Investigation of Device- and Circuit-Level Reliability of Inverse-Mode Silicon-Germanium Heterojunction Bipolar Transistors
Abstract
:1. Introduction
2. Hardware Preparation and Test Setup
3. Experimental Results
4. Simulation of Circuit-Level Degradation
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomas, Z.; Josef, B.; Fred, B.; Pascal, C.; Michael, C.; Bjorn, D.; Marina, D.; Philippe, F.; Sebastien, F.; Christophe, G.; et al. SiGe HBTs and BiCMOS Technology for Present and Future Millimeter-Wave Systems. IEEE J. Microw. 2021, 1, 288–298. [Google Scholar] [CrossRef]
- Washio, K. High-speed SiGe HBTs and their applications. Appl. Surf. Sci. 2004, 224, 306–311. [Google Scholar] [CrossRef]
- Yu, C.; Yuan, J.S.; Shen, J.; Xiao, E. Study of Electrical Stress Effect on SiGe HBT Low-Noise Amplifier Performance by Simulation. IEEE Trans. Device Mater. Rel. 2006, 6, 550–555. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Q.; Guo, H.; Lu, W.; He, C.; Wang, X.; Li, P.; Liu, M. Impact of Bias Conditions on Total Ionizing Dose Effects of 60Coγ in SiGe HBT. IEEE Trans. Nucl. Sci. 2016, 63, 1251–1258. [Google Scholar] [CrossRef]
- Kim, T.; Ryu, G.; Lee, J.; Cho, M.-K.; Fleetwood, D.M.; Cressler, J.D.; Song, I. Simple Modeling and Analysis of Total Ionizing Dose Effects on Radio-Frequency Low-Noise Amplifiers. Electronics 2024, 13, 1445. [Google Scholar] [CrossRef]
- Wei, J.-N.; He, C.-H.; Li, P.; Li, Y.-H.; Guo, H.-X. Impact of displacement damage on single event transient charge collection in SiGe HBTs. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 938, 29–35. [Google Scholar] [CrossRef]
- Pan, X.; Guo, H.; Lu, C.; Zhang, H.; Liu, Y. The Inflection Point of Single Event Transient in SiGe HBT at a Cryogenic Temperature. Electronics 2023, 12, 648. [Google Scholar] [CrossRef]
- Adekoya, M.A.; Liu, S.; Wang, C.; Du, X.; Xing, T.; Wang, X.; Li, H.; Guo, Y.; Zhou, J.; Zhang, X. Simulation and analysis of the single event transient characteristics of SiGe HBT at low-temperature environment. J. Instrum. 2024, 19, 08026. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, G.; Li, F.; Sun, H.; Chen, Q.; Zhao, S.; Liu, J.; Ouyang, X. Effects of Different Factors on Single Event Effects Introduced by Heavy Ions in SiGe Heterojunction Bipolar Transistor: A TCAD Simulation. Electronics 2023, 12, 1008. [Google Scholar] [CrossRef]
- Zhang, J.-X.; He, C.-H.; Guo, H.-X.; Tang, D.; Xiong, C.; Li, P.; Wang, X. 3-D simulation study of single event effects of SiGe heterojunction bipolar transistor in extreme environment. Microelectron. Reliab. 2015, 55, 1180–1186. [Google Scholar] [CrossRef]
- Marshall, P.W.; Carts, M.A.; Campbell, A.; McMorrow, D.; Buchner, S.; Stewart, R.; Randall, B.; Gilbert, B.; Reed, R.A. Single event effects in circuit-hardened SiGe HBT logic at gigabit per second data rates. IEEE Trans. Nucl. Sci. 2000, 47, 2669–2674. [Google Scholar] [CrossRef]
