrossRef]
- Abdelsalam, A.; Wassif, G.O.O.; Eldin, W.S.; Abdel-Hamid, M.A.A.; Damaty, S.I.I. Frequency and risk factors of musculoskeletal disorders among kitchen workers. J. Egypt. Public Health Assoc. 2023, 98, 3. [Google Scholar] [CrossRef]
- Tegenu, H.; Gebrehiwot, M.; Azanaw, J.; Akalu, T.Y. Self-Reported Work-Related Musculoskeletal Disorders and Associated Factors among Restaurant Workers in Gondar City, Northwest Ethiopia, 2020. J. Environ. Public Health 2021, 2021, 608250. [Google Scholar] [CrossRef]
- Pontonnier, C.; de Zee, M.; Samani, A.; Dumont, G.; Madeleine, P. Strengths and limitations of a musculoskeletal model for an analysis of simulated meat cutting tasks. Appl. Ergon. 2014, 45, 592–600. [Google Scholar] [CrossRef]
- Samani, A.; Pontonnier, C.; Dumont, G.; Madeleine, P. Shoulder Kinematics and Spatial Pattern of Trapezius Electromyographic Activity in Real and Virtual Environments. PLoS ONE 2015, 10, e0116211. [Google Scholar] [CrossRef]
- Cregg, A.C.; Foley, R.C.; Livingston, L.A.; La Delfa, N.J. A biomechanical evaluation of different footrest heights during standing computer work. Ergonomics 2021, 64, 342–353. [Google Scholar] [CrossRef]
- Merbah, J.; Jacquier-Bret, J.; Gorce, P. Effect of the presence or absence of upper limb support on posture when a smartphone user is in a seated position under ambient light conditions. Int. J. Ind. Ergon. 2020, 80, 103050. [Google Scholar] [CrossRef]
- Cardoso, M.R.; Armstrong, D.P.; Fischer, S.L.; Albert, W.J. Differential effects of sex on upper body kinematics and kinetics during fatiguing, Asymmetric lifting. Appl. Ergon. 2024, 116, 104203. [Google Scholar] [CrossRef]
- Laksono, P.W.; Matsushita, K.; bin Suhaimi, M.S.A.; Kitamura, T.; Njeri, W.; Muguro, J.; Sasaki, M. Mapping Three Electromyography Signals Generated by Human Elbow and Shoulder Movements to Two Degree of Freedom Upper-Limb Robot Control. Robotics 2020, 9, 83. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, X.; Huang, T.; Kaner, J. Effect of different postures and loads on joint motion and muscle activity in older adults during overhead retrieval. Front. Physiol. 2024, 14, 1303577. [Google Scholar] [CrossRef]
- Komisar, V.; Maki, B.E.; Novak, A.C. Effect of handrail height and age on the timing and speed of reach-to-grasp balance reactions during slope descent. Appl. Ergon. 2019, 81, 102873. [Google Scholar] [CrossRef] [PubMed]
- Jakob, M.; Liebers, F.; Behrendt, S. The effects of working height and manipulated weights on subjective strain, body posture and muscular activity of milking parlor operatives–laboratory study. Appl. Ergon. 2012, 43, 753–761. [Google Scholar] [CrossRef] [PubMed]
- GB/T 10000-2023; Human Dimensions of Chinese Adults. National Standardization Administration: Beijing, China.
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Criswell, E. Cram’s Introduction to Surface Electromyography, 2nd ed.; Jones & Bartlett Publishers: Boston, MA, USA, 2011; Volume 43, p. 1378. [Google Scholar]
- Xie, Y.; Szeto, G.P.Y.; Dai, J.; Madeleine, P. A comparison of muscle activity in using touchscreen smartphone among young people with and without chronic neck–shoulder pain. Ergonomics 2015, 59, 61–72. [Google Scholar] [CrossRef]
- Soderberg, G.L. (Ed.) Selected topics in Surface Electromyography for Use in the Occupational Setting: Expert Perspectives; National Institute for Occupational Safety and Health; DHHS (NIOSH) Publication No. 91–100: Cincinnati, OH, USA, 1992; 179p. [Google Scholar]
- Wang, W. Research on the Relationship between Body Parameters and sEMG Indicators of STS. Ph.D. Thesis, Shaanxi University of Science and Technology, Xi’an, China, 2016. [Google Scholar]
- Falou, W.E.; Duchene, J.; Grabisch, M.; Hewson, D.; Langeron, Y.; Lino, F. Evaluation of driver discomfort during long-duration car driving. Appl. Ergon. 2003, 34, 249–255. [Google Scholar] [CrossRef]
- Potvin, J.R. Effects of muscle kinematics on surface EMG amplitude and frequency during fatiguing dynamic contractions. J. Appl. Physiol. 1997, 82, 144–151. [Google Scholar] [CrossRef]
- ISO11226-2000; Ergonomics—Evaluation of Static Working Postures. International Organization for Standardization: Geneva, Switzerland, 2000.
