A Study of Downlink Power-Domain Non-Orthogonal Multiple Access Performance in Tactile Internet Employing Sensors and Actuators
Abstract
:1. Introduction
1.1. Research Challenges
1.2. Motivation
1.3. Research Contributions
- We developed an analytical system model incorporating Signal-to-Interference and Noise Ratio (SINR), sum rate, fair Power Allocation (PA) coefficients and latency among the available SISO-NOMA users.
- We compared and analysed BER for SISO-NOMA and OMA schemes with varying path loss exponent and fixed PA coefficients using two- and three-user scenarios. To this end, we compared the achievable sum rate and latency trends for the SISO-NOMA and OMA schemes for fixed PA coefficients.
- The outage probability, achievable sum rate and latency trends are compared and analysed for fixed and fair PA coefficients. To this end, the performance trend of outage probability for SISO-NOMA users in varying fixed PA coefficients is also analysed.
- Finally, the achievable sum rate and latency are compared and analysed between SISO-NOMA and 4 × 4 Multiple-Input Multiple-Output (MIMO) NOMA, incorporating a zero forcing-based beamforming and a round-robin scheduling process.
1.4. Structure of the Article
2. Related Work
3. System Model
3.1. Downlink PD SISO-NOMA Communication Scenario
3.2. SINR Analysis
3.3. Sum Rate Analysis
3.4. Fair PA Analysis
3.5. Beamforming with Scheduling Process for 4 × 4 MIMO Use-Case Scenario Analysis
3.6. Latency Analysis
4. Performance Evaluation
4.1. Simulation Environment
4.2. Simulation Results and Discussion
4.2.1. Performance Comparison and Analysis of Bit Error Rate (BER) Between SISO-NOMA and OMA
4.2.2. Performance Comparison and Analysis of Achievable Sum Rate Between SISO-NOMA and OMA
4.2.3. Performance Analysis of Outage Probability in SISO-NOMA
4.2.4. Performance Comparison and Analysis of Fair PA with Fixed PA
4.2.5. Performance Comparison and Analysis of Latency
4.2.6. Performance Comparison and Analysis of 4 × 4 MIMO Scenario in NOMA
4.3. Model Assessment and Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. A List of Abbreviations
Abbreviation | Explanation | Abbreviation | Explanation |
---|---|---|---|
1G | First Generation | mMTC | Massive Machine Type Communication |
4G | Fourth Generation | MUSA | Multi-User Shared Access |
5G | Fifth Generation | NOMA | Non-Orthogonal Multiple Access |
6G | Sixth Generation | OFDMA | Orthogonal Frequency Division Multiple Access |
AV | Autonomous Vehicle | OMA | Orthogonal Multiple Access |
B5G | Beyond 5G | PA | Power Allocation |
BER | Bit Error Rate | PD | Power Domain |
BS | Base Station | QoS | Quality of Service |
CD | Code Domain | RB | Resource Block |
CSI | Channel State Information | SCMA | Sparse Code Multiple Access |
DL | Downlink | SIC | Successive Interference Cancellation |
eMBB | Enhanced Mobile Broadband | SINR | Signal-to-Interference Noise Ratio |
IoT | Internet of Things | SNR | Signal-to-Noise Ratio |
IRS | Intelligent Reflecting Surface | TI | Tactile Internet |
MEC | Mobile Edge Computing | UL | Uplink |
MIMO | Multiple Input Multiple Output | URLLC | Ultra-Reliable Low Latency Communication |
References
- Fanibhare, V.; Sarkar, N.I.; Al-Anbuky, A. A survey of the tactile Internet: Design issues and challenges, applications, and future directions. Electronics 2021, 10, 2171. [Google Scholar] [CrossRef]
- Fettweis, G.P. The tactile Internet: Applications and challenges. IEEE Veh. Technol. Mag. 2014, 9, 64–70. [Google Scholar] [CrossRef]
- Fettweis, G.; Boche, H.; Wiegand, T.; Zielinski, E.; Schotten, H.; Merz, P.; Hirche, S.; Festag, A.; Häffner, W.; Meyer, M.; et al. The Tactile Internet-ITU-T Technology Watch Report; International Telecommunication Union (ITU): Geneva, Switzerland, 2014; Available online: https://www.itu.int/dms_pub/itu-t/opb/gen/T-GEN-TWATCH-2014-1-PDF-E.pdf (accessed on 25 October 2024).
- Ericsson Mobility Report, Q4 2023 Update. 2024. Available online: https://www.ericsson.com/4923b9/assets/local/reports-papers/mobility-report/documents/2023/emr-q4-2023-update.pdf (accessed on 25 October 2024).