- Adekoya, M.A.; Liu, S.; Wang, X.; Xing, T.; Li, H.; Meng, F.; Du, X.; Li, Z.; Huang, T. Simulation and analysis of inverse-mode operation of single event transient mechanisms on NPN-SiGe HBT. Phys. Scr. 2024, 99, 055309. [Google Scholar] [CrossRef]
- Song, I.; Cho, M.-K.; Oakley, M.A.; Ildefonso, A.; Ju, I.; Buchner, S.P.; McMorrow, D.; Paki, P.; Cressler, J.D. On the Application of Inverse-Mode SiGe HBTs in RF Receivers for the Mitigation of Single-Event Transients. IEEE Trans. Nucl. Sci. 2017, 64, 1142–1150. [Google Scholar] [CrossRef]
- Song, I.; Raghunathan, U.S.; Lourenco, N.E.; Fleetwood, Z.E.; Oakley, M.A.; Jung, S.; Cho, M.-K.; Roche, N.J.-H.; Khachatrian, A.; Warner, J.H.; et al. An Investigation of the Use of Inverse-Mode SiGe HBTs as Switching Pairs for SET-Mitigated RF Mixers. IEEE Trans. Nucl. Sci. 2016, 63, 1099–1108. [Google Scholar] [CrossRef]
- Cressler, J.D. New Developments in SiGe HBT Reliability for RF Through mmW Circuits. In Proceedings of the 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 21–25 March 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Phillips, S.D.; Moen, K.A.; Lourenco, N.E.; Cressler, J.D. Single-Event Response of the SiGe HBT Operating in Inverse-Mode. IEEE Trans. Nucl. Sci. 2012, 59, 2682–2690. [Google Scholar] [CrossRef]
- Wei, J.-N.; He, C.-H.; Li, P.; Li, Y.-H.; Guo, H.-X. Impact of layout and profile optimization for inverse-mode SiGe HBT on SET and TID responses. Microelectron. Reliab. 2020, 105, 113561. [Google Scholar] [CrossRef]
- Song, I.; Cho, M.-K.; Lourenco, N.E.; Fleetwood, Z.E.; Jung, S.; Roche, N.J.-H.; Khachatrian, A.; Buchner, S.P.; McMorrow, D.; Paki, P.; et al. The Use of Inverse-Mode SiGe HBTs as Active Gain Stages in Low-Noise Amplifiers for the Mitigation of Single-Event Transients. IEEE Trans. Nucl. Sci. 2017, 64, 359–366. [Google Scholar] [CrossRef]
- Song, I.; Cardoso, A.S.; Ying, H.; Cho, M.-K.; Cressler, J.D. Cryogenic Characterization of RF Low-Noise Amplifiers Utilizing Inverse-Mode SiGe HBTs for Extreme Environment Applications. IEEE Trans. Device Mater. Rel. 2018, 18, 613–619. [Google Scholar] [CrossRef]
- Fischer, G.G.; Molina, J.; Tillack, B. Comparative study of HBT ageing in a complementary SiGe:C BiCMOS technology. In Proceedings of the 2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Bordeaux, France, 30 September–3 October 2013; pp. 167–170. [Google Scholar] [CrossRef]
- Kamrani, H.; Jabs, D.; d’Alessandro, V.; Rinaldi, N.; Jacquet, T.; Maneux, C.; Zimmer, T.; Aufinger, K.; Jungemann, C. Microscopic Hot-Carrier Degradation Modeling of SiGe HBTs Under Stress Conditions Close to the SOA Limit. IEEE Trans. Electron Devices 2017, 64, 923–929. [Google Scholar] [CrossRef]