- McAtamney, L.; Corlett, E.N. RULA: A survey method for the investigation of work-related upper limb disorders. Appl. Ergon. 1993, 24, 91–99. [Google Scholar] [CrossRef]
- Borg, G. Psychophysical based of perceived exertion. Med. Sci. Sport Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Pheasant, S. Bodyspace: Anthropometry, Ergonomics and the Design of Work; CRC press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Mccormick, E.J.; Sanders, M.S. Human Factors in Engineering and Design; National Defense Industry Press: Arlington, VA, USA, 1992. [Google Scholar]
- Balendra, N.; Langenderfer, J.E. Effect of hammer mass on upper extremity joint moments. Appl. Ergon. 2017, 60, 231–239. [Google Scholar] [CrossRef]
- Norheim, K.L.; Samani, A.; Madeleine, P. The effects of age on response time, accuracy, and shoulder/arm kinematics during hammering. Appl. Ergon. 2021, 90, 103157. [Google Scholar] [CrossRef]
- Jonsson, B. Kinesiology: With special reference to electromyographic kinesiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 1978, 34, 417. [Google Scholar]
- Arjunan, S.P.; Kumar, D.K. Age-associated changes in muscle activity during isometric contraction. Muscle Nerve 2013, 47, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Hortobágyi, T.; Mizelle, C.; Beam, S.; DeVita, P. Old adults perform activities of daily living near their maximal capabilities. J. Gerontol. Ser. A-Biol. Sci. Med. Sci. 2003, 58, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Tikkanen, O.; Sipila, S.; Kuula, A.-S.; Pesola, A.; Haakana, P.; Finni, T. Muscle activity during daily life in the older people. Aging Clin. Exp. Res. 2016, 28, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Veiersted, K.B.; Westgaard, R.H. Development of trapezius myalgia among female workers performing light manual work. Scand. J. Work Environ. Health 1993, 19, 277–283. [Google Scholar] [CrossRef]
- Qin, J.; Lin, J.-H.; Buchholz, B.; Xu, X. Shoulder muscle fatigue development in young and older female adults during a repetitive manual task. Ergonomics 2014, 57, 1201–1212. [Google Scholar] [CrossRef]
- Gheno, R.; Cepparo, J.M.; Rosca, C.E.; Cotten, A. Musculoskeletal Disorders in the Elderly. J. Clin. Imaging 2012, 2, 39. [Google Scholar] [CrossRef]
- Kawanishi, M.; Yahagi, S.; Shimura, K.; Kasai, T. Dependence of deltoid muscle activity upon initial angles of shoulder abduction prior to flexion. Percept. Mot. Ski. 1999, 88, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Yokoyama, H.; Sasaki, A.; Kato, T.; Nakazawa, K. Evidence for basic units of upper limb muscle synergies underlying a variety of complex human manipulations. J. Neurophysiol. 2022, 127, 958–968. [Google Scholar] [CrossRef] [PubMed]
