A Multi-Class ECG Signal Classifier Using a Binarized Depthwise Separable CNN with the Merged Convolution–Pooling Method
Abstract
:1. Introduction
- A bDSCNN model based on the binarization approach and a binarized DSC (bDSC) layer with optimized hardware resource consumption are adopted. Therefore, the number of required parameters and computations are decreased compared with a bCNN model based on binarization.
- An MCP method is proposed to eliminate the repetitive computations and achieves an efficient hardware implementation. It does not introduce any accuracy loss compared with the traditional processing method.
- A blockwise incremental calculation is designed to reduce computations and redundant repetitive storage compared with the traditional computation strategy.
- R peak interval data and P-QRS-T features are fed into the bDSCNN model to improve the classification accuracy.
2. Methods
2.1. Model Design
2.1.1. Basic Model Structure
2.1.2. Database and Software Configuration
2.2. Hardware Design
2.2.1. MCP Layer Implementation
Algorithm 1: MCPK Weight Calculation |
2.2.2. Blockwise Incremental Calculation
2.2.3. Batch Normalization
2.2.4. Hardware Architecture
3. Results
3.1. Model Performance
3.2. Algorithm Accuracy
3.3. Model Complexity and Hardware Resource Usage
4. Discussion
4.1. Conversion of 1D Signals to 2D Images
4.2. Dataset Splitting Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Noncommunicable Diseases. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 11 November 2023).
- WHO. Cardiovascular Diseases (cvds). 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 11 November 2023).
- Meng, L.; Ge, K.; Song, Y.; Yang, D.; Lin, Z. Long-term wearable electrocardiogram signal monitoring and analysis based on convolutional neural network. IEEE Trans. Instrum. Meas. 2021, 70, 2507711. [Google Scholar] [CrossRef]
- Saadatnejad, S.; Oveisi, M.; Hashemi, M. LSTM-based ECG classification for continuous monitoring on personal wearable devices. IEEE J. Biomed. Health Inform. 2019, 24, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Amirshahi, A.; Hashemi, M. ECG classification algorithm based on STDP and R-STDP neural networks for real-time monitoring on ultra low-power personal wearable devices. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1483–1493. [Google Scholar] [CrossRef] [PubMed]
- Luepker, R.V.; Raczynski, J.M.; Osganian, S.; Goldberg, R.J.; Finnegan, J.R., Jr.; Hedges, J.R.; Goff, D.C., Jr.; Eisenberg, M.S.; Zapka, J.G.; Feldman, H.A.; et al. Effect of a community intervention on patient delay and emergency medical service use in acute coronary heart disease: The Rapid Early Action for Coronary Treatment (REACT) Trial. JAMA 2000, 284, 60–67. [Google Scholar] [CrossRef]
- Sadasivuni, S.; Damodaran, V.; Banerjee, I.; Sanyal, A. Real-time prediction of cardiovascular diseases using reservoir-computing and fusion with electronic medical record. In Proceedings of the 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), Incheon, Republic of Korea, 13–15 June 2022; pp. 58–61. [Google Scholar]
- Djelouat, H.; Al Disi, M.; Boukhenoufa, I.; Amira, A.; Bensaali, F.; Kotronis, C.; Politi, E.; Nikolaidou, M.; Dimitrakopoulos, G. Real-time ECG monitoring using compressive sensing on a heterogeneous multicore edge-device. Microprocess. Microsyst. 2020, 72, 102839. [Google Scholar] [CrossRef]
- John, A.; Panicker, R.C.; Cardiff, B.; Lian, Y.; John, D. Binary classifiers for data integrity detection in wearable IoT edge devices. IEEE Open J. Circuits Syst. 2020, 1, 88–99. [Google Scholar] [CrossRef]
- Martin, T.; Jovanov, E.; Raskovic, D. Issues in wearable computing for medical monitoring applications: A case study of a wearable ECG monitoring device. In Proceedings of the Digest of Papers. Fourth International Symposium on Wearable Computers, Atlanta, GA, USA, 16–17 October 2000; pp. 43–49. [Google Scholar]
- Zhang, X.; Lian, Y. A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 834–843. [Google Scholar] [CrossRef]
- Cheng, Y.; Lin, M.; Wu, J.; Zhu, H.; Shao, X. Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network. Knowl.-Based Syst. 2021, 216, 106796. [Google Scholar] [CrossRef]