- Ghodsi, H.; Kaatuzian, H. Analysis and design of a SiGe-HBT based terahertz detector for imaging arrays applications. Microelectron. J. 2019, 90, 156–162. [Google Scholar] [CrossRef]
- Fischer, G.G. Analysis and modeling of the long-term ageing rate of SiGe HBTs under mixed-mode stress. In Proceedings of the 2016 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), New Brunswick, NJ, USA, 25–27 September 2016; pp. 106–109. [Google Scholar] [CrossRef]
- Alaeddine, A.; Kadi, M.; Daoud, K. Performance and structure degradations of SiGe HBT after electromagnetic field stress. In Proceedings of the 2011 International Reliability Physics Symposium, Monterey, CA, USA, 10–14 April 2011; pp. CD.1.1–CD.1.6. [Google Scholar] [CrossRef]
- Orner, B.A.; Liu, Q.Z.; Rainey, B.; Stricker, A.; Geiss, P.; Gray, P.; Zierak, M.; Gordon, M.; Collins, D.; Ramachandran, V.; et al. A 0.13 /spl mu/m BiCMOS technology featuring a 200/280 GHz (f/sub T//f/sub max/) SiGe HBT. In Proceedings of the 2003 Bipolar/BiCMOS Circuits and Technology Meeting (IEEE Cat. No.03CH37440), Toulouse, France, 28–30 September 2003; pp. 203–206. [Google Scholar] [CrossRef]
- Couret, M.; Fischer, G.; Lopez, I.G.; Matos, M.D.; Marc, F.; Maneux, C. Impact of SiGe HBT hot-carrier degradation on the broadband amplifier output supply current. In Proceedings of the ESSDERC 2019—49th European Solid-State Device Research Conference (ESSDERC), Cracow, Poland, 23–26 September 2019; pp. 154–157. [Google Scholar] [CrossRef]
- Xiong, C.; Li, Y.; Liu, S.; Tang, D.; Zhang, J.; He, C. Hot carrier effect on a single SiGe HBT’s EMI response. Microelectron. Reliab. 2015, 55, 2627–2633. [Google Scholar] [CrossRef]
- Chae, M.; Kim, H. Time- and Temperature-dependent Degradation of p-GaN Gate HEMTs under Forward Gate Voltage Stress. J. Semicond. Technol. Sci. 2023, 23, 352–358. [Google Scholar] [CrossRef]
- Mukherjee, C.; Marc, F.; Couret, M.; Fischer, G.G.; Jaoul, M.; Céli, D.; Aufinger, K.; Zimmer, T.; Maneux, C. A physical and versatile aging compact model for hot carrier degradation in SiGe HBTs under dynamic operating conditions. Solid-State Electron. 2020, 163, 107635. [Google Scholar] [CrossRef]
- Yang, Z.; Guarin, F.; Hostetter, E.; Wang, P.-C. Hot carrier reliability of high-speed SiGe HBT’s under accelerated collector-base avalanche bias. In Proceedings of the 7th International Caribbean Conference on Devices, Circuits and Systems, Cancun, Mexico, 28–30 April 2008; pp. 1–7. [Google Scholar] [CrossRef]
- Weimer, C.; Fischer, G.G.; Schröter, M. Characterization, Analysis, and Modeling of Long-Term RF Reliability and Degradation of SiGe HBTs for High Power Density Applications. IEEE Trans. Device Mater. Rel. 2024, 24, 20–32. [Google Scholar] [CrossRef]
- Lee, C.-I.; Lin, Y.-T.; Lin, W.-C. Analysis of temperature dependence of linearity for SiGe HBTs in the avalanche region using Volterra series. Microelectron. Reliab. 2016, 60, 20–24. [Google Scholar] [CrossRef]