- Umehara, J.; Yagi, M.; Hirono, T.; Ueda, Y.; Ichihashi, N. Quantification of muscle coordination underlying basic shoulder movements using muscle synergy extraction. J. Biomech. 2021, 120, 110358. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Suenaga, T.; Churei, M.; Miyao, M. A factor-control study on disorders of the back, shoulders, neck and upper limbs of cooks. J. Sci. Labour 1986, 62, 435–449. [Google Scholar]
- Subramaniam, S.; Murugesan, S.; Jayaraman, S. Assessment of shoulder and low back muscle activity of male kitchen workers using surface electromyography. Int. J. Occup. Med. Environ. Health 2017, 31, 81–90. [Google Scholar] [CrossRef]
- Pekkarinen, A.; Anttonen, H. The effect of working height on the loading of the muscular and skeletal systems in the kitchens of workplace canteens. Appl. Ergon. 1988, 19, 306–308. [Google Scholar] [CrossRef]
- Sulaiman, R.; Taha, Z.; Dawal, S.Z.M. Application of Anthropometric Dimensions for Estimating Stove Height, Stove Depth and Cooking Task Envelope for Malaysian Elderly Population. Pertanika J. Sci. Technol. 2013, 21, 15–28. [Google Scholar]
- Iwakiri, K.; Kunisue, R.; Sotoyama, M.; Udo, H. Postural Support by a Standing Aid Alleviating Subjective Discomfort among Cooks in a Forward-bent Posture during Food Preparation. J. Occup. Health 2008, 50, 57–62. [Google Scholar] [CrossRef]
OG (n = 15) | YG (n = 15) | |||
---|---|---|---|---|
Average | Range | Average | Range | |
Age | 66.4 ± 4.16 | 60–73 | 23.9 ± 3.6 | 20–31 |
Height (cm) | 158.7 ± 6.2 | 151–170, P10–P99 | 167.6 ± 4.5 | 161–175, P50–P99 |
Elbow height (cm) | 98.7 ± 5.2 | 92.5–109 | 104.8 ± 3 | 101–111 |
Weight (kg) | 61.13 ± 9.36 | 47–80 | 58.17 ± 7.53 | 48–75 |
H1 | H2 | H3 | H4 | H5 |
---|---|---|---|---|
H-100 mm | H-150 mm | H-200 mm | H-250 mm | H-300 mm |
UT | PM | AD | BB | TB | BR | ES | |
---|---|---|---|---|---|---|---|
OG | 1.000 ** | −0.700 | 1.000 ** | 0.900 * | −0.200 | −0.200 | −0.900 * |
YG | 1.000 ** | −1.000 ** | 1.000 ** | 0.400 | −0.400 | 1.000 ** | −0.900 * |
Muscle | H1 | H2 | H3 | H4 | H5 | F | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UT | OG | 8.00 ± 3.31 bcde | 2.68–14.70 | 7.38 ± 3.31 a | 2.36–15.17 | 7.15 ± 3.42 a | 2.38–14.54 | 6.95 ± 3.58 a | 2.46–13.80 | 6.74 ± 3.78 a | 2.41–13.89 | 6.128 | <0.001 ** |
YG | 6.51 ± 3.29 cde | 2.00–14.92 | 6.17 ± 3.10 e | 1.87–14.72 | 5.92 ± 3.19 a | 2.05–15.46 | 5.62 ± 2.79 a | 2.01–12.25 | 5.26 ± 2.61 abc | 1.65–12.11 | 4.176 | 0.004 ** | |
O-Y p | 0.041 * | 0.089 | 0.091 | 0.06 | 0.037 * | ||||||||
PM | OG | 5.34 ± 2.87 | 2.67–13.23 | 5.18 ± 2.83 | 2.51–12.52 | 5.22 ± 3.03 | 2.01–12.95 | 5.37 ± 3.38 | 2.01–14.04 | 5.55 ± 3.62 | 2.32–14.93 | 1.765 | 0.143 |
YG | 3.65 ± 1.16 | 2.09–6.74 | 3.71 ± 1.24 | 2.24–6.92 | 3.79 ± 1.40 | 2.22–7.94 | 3.80 ± 1.13 | 2.32–6.95 | 3.86 ± 1.35 | 2.20–7.62 | 0.258 | 0.904 | |