- Cisco annual Internet Report (2018–2023). 2023. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf (accessed on 25 October 2024).
- Series, M IMT Vision–Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond. Recomm. ITU 2015, 2038, 1–21. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf (accessed on 25 October 2024).
- The 3rd Generation Partnership Project (3GPP), Release 16. 2020. Available online: https://www.3gpp.org/specifications-technologies/releases/release-16 (accessed on 25 October 2024).
- Aldababsa, M.; Toka, M.; Gökçeli, S.; Kurt, G.K.; Kucur, O. A tutorial on nonorthogonal multiple access for 5G and beyond. Wirel. Commun. Mob. Comput. 2018, 2018, 9713450. [Google Scholar] [CrossRef]
- Al-Dulaimi, O.M.K.; Al-Dulaimi, A.M.K.; Alexandra, M.O.; Al-Dulaimi, M.K.H. Strategy for non-orthogonal multiple access and performance in 5G and 6G networks. Sensors 2023, 23, 1705. [Google Scholar] [CrossRef]
- Akbar, A.; Jangsher, S.; Bhatti, F.A. NOMA and 5G emerging technologies: A survey on issues and solution techniques. Comput. Netw. 2021, 190, 107950. [Google Scholar] [CrossRef]
- Abd-Elnaby, M.; Sedhom, G.G.; El-Rabaie, E.S.M.; Elwekeil, M. NOMA for 5G and beyond: Literature review and novel trends. Wirel. Netw. 2023, 29, 1629–1653. [Google Scholar] [CrossRef]
- Safia, B.; Abdellatif, K. Performance analysis of the NOMA network under joint hardware impairment and imperfect channel state information. Telecommun. Radio Eng. 2023, 82, 1–20. [Google Scholar] [CrossRef]
- Hussain, M.; Rasheed, H. Nonorthogonal multiple access for next-generation mobile networks: A technical aspect for research direction. Wirel. Commun. Mob. Comput. 2020, 2020, 8845371. [Google Scholar] [CrossRef]
- Tanwar, S.; Tyagi, S.; Budhiraja, I.; Kumar, N. Tactile Internet for autonomous vehicles: Latency and reliability analysis. IEEE Wirel. Commun. 2019, 26, 66–72. [Google Scholar] [CrossRef]
- Gholipoor, N.; Parsaeefard, S.; Javan, M.R.; Mokari, N.; Saeedi, H.; Pishro-Nik, H. Cloud-based queuing model for tactile Internet in next generation of RAN. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Ye, N.; Li, X.; Yu, H.; Wang, A.; Liu, W.; Hou, X. Deep learning aided grant-free NOMA toward reliable low-latency access in tactile Internet of Things. IEEE Trans. Ind. Inform. 2019, 15, 2995–3005. [Google Scholar] [CrossRef]
- Van Truong, T.; Nayyar, A.; Bilal, M.; Kwak, K.S. System design and optimization of mobile edge computing in the NOMA wireless wactile Internet of Things network. Alex. Eng. J. 2023, 73, 737–749. [Google Scholar] [CrossRef]
- Budhiraja, I.; Tyagi, S.; Tanwar, S.; Kumar, N.; Rodrigues, J.J. Tactile Internet for smart communities in 5G: An insight for NOMA-based solutions. IEEE Trans. Ind. Inform. 2019, 15, 3104–3112. [Google Scholar] [CrossRef]
- Reddy, B.S.K.; Mannem, K.; Jamal, K. Software defined radio based non-orthogonal multiple access (NOMA) systems. Wirel. Pers. Commun. 2021, 119, 1251–1273. [Google Scholar] [CrossRef]
- Yahya, H.; Ahmed, A.; Alsusa, E.; Al-Dweik, A.; Ding, Z. Error rate analysis of NOMA: Principles, survey and future directions. IEEE Open J. Commun. Soc. 2023, 4, 1682–1727. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Li, Y.; Shvetsov, A.V.; Varela-Aldás, J.; Mostafa, S.M.; Elfikky, A. A survey of deep learning based NOMA: State of the art, key aspects, open challenges and future trends. Sensors 2023, 23, 2946. [Google Scholar] [CrossRef]
- Sarkar, D.; Yadav, S.S.; Pal, V.; Kumar, N.; Patra, S.K. A comprehensive survey on IRS-assisted NOMA-based 6G wireless network: Design perspectives, challenges and future directions. IEEE Trans. Netw. Serv. Manag. 2024, 21, 2539–2562. [Google Scholar] [CrossRef]
- Apiyo, A.; Izydorczyk, J. A survey of NOMA-aided cell-free massive MIMO systems. Electronics 2024, 13, 231. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Sadiq, M.; Li, Y.; Shvetsov, A.V.; Shvetsova, S.V.; Shafiq, M. NOMA-based VLC systems: A comprehensive review. Sensors 2023, 23, 2960. [Google Scholar] [CrossRef]