- Xian, Z.; Li, H.; Li, Y. Weight Isolation-Based Binarized Neural Networks Accelerator. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Virtual, 10–21 October 2020; pp. 1–4. [Google Scholar]
- Yang, Z.; Zhou, Q.; Lei, L.; Zheng, K.; Xiang, W. An IoT-cloud based wearable ECG monitoring system for smart healthcare. J. Med Syst. 2016, 40, 286. [Google Scholar] [CrossRef]
- Wong, D.L.T.; Yu, J.; Li, Y.; Deepu, C.J.; Ngo, D.H.; Zhou, C.; Singh, S.R.; Koh, A.; Hong, R.; Veeravalli, B.; et al. An integrated wearable wireless vital signs biosensor for continuous inpatient monitoring. IEEE Sens. J. 2019, 20, 448–462. [Google Scholar] [CrossRef]
- Deepu, C.J.; Zhang, X.; Liew, W.S.; Wong, D.L.T.; Lian, Y. An ECG-on-chip with 535 nW channel integrated lossless data compressor for wireless sensors. IEEE J. Solid-State Circuits 2014, 49, 2435–2448. [Google Scholar] [CrossRef]
- Deepu, C.J.; Xu, X.; Wong, D.; Heng, C.H.; Lian, Y. A 2.3 μW ECG-On-Chip for Wireless Wearable Sensors. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 1385–1389. [Google Scholar]
- Deepu, C.J.; Zhang, X.; Heng, C.H.; Lian, Y. A 3-lead ECG-on-chip with QRS detection and lossless compression for wireless sensors. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 1151–1155. [Google Scholar] [CrossRef]
- Diware, S.; Dash, S.; Gebregiorgis, A.; Joshi, R.V.; Strydis, C.; Hamdioui, S.; Bishnoi, R. Severity-based hierarchical ECG classification using neural networks. IEEE Trans. Biomed. Circuits Syst. 2023, 17, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Voorsluys, W.; Niu, S.; Khandoker, A.; Buyya, R. An autonomic cloud environment for hosting ECG data analysis services. Future Gener. Comput. Syst. 2012, 28, 147–154. [Google Scholar] [CrossRef]
- El bouny, L.; Khalil, M.; Adib, A. An end-to-end multi-level wavelet convolutional neural networks for heart diseases diagnosis. Neurocomputing 2020, 417, 187–201. [Google Scholar] [CrossRef]
- Fuster-Barceló, C.; Peris-Lopez, P.; Camara, C. ELEKTRA: ELEKTRokardiomatrix application to biometric identification with convolutional neural networks. Neurocomputing 2022, 506, 37–49. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 2015, 63, 664–675. [Google Scholar] [CrossRef]
- Shyu, L.Y.; Wu, Y.H.; Hu, W. Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG. IEEE Trans. Biomed. Eng. 2004, 51, 1269–1273. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, J.; Dai, G.; Huang, J.; Xie, Y. Energy-efficient intelligent ECG monitoring for wearable devices. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1112–1121. [Google Scholar] [CrossRef]
- Besler, E.; Mathur, P.K.; Gay, H.C.; Passman, R.S.; Sahakian, A.V. Inter-patient atrial flutter classification using FFT-based features and a low-variance stacking classifier. IEEE Trans. Biomed. Eng. 2021, 69, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.; Taheri, S.; Yuan, J.S. ECG arrhythmia classification using transfer learning from 2-dimensional deep CNN features. In Proceedings of the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA, 17–19 October 2018; pp. 1–4. [Google Scholar]
- Mao, R.; Li, S.; Zhang, Z.; Xia, Z.; Xiao, J.; Zhu, Z.; Liu, J.; Shan, W.; Chang, L.; Zhou, J. An ultra-energy-efficient and high accuracy ECG classification processor with SNN inference assisted by on-chip ANN learning. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 832–841. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pang, Y.; Wang, J.; Li, X. Patient-specific ECG classification by deeper CNN from generic to dedicated. Neurocomputing 2018, 314, 336–346. [Google Scholar] [CrossRef]
- Wang, G.; Chen, M.; Ding, Z.; Li, J.; Yang, H.; Zhang, P. Inter-patient ECG arrhythmia heartbeat classification based on unsupervised domain adaptation. Neurocomputing 2021, 454, 339–349. [Google Scholar] [CrossRef]
- Sivapalan, G.; Nundy, K.K.; Dev, S.; Cardiff, B.; John, D. ANNet: A lightweight neural network for ECG anomaly detection in IoT edge sensors. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 24–35. [Google Scholar] [CrossRef]