O-Y p | <0.001 ** | 0.002 ** | 0.005 ** | 0.004 ** | 0.004 ** | ||||||||
AD | OG | 12.36 ± 4.92 bcde | 6.43–26.81 | 10.89 ± 4.12 acde | 5.08–22.91 | 9.97 ± 3.73 abe | 4.79–24.12 | 9.69 ± 3.84 abe | 4.84–23.64 | 8.95 ± 3.21 abcd | 4.42–17.91 | 23.373 | <0.001 ** |
YG | 9.49 ± 3.52 cde | 5.24–19.98 | 8.91 ± 3.24 cde | 4.83–16.39 | 8.26 ± 3.02 abe | 5.25–14.84 | 7.76 ± 2.64 ab | 4.72–12.07 | 7.67 ± 2.60 abc | 4.66–13.19 | 8.086 | <0.001 ** | |
O-Y p | 0.002 ** | 0.013 * | 0.020 * | 0.007 ** | 0.040 * | ||||||||
BB | OG | 9.27 ± 5.09 bcde | 4.32–5.22 | 8.62 ± 4.32 acde | 4.78–23.94 | 8.03 ± 4.08 ab | 4.54–22.77 | 8.14 ± 4.48 ab | 4.23–23.46 | 7.83 ± 4.25 ab | 4.23–23.22 | 11.697 | <0.001 ** |
YG | 8.69 ± 3.68 | 4.54–19.74 | 8.53 ± 3.55 | 4.81–18.60 | 8.30 ± 3.17 | 5.40–17.33 | 8.21 ± 3.45 | 5.37–18.02 | 8.55 ± 3.89 | 5.50–21.10 | 3.005 | 0.023 * | |
O-Y p | 0.536 | 0.911 | 0.731 | 0.931 | 0.399 | ||||||||
TB | OG | 7.20 ± 2.99 | 4.77–5.89 | 7.06 ± 3.05 | 4.80–6.63 | 7.10 ± 2.99 | 4.83–6.81 | 7.63 ± 4.30 | 4.86–5.82 | 7.12 ± 2.97 | 4.79–6.87 | 0.864 | 0.489 |
YG | 7.25 ± 3.48 | 4.88–19.15 | 7.32 ± 3.21 c | 4.85–16.57 | 8.22 ± 4.78 b | 4.77–24.95 | 8.41 ± 6.51 | 4.81–31.86 | 7.31 ± 3.50 | 4.86–20.65 | 3.424 | 0.012 * | |
O-Y p | 0.938 | 0.698 | 0.187 | 0.504 | 0.789 | ||||||||
BR | OG | 11.43 ± 4.87 | 5.70–22.87 | 11.52 ± 5.23 | 5.64–23.29 | 11.23 ± 5.24 | 5.40–22.12 | 11.34 ± 5.76 | 5.02–24.49 | 11.64 ± 6.41 | 4.82–26.42 | 0.913 | 0.46 |
YG | 9.95 ± 4.14 | 5.42–27.39 | 9.56 ± 3.36 | 5.50–16.69 | 9.49 ± 3.59 | 5.44–19.05 | 9.28 ± 3.67 | 5.08–18.81 | 9.08 ± 3.79 | 4.76–19.65 | 0.976 | 0.425 | |
O-Y p | 0.124 | 0.038 | 0.067 | 0.046 * | 0.023 * | ||||||||
ES | OG | 4.87 ± 2.14 e | 3.09–11.73 | 4.30 ± 2.16 e | 3.05–11.77 | 4.92 ± 2.15 e | 3.06–11.90 | 5.09 ± 2.15 | 3.03–11.91 | 5.10 ± 2.18 abc | 3.07–11.92 | 3.852 | 0.007 ** |
YG | 3.66 ± 0.36 e | 3.10–4.41 | 3.70 ± 3.69 e | 3.21–4.51 | 3.72 ± 0.36 e | 3.22–4.56 | 4.02 ± 1.22 | 3.29–9.69 | 3.89 ± 0.49 abc | 3.26–5.18 | 3.802 | 0.007 ** | |
O-Y p | <0.001 ** | <0.001 ** | <0.001 ** | 0.007 ** | 0.001 ** |
Neck Flexion | Right Shoulder Abduction | Right Elbow Internal Rotation | Right Wrist Abduction | |
---|---|---|---|---|
OG | −1.000 ** | 1.000 ** | −1.000 ** | 1.000 ** |
YG | −1.000 ** | 1.000 ** | −1.000 ** | 1.000 ** |
Joint | H1 | H2 | H3 | H4 | H5 | F | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Neck Flexion | OG | 20.05 ± 1.83 e | 17.04–22.78 | 20.57 ± 1.83 e | 17.09–22.94 | 20.92 ± 1.91 e | 17.83–23.50 | 21.12 ± 1.91 | 17.55–23.47 | 21.70 ± 2.00 abc | 18.49–24.27 | 7.741 | <0.001 ** |