- Lee, C.-I.; Lin, Y.-T.; Su, B.-R.; Lin, W.-C. SiGe HBT Large-Signal Table-Based Model With the Avalanche Breakdown Effect Considered. IEEE Trans. Electron Devices 2015, 62, 75–82. [Google Scholar] [CrossRef]
- Rickelt, M.; Rein, H.-M.; Rose, E. Influence of impact-ionization-induced instabilities on the maximum usable output voltage of Si-bipolar transistors. IEEE Trans. Electron Devices 2001, 48, 774–783. [Google Scholar] [CrossRef]
- Veenstra, H.; Hurkx, G.A.M.; Goor, D.; Brekelmans, H.; Long, J.R. Analyses and design of bias circuits tolerating output voltages above BV/sub CEO/. IEEE J. Solid-State Circuits 2005, 40, 2008–2018. [Google Scholar] [CrossRef]
- Jacquet, T.; Sasso, G.; Chakravorty, A.; Rinaldi, N.; Aufinger, K.; Zimmer, T.; d’Alessandro, V.; Maneux, C. Reliability of high-speed SiGe:C HBT under electrical stress close to the SOA limit. Microelectron. Reliab. 2015, 55, 1433–1437. [Google Scholar] [CrossRef]
- Yu, C.; Xiao, E.; Yuan, J.S. Voltage stress-induced hot carrier effects on SiGe HBT VCO. Microelectron. Reliab. 2005, 45, 1402–1405. [Google Scholar] [CrossRef]
- Lee, D.H.; Jeong, H.S.; Kim, Y.G.; Kim, M.H.; Son, K.S.; Lim, J.H.; Song, S.H.; Kwon, H.I. Quantitative Analysis of Channel Width Effects on Electrical Performance Degradation of Top-gate Self-aligned Coplanar IGZO Thin-film Transistors under Self-heating Stresses. J. Semicond. Technol. Sci. 2023, 23, 79–87. [Google Scholar] [CrossRef]
- Lee, C.-I.; Li, S.-C.; Zhang, S.-Y.; Yang, J.-H. Deep Neural Network RF Model for SiGe HBT in Breakdown Regime. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 1619–1621. [Google Scholar] [CrossRef]
- Alaeddine, A.; Kadi, M.; Daoud, K.; Mazari, B. Effects of electromagnetic near-field stress on SiGe HBT’s reliability. Microelectron. Reliab. 2009, 49, 1029–1032. [Google Scholar] [CrossRef]
- Mukherjee, C.; Jacquet, T.; Fischer, G.G.; Zimmer, T.; Maneux, C. Hot-Carrier Degradation in SiGe HBTs: A Physical and Versatile Aging Compact Model. IEEE Trans. Electron Devices 2017, 64, 4861–4867. [Google Scholar] [CrossRef]
- Mukherjee, C.; Fischer, G.G.; Marc, F.; Couret, M.; Zimmer, T.; Maneux, C. A unified aging compact model for hot carrier degradation under mixed-mode and reverse E-B stress in complementary SiGe HBTs. Solid-State Electron. 2020, 172, 107900. [Google Scholar] [CrossRef]
- Weimer, C.; Jin, X.; Fischer, G.G.; Schröter, M. Characterization of Dynamic Large-Signal Operating Limits and Long-Term RF Reliability of SiGe HBTs. In Proceedings of the 2022 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), Phoenix, AZ, USA, 16–19 October 2022; pp. 216–223. [Google Scholar] [CrossRef]
- Cadence Virtuoso ADE Suite. Available online: https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-design/virtuoso-ade-suite.html (accessed on 9 October 2024).