- Ullah, A.; Rehman, S.U.; Tu, S.; Mehmood, R.M.; Fawad; Ehatisham-ul Haq, M. A hybrid deep CNN model for abnormal arrhythmia detection based on cardiac ECG signal. Sensors 2021, 21, 951. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.K.; Janghel, R.R. Automatic detection of arrhythmia from imbalanced ECG database using CNN model with SMOTE. Australas. Phys. Eng. Sci. Med. 2019, 42, 1129–1139. [Google Scholar] [CrossRef]
- Zhu, F.; Ye, F.; Fu, Y.; Liu, Q.; Shen, B. Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network. Sci. Rep. 2019, 9, 6734. [Google Scholar] [CrossRef]
- Chu, H.; Yan, Y.; Gan, L.; Jia, H.; Qian, L.; Huan, Y.; Zheng, L.; Zou, Z. A neuromorphic processing system with spike-driven SNN processor for wearable ECG classification. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 511–523. [Google Scholar] [CrossRef]
- Zhao, Y.; Shang, Z.; Lian, Y. A 13.34 μW event-driven patient-specific ANN cardiac arrhythmia classifier for wearable ECG sensors. IEEE Trans. Biomed. Circuits Syst. 2019, 14, 186–197. [Google Scholar] [CrossRef]
- Abubakar, S.M.; Yin, Y.; Tan, S.; Jiang, H.; Wang, Z. A 746 nW ECG processor ASIC based on ternary neural network. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Yin, S.; Liu, L.; Luk, W.; Wei, S. FP-BNN: Binarized neural network on FPGA. Neurocomputing 2018, 275, 1072–1086. [Google Scholar] [CrossRef]
- Saito, T.; Nonaka, H.; Okano, T. Theoretical analysis of co-existing periodic orbits in sparse binary neural networks. Neurocomputing 2024, 570, 127131. [Google Scholar] [CrossRef]
- Kim, T.H.; Shin, J. A resource-efficient inference accelerator for binary convolutional neural networks. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 451–455. [Google Scholar] [CrossRef]
- Liu, Q.; Lai, J.; Gao, J. An efficient channel-aware sparse binarized neural networks inference accelerator. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 1637–1641. [Google Scholar] [CrossRef]
- Kim, H.; Oh, H.; Kim, J.J. Energy-efficient XNOR-free in-memory BNN accelerator with input distribution regularization. In Proceedings of the 39th International Conference on Computer-Aided Design, Virtual, 2–5 November 2020; pp. 1–9. [Google Scholar]
- Shreya, S.; Verma, G.; Piramanayagam, S.; Kaushik, B.K. Energy-efficient all-spin BNN using voltage-controlled spin-orbit torque device for digit recognition. IEEE Trans. Electron Devices 2020, 68, 385–392. [Google Scholar] [CrossRef]
- Wang, P.; Song, J.; Peng, Y.; Liu, G. Binarized neural network based on fpga to realize handwritten digit recognition. In Proceedings of the 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 6–8 November 2020; Volume 1, pp. 1204–1207. [Google Scholar]
- Simons, T.; Lee, D.J. A review of binarized neural networks. Electronics 2019, 8, 661. [Google Scholar] [CrossRef]
- Wong, D.L.T.; Li, Y.; John, D.; Ho, W.K.; Heng, C.H. An energy efficient ECG ventricular ectopic beat classifier using binarized CNN for edge AI devices. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 222–232. [Google Scholar] [CrossRef]
- Wong, D.L.T.; Li, Y.; John, D.; Ho, W.K.; Heng, C.H. Low complexity binarized 2D-CNN classifier for wearable edge ai devices. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 822–831. [Google Scholar] [CrossRef]
- Wong, D.L.T.; Li, Y.; John, D.; Ho, W.K.; Heng, C.H. Resource and energy efficient implementation of ECG classifier using binarized CNN for edge AI devices. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021; pp. 1–5. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Bai, L.; Zhao, Y.; Huang, X. A CNN accelerator on FPGA using depthwise separable convolution. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 1415–1419. [Google Scholar] [CrossRef]
- Xuan, L.; Un, K.F.; Lam, C.S.; Martins, R.P. An FPGA-based energy-efficient reconfigurable depthwise separable convolution accelerator for image recognition. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4003–4007. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, M.; Wei, L.; Zhang, J.; Wang, Z.; Wei, B.; Xia, L. Automated arrhythmia classification using depthwise separable convolutional neural network with focal loss. Biomed. Signal Process. Control 2021, 69, 102843. [Google Scholar] [CrossRef]