YG | 20.65 ± 2.90 bcde | 15.63–26.87 | 21.48 ± 3.10 ae | 15.78–28.95 | 21.96 ± 3.56 ae | 14.96–30.94 | 22.34 ± 3.29 a | 16.07–30.32 | 22.89 ± 3.25 abc | 17.44–31.04 | 13.136 | <0.001 ** | |
O-Y p | 0.504 | 0.336 | 0.325 | 0.227 | 0.237 | ||||||||
Right Shoulder Abduction | OG | 40.64 ± 10.11 e | 21.29–53.97 | 39.63 ± 7.10 e | 28.08–50.13 | 36.59 ± 6.03 ae | 27.15–46.00 | 35.81 ± 4.50 e | 25.64–43.69 | 31.69 ± 5.21 abcd | 23.65–39.50 | 10.098 | <0.001 ** |
YG | 35.64 ± 7.81 bcde | 21.10–52.43 | 31.67 ± 8.29 ae | 17.10–45.42 | 30.07 ± 7.44 ae | 16.96–42.52 | 27.67 ± 8.06 a | 13.49–40.50 | 25.78 ± 6.48 abc | 14.10–36.14 | 6.689 | <0.001 ** | |
O-Y p | 0.141 | 0.009 * | 0.013 * | 0.002 * | 0.010 * | ||||||||
Right Elbow Internal rotation | OG | 86.58 ± 11.32 bcde | 69.89–109.27 | 90.68 ± 12.88 acde | 72.36–114.80 | 95.70 ± 12.78 ab | 77.37–122.48 | 98.51 ± 13.48 ab | 76.09–127.61 | 100.53 ± 13.58 ab | 79.07–131.19 | 9.477 | <0.001 ** |
YG | 82.26 ± 12.98 bcde | 57.33–101.45 | 88.09 ± 10.68 ade | 66.23–103.12 | 91.19 ± 12.81 ade | 72.61–108.86 | 98.19 ± 10.54 abce | 79.06–112.95 | 102.42 ± 9.23 abcd | 84.39–115.55 | 15.357 | <0.001 ** | |
O-Y p | 0.340 | 0.553 | 0.342 | 0.943 | 0.660 | ||||||||
Right Wrist Abduction | OG | 24.05 ± 10.31 | 4.10– 45.18 | 23.63 ± 9.78 | 3.39–47.17 | 23.23 ± 9.27 | 6.83–45.39 | 21.16 ± 9.93 | 2.78–47.89 | 19.73 ± 9.60 | 2.42–45.63 | 2.456 | 0.072 |
YG | 25.01 ± 13.38 | 0.88–51.18 | 23.36 ± 11.41 | 5.81–46.36 | 23.89 ± 12.17 de | 5.54–43.58 | 21.68 ± 12.92 c | 2.92–39.22 | 20.23 ± 12.76 c | 0.03–39.25 | 2.930 | 0.041 * | |
O-Y p | 0.828 | 0.944 | 0.868 | 0.903 | 0.903 |
Overall | Neck | Shoulder | Low Back | Upper Arm | Forearm | Wrist | |
---|---|---|---|---|---|---|---|
OG | <0.001 ** | <0.001 ** | <0.001 ** | 0.026 * | <0.001 ** | 0.165 | 0.028 * |
YG | 0.173 | <0.001 ** | 0.124 | 0.004 * | 0.083 | 0.594 | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Chang, L.; Zhang, F. Effects of Kitchen Cooking Height on Upper Limb Muscle Activation, Posture, and Perceived Discomfort of Chinese Older and Young Women. Sensors 2024, 24, 7056. https://doi.org/10.3390/s24217056
Li Y, Chang L, Zhang F. Effects of Kitchen Cooking Height on Upper Limb Muscle Activation, Posture, and Perceived Discomfort of Chinese Older and Young Women. Sensors. 2024; 24(21):7056. https://doi.org/10.3390/s24217056
Chicago/Turabian StyleLi, Ye, Le Chang, and Fan Zhang. 2024. "Effects of Kitchen Cooking Height on Upper Limb Muscle Activation, Posture, and Perceived Discomfort of Chinese Older and Young Women" Sensors 24, no. 21: 7056. https://doi.org/10.3390/s24217056
APA StyleLi, Y., Chang, L., & Zhang, F. (2024). Effects of Kitchen Cooking Height on Upper Limb Muscle Activation, Posture, and Perceived Discomfort of Chinese Older and Young Women. Sensors, 24(21), 7056. https://doi.org/10.3390/s24217056