Mangrove Extraction Algorithm Based on Orthogonal Matching Filter-Weighted Least Squares
Abstract
:1. Introduction
2. Research Region and Data
2.1. Overview of the Study Area
2.2. Data Sources
3. Processing Flow and Algorithm Framework
3.1. Technical Route
3.2. Band Expansion
3.3. Traditional Algorithms
3.3.1. Orthogonal Subspace Projection Method
3.3.2. Matched Filter
3.4. Orthogonal Matching Filter-Weighted Least Squares Algorithm
3.4.1. Data Preprocessing
- No correlation between features.
- The variance of all features is equal to 1.
- Reduced dimensionality.
3.4.2. Algorithm Flow
3.4.3. Weighted Least Squares Filtering Algorithm
3.5. Otsu’s Algorithm
4. Results Analysis and Accuracy Evaluation
4.1. Detection Accuracy Metrics
4.2. Comparison of Region Selection and Methods
4.3. Precision Assessment
- The proposed algorithm shows the best performance in area A and outperforms the other algorithms, with all four metrics exceeding 98%. The CEM algorithm ranks second, with all metrics above 89%.
- In area B, the proposed algorithm in this paper shows the best overall performance, with all metrics above 88%. The ACE algorithm performs best in the PA metric, with the MF algorithm ranking second.
- In area C, the proposed algorithm shows the best overall performance, with all metrics above 91%. The MLE algorithm has the second-best performance.
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sievers, M.; Brown, C.J.; McGowan, J.; Turschwell, M.P.; Buelow, C.A.; Holgate, B