- Cai, J.; Sun, W.; Guan, J.; You, I. Multi-ECGNet for ECG arrythmia multi-label classification. IEEE Access 2020, 8, 110848–110858. [Google Scholar] [CrossRef]
- Shan, W.; Yang, M.; Wang, T.; Lu, Y.; Cai, H.; Zhu, L.; Xu, J.; Wu, C.; Shi, L.; Yang, J. A 510-nW wake-up keyword-spotting chip using serial-FFT-based MFCC and binarized depthwise separable CNN in 28-nm CMOS. IEEE J. Solid-State Circuits 2020, 56, 151–164. [Google Scholar] [CrossRef]
- Shan, W.; Yang, M.; Xu, J.; Lu, Y.; Zhang, S.; Wang, T.; Yang, J.; Shi, L.; Seok, M. 14.1 A 510 nW 0.41 V low-memory low-computation keyword-spotting chip using serial FFT-based MFCC and binarized depthwise separable convolutional neural network in 28 nm CMOS. In Proceedings of the 2020 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 230–232.
- Luo, Y.; Teng, K.H.; Li, Y.; Mao, W.; Lian, Y.; Heng, C.H. A 74-μW 11-Mb/s wireless vital signs monitoring SoC for three-lead ECG, respiration rate, and body temperature. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 907–917. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Li, Y.; Liu, C.; Guo, Y.X.; Lian, Y. A 2.89 μW Dry-Electrode Enabled Clockless Wireless ECG SoC for Wearable Applications. IEEE J. Solid-State Circuits 2016, 51, 2287–2298. [Google Scholar] [CrossRef]
- Hsu, S.Y.; Ho, Y.; Chang, P.Y.; Su, C.; Lee, C.Y. A 48.6-to-105.2 μW machine learning assisted cardiac sensor SoC for mobile healthcare applications. IEEE J. Solid-State Circuits 2014, 49, 801–811. [Google Scholar] [CrossRef]
- Santurkar, S.; Tsipras, D.; Ilyas, A.; Madry, A. How does batch normalization help optimization? Adv. Neural Inf. Process. Syst. 2018, 31, 2488–2498. [Google Scholar]
- Chen, T.; Zhang, Z.; Ouyang, X.; Liu, Z.; Shen, Z.; Wang, Z. “BNN-BN=?”: Training Binary Neural Networks Without Batch Normalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4619–4629. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [Google Scholar] [CrossRef]
- ANSI-AAMI EC57; Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms. American National Standard: Arlington, TX, USA, 1998.
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M.; Gertych, A.; San Tan, R. A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 2017, 89, 389–396. [Google Scholar] [CrossRef]
- Lu, J.; Liu, D.; Cheng, X.; Wei, L.; Hu, A.; Zou, X. An efficient unstructured sparse convolutional neural network accelerator for wearable ECG classification device. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 4572–4582. [Google Scholar] [CrossRef]
- Lu, J.; Liu, D.; Liu, Z.; Cheng, X.; Wei, L.; Zhang, C.; Zou, X.; Liu, B. Efficient hardware architecture of convolutional neural network for ECG classification in wearable healthcare device. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 2976–2985. [Google Scholar] [CrossRef]
- Jimenez-Perez, G.; Alcaine, A.; Camara, O. ECG-DelNet: Delineation of ambulatory electrocardiograms with mixed quality labeling using neural networks. arXiv 2020, arXiv:2005.05236. [Google Scholar]
- Jimenez-Perez, G.; Acosta, J.; Alcaine, A.; Camara, O. Generalising electrocardiogram detection and delineation: Training convolutional neural networks with synthetic data augmentation. Front. Cardiovasc. Med. 2024, 11, 1341786. [Google Scholar] [CrossRef] [PubMed]
- Degirmenci, M.; Ozdemir, M.A.; Izci, E.; Akan, A. Arrhythmic heartbeat classification using 2D convolutional neural networks. IRBM 2022, 43, 422–433. [Google Scholar] [CrossRef]
- Zairi, H.; Kedir Talha, M.; Meddah, K.; Ould Slimane, S. FPGA-based system for artificial neural network arrhythmia classification. Neural Comput. Appl. 2020, 32, 4105–4120. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, Z.; Zhou, Y.; Wang, N.; Dai, G.; Liu, Q.; Xiao, J.; Xie, Y.; Zhong, Z.; Liu, H.; et al. 4.5 BioAIP: A reconfigurable biomedical AI processor with adaptive learning for versatile intelligent health monitoring. In Proceedings of the 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021; Volume 64, pp. 62–64.