- Ogundokun, R.O.; Awotunde, J.B.; Imoize, A.L.; Li, C.T.; Abdulahi, A.T.; Adelodun, A.B.; Sur, S.N.; Lee, C.C. Non-orthogonal multiple access enabled mobile edge computing in 6G communications: A systematic literature review. Sustainability 2023, 15, 7315. [Google Scholar] [CrossRef]
- Khennoufa, F.; Abdellatif, K.; Kara, F. Bit error rate and outage probability analysis for multi-hop decode-and-forward relay-aided NOMA with imperfect SIC and imperfect CSI. AEU-Int. J. Electron. Commun. 2022, 147, 154124. [Google Scholar] [CrossRef]
- Taricco, G. Fair power allocation policies for power-domain non-orthogonal multiple access transmission with complete or limited successive interference cancellation. IEEE Access 2023, 11, 46793–46803. [Google Scholar] [CrossRef]
- Taricco, G. Optimum power allocation for HARQ aided NOMA with proportional fairness on fading channels. IEEE Access 2024, 12, 2327–2339. [Google Scholar] [CrossRef]
- Nasser, A.; Celik, A.; Eltawil, A.M. Joint user-target pairing, power control, and beamforming for NOMA-aided ISAC networks. IEEE Trans. Cogn. Commun. Netw. 2024; early access. [Google Scholar] [CrossRef]
- Ding, Z.; Schober, R.; Poor, H.V. Design of downlink hybrid NOMA transmission. arXiv 2024, arXiv:2401.16965. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, M.; Guo, Q.; Yao, J. Secure beamforming for NOMA-ISAC with system imperfections. IEEE Commun. Lett. 2024, 28, 1559–1563. [Google Scholar] [CrossRef]
- Brovkin, A.A.; Kryukov, Y.V.; Pokamestov, D.A.; Rogozhnikov, E.V.; Shalin, G.N.; Shinkevich, A.S. Scheduling PD-NOMA with round-robin, equal-rate and proportional-fair strategies. In Proceedings of the International Siberian Conference on Control and Communications (SIBCON), Tomsk, Russia, 17–19 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- He, J.; Tang, Z.; Tang, Z.; Chen, H.H.; Ling, C. Design and optimization of scheduling and non-orthogonal multiple access algorithms with imperfect channel state information. IEEE Trans. Veh. Technol. 2018, 67, 10800–10814. [Google Scholar] [CrossRef]
- MATLAB. Available online: https://au.mathworks.com/products/matlab.html (accessed on 25 October 2024).
Parameter | Value |
---|---|
Users 1, 2 and 3 distance from BS | 1000, 500 and 200 metres, respectively |
For a two-user scenario, PA coefficients ( & ) | (70% & 30%) and (80% & 20%), respectively |
For a three-user scenario, PA coefficients (, & ) | (70%, 20% & 10%) and (76%, 16% and 8%), respectively |
Modulation scheme | Binary phase shift keying (BPSK) |
Path loss exponent () | 2 and 4 |
Channel | Rayleigh Fading |
Number of OFDM subcarriers | 128 |
Packet size | 128 bytes |
Noise | AWGN |
System bandwidth | 1 GHz |
Power transmitted from BS | 40 dBm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanibhare, V.; Sarkar, N.I.; Al-Anbuky, A. A Study of Downlink Power-Domain Non-Orthogonal Multiple Access Performance in Tactile Internet Employing Sensors and Actuators. Sensors 2024, 24, 7220. https://doi.org/10.3390/s24227220
Fanibhare V, Sarkar NI, Al-Anbuky A. A Study of Downlink Power-Domain Non-Orthogonal Multiple Access Performance in Tactile Internet Employing Sensors and Actuators. Sensors. 2024; 24(22):7220. https://doi.org/10.3390/s24227220
Chicago/Turabian StyleFanibhare, Vaibhav, Nurul I. Sarkar, and Adnan Al-Anbuky. 2024. "A Study of Downlink Power-Domain Non-Orthogonal Multiple Access Performance in Tactile Internet Employing Sensors and Actuators" Sensors 24, no. 22: 7220. https://doi.org/10.3390/s24227220
APA StyleFanibhare, V., Sarkar, N. I., & Al-Anbuky, A. (2024). A Study of Downlink Power-Domain Non-Orthogonal Multiple Access Performance in Tactile Internet Employing Sensors and Actuators. Sensors, 24(22), 7220. https://doi.org/10.3390/s24227220