Degradations in Parameter | Active Bias | Diode Connection | Off State |
---|---|---|---|
Average Δβ (%) [0.6 V ≤ VBE ≤ 0.9 V] | −47.89 | −21.15 | +0.96 |
Average Δgm (%) [0.6 V ≤ VBE ≤ 0.9 V] | +11.97 | +1.38 | +0.46 |
Average Δrπ (%) [0.6 V ≤ VBE ≤ 0.9 V] | −53.46 | −22.16 | +1.48 |
Δβ (%) [VBE = 0.75 V] | −54.75 | −22.23 | +4.88 |
Δgm (%) [VBE = 0.75 V] | +6.8 | +1.14 | +0.47 |
Δrπ (%) [VBE = 0.75 V] | −60.82 | −23.14 | +5.25 |
Degradations in Parameter | Active Bias | Diode Connection | Off State |
---|---|---|---|
Average Δβ (%) [0.6 V ≤ VBE ≤ 0.9 V] | −45.94 | −1.11 | −37.16 |
Average Δgm (%) [0.6 V ≤ VBE ≤ 0.9 V] | +5.17 | +1.21 | −8.52 |
Average Δrπ (%) [0.6 V ≤ VBE ≤ 0.9 V] | −46.93 | −2.27 | −39.75 |
Δβ (%) [VBE = 0.75 V] | −48.73 | −0.30 | −51.20 |
Δgm (%) [VBE = 0.75 V] | +15.70 | +1.25 | +3.52 |
Δrπ (%) [VBE = 0.75 V] | −56.89 | −1.70 | −53.21 |
Device Stress Conditions | gm (mS) | rπ (kΩ) | VA (V) | |
---|---|---|---|---|
Active bias | Before stress | 220 | 1.10 | 36.65 |
After stress | 99.9 | 1.16 | 34.09 | |
Diode connection | Before stress | 220 | 1.10 | 36.65 |
After stress | 169 | 1.11 | 36.21 | |
Off state | Before stress | 220 | 1.10 | 36.65 |
After stress | 232 | 1.09 | 36.52 |
Device Stress Conditions | gm (mS) | rπ (kΩ) | VA (V) | |
---|---|---|---|---|
Active bias | Before stress | 60 | 1.50 | 1.72 |
After stress | 28.9 | 1.33 | 1.72 | |
Diode connection | Before stress | 60 | 1.50 | 1.72 |
After stress | 59.7 | 1.50 | 1.68 | |
Off state | Before stress | 60 | 1.50 | 1.72 |
After stress | 28.3 | 1.55 | 1.64 |
Device Stress Conditions | Forward Mode | Inverse Mode | |
---|---|---|---|
Active bias | ΔGain (dB) | −6.37 | −7.38 |
ΔBW (%) | +95.49 | +88.5 | |
Diode connection | ΔGain (dB) | - * | - * |
ΔBW (%) | - * | - * | |
Off state | ΔGain (dB) | +0.42 | −6.22 |
ΔBW (%) | −4.41 | +73.44 |
Device Stress Conditions | Forward Mode | Inverse Mode | |
---|---|---|---|
Active bias | ΔGain (dB) | +0.47 | −1.06 |
ΔBW (%) | −0.007 | +0.023 | |
Diode connection | ΔGain (dB) | - * | - * |
ΔBW (%) | - * | - * | |
Off state | ΔGain (dB) | +0.04 | +0.30 |
ΔBW (%) | - | −0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Kim, G.; Cho, M.-K.; Cressler, J.D.; Han, J.; Song, I. Investigation of Device- and Circuit-Level Reliability of Inverse-Mode Silicon-Germanium Heterojunction Bipolar Transistors. Sensors 2024, 24, 7130. https://doi.org/10.3390/s24227130
Kim T, Kim G, Cho M-K, Cressler JD, Han J, Song I. Investigation of Device- and Circuit-Level Reliability of Inverse-Mode Silicon-Germanium Heterojunction Bipolar Transistors. Sensors. 2024; 24(22):7130. https://doi.org/10.3390/s24227130
Chicago/Turabian StyleKim, Taeyeong, Garam Kim, Moon-Kyu Cho, John D. Cressler, Jaeduk Han, and Ickhyun Song. 2024. "Investigation of Device- and Circuit-Level Reliability of Inverse-Mode Silicon-Germanium Heterojunction Bipolar Transistors" Sensors 24, no. 22: 7130. https://doi.org/10.3390/s24227130
APA StyleKim, T., Kim, G., Cho, M. -K., Cressler, J. D., Han, J., & Song, I. (2024). Investigation of Device- and Circuit-Level Reliability of Inverse-Mode Silicon-Germanium Heterojunction Bipolar Transistors. Sensors, 24(22), 7130. https://doi.org/10.3390/s24227130