Size | Software | Hardware | |||||
---|---|---|---|---|---|---|---|
Layer | Weight | Output Format | Layer | Weight | Output Format | Result-Reg (Bits) | |
32 × 32 | Input | - | (32, 32, 1) | Input | - | (8, 8, 1) | 64 |
Conv-Valid Binarized Max-Pooling | 3 × 3 × 3 - - | (30, 30, 3) - (15, 15, 3) | MCP | 8 + 10 + 13 | (3, 3, 3) | 27 * | |
DSC-DW | 3 × 3 × 3 | (13, 13, 3) | DSC-DW | 3 × 3 × 3 | (1, 1, 3) | 12 * (3 × 4-bit) | |
DSC-PW BN-DSC Binarized | 1 × 1 × 3 × 18 18 × 4 | (13 ,13 ,18 ) - - | DSC-PW | 126 | (1, 1, 18) | 18 * | |
FC1 BN1 Binarized | 13 × 13 × 18 × 32 32 × 4 - | 32 - - | FC1 | 97,472 | 32 | 416 (32 × 12-bit + 32-bit) | |
FC2 BN2 Softmax | 32 × 5 5 × 4 - | 5 - 5 | FC2 | 180 | 5 | 5 |
Method | Acc (%) | Macro-F1 (%) | Loss | Coperation | |
---|---|---|---|---|---|
No RR | bDSCNN-NoBN | 77.28 | 57.40 | 1.1677 | 13,689 |
interval | bCNN-SC | 96.05 | 86.07 | 0.1425 | 82,134 |
concat | bDSCNN | 95.87 | 85.96 | 0.1474 | 13,689 |
RR | bDSCNN-NoBN | 79.97 | 60.34 | 1.0521 | 13,689 |
interval | bCNN-SC | 96.66 | 89.15 | 0.1096 | 82,134 |
concat | bDSCNN | 96.61 | 89.08 | 0.1099 | 13,689 |
Original | Sen (%) | Ppv (%) | Spec (%) | Two-Class Acc (%) | Five-Class Acc (%) | Macro -F1 (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | S | V | F | Q | ||||||||
N | 12,718 | 98 | 57 | 20 | 57 | 97.82 | 98.21 | 94.07 | 96.96 | |||
S | 134 | 469 | 3 | 0 | 2 | 80.45 | 77.14 | 99.15 | 98.50 | |||
Predicted | V | 102 | 15 | 1410 | 12 | 18 | 95.40 | 90.56 | 99.05 | 98.73 | 96.61 | 89.08 |
F | 29 | 1 | 6 | 125 | 0 | 79.62 | 77.64 | 99.79 | 99.60 | |||
Q | 18 | 0 | 2 | 0 | 1619 | 95.46 | 98.78 | 99.87 | 99.43 |
TCAS-I 2022 [65] | TBioCAS 2019 [25] | IRBM 2022 [69] | TBioCAS-BP 1 2021 [46] | This Work | |
---|---|---|---|---|---|
Convolution Type | 1D | 1D | 2D | 2D | 2D |
Input data Resolution | 16-bit | 11-bit | 8-bit | 1-bit | 1-bit |
No. of Input Samples | 320 | 400 | 64 × 64 | 16 × 20 | 32 × 32 |
No. of Kernels | 120 | 48 | 170 | 16 | 24 |
No. of Kernel Parameters | 10,180 | 4848 | 24,080 | 144 | 108 |
Largest Kernel Size | 1 × 5 | 1 × 15 | 2 × 2 | 3 × 3 | 3 × 3 |
Method | CNN | ANN + CNN | CNN | bCNN | bDSCNN |
Dataset | MIT-BIH | MIT-BIH | MIT-BIH | MIT-BIH | MIT-BIH |
AAMI Standard | No | Yes | No | Yes | Yes |
No. of MACs | 749,620 | 129,969 | |||
Multiplication Precision | float-32 | float-32 | float-32 | 1-bit | 1-bit |
Activation | ReLU | N/A | ReLU | bTanH | Binarized |
(%) | 98.59 | N/A | 96.96 | ||
(%) | N/A | 99.10 | N/A | 98.50 | |
(%) | 99.40 | 97.30 | 98.73 | ||
(%) | N/A | 99.70 | N/A | N/A | 99.60 |
(%) | N/A | 99.85 | N/A | N/A | 99.43 |
Output Classes | 5 | 5 | 5 | 2 | 5 |
Type | TBioCAS 2020 [36] | NCA 2020 [70] | TBioCAS-BP 2021 [46] | TBioCAS-BP 2022 [47] | This Work |
---|---|---|---|---|---|
FPGA | Zynq XC7Z020 | Artix7 | iCE40UP5k | iCE40UP5k | DE1-SoC |
Multiplication Precision | 24-bit Fixed Point | 24-bit Fixed Point | 1-bit | 1-bit | 1-bit |
Dataset | MIT-BIH | MIT-BIH | MIT-BIH | MIT-BIH | MIT-BIH |
Network Type | MLP | MLP | bCNN | MLP + bCNN | bDSCNN |
Additional Extractor Needed | Yes | Yes | No | No | No |
No. of Input Samples | 96 | N/A | 16 × 20 | 55 | 32 × 32 |
DSP Blocks | N/A | 214 | 0 | 8 | 0 |
Hardware Resource | 6600 | 9772 | 4977 | 6620 | 3799 |
Operating Clock (Hz) | 2.5 M | 98.2 M | 100 K | 100 K | 100 K |
Clock Cycles Per Classification | 6298 * | N/A | 1141 | 4794 | 3087 |
Dynamic Power (μW) | N/A | N/A | 26 | 55 | 20 |
Energy Per Classification (nJ) | N/A | N/A | 320.6 | 2839.1 | 617.4 |
Output Classes | 5 | 2 | 2 | 2 | 5 |
(%) | 99.6 ** | 95.0 | 97.3 | 98.5 | 98.7 |
(%) | N/A | N/A | 88.9 | 89.2 | 92.9 |
Acc (%) | 99.7 ** | N/A | N/A | N/A | 96.6 |
Dataset Splitting Method | Acc (%) | No. of Kernels | No. of Kernel Parameters | No. of MACs | Hardware Resources | Clock Cycles per Classification | Energy per Classification (nJ) |
---|---|---|---|---|---|---|---|
Patient-specific | 96.6 | 24 | 108 | 122,697 | 3799 | 3087 | 617 |
Patient-wise | 92.1 | 28 | 120 | 146,357 | 3815 | 3785 | 757 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Zhou, R.; Zhong, Z.; Qi, H.; Wang, Y. A Multi-Class ECG Signal Classifier Using a Binarized Depthwise Separable CNN with the Merged Convolution–Pooling Method. Sensors 2024, 24, 7207. https://doi.org/10.3390/s24227207
Zhang R, Zhou R, Zhong Z, Qi H, Wang Y. A Multi-Class ECG Signal Classifier Using a Binarized Depthwise Separable CNN with the Merged Convolution–Pooling Method. Sensors. 2024; 24(22):7207. https://doi.org/10.3390/s24227207
Chicago/Turabian StyleZhang, Rui, Ranran Zhou, Zuting Zhong, Haifeng Qi, and Yong Wang. 2024. "A Multi-Class ECG Signal Classifier Using a Binarized Depthwise Separable CNN with the Merged Convolution–Pooling Method" Sensors 24, no. 22: 7207. https://doi.org/10.3390/s24227207
APA StyleZhang, R., Zhou, R., Zhong, Z., Qi, H., & Wang, Y. (2024). A Multi-Class ECG Signal Classifier Using a Binarized Depthwise Separable CNN with the Merged Convolution–Pooling Method. Sensors, 24(22), 7207. https://doi.org/10.3390/s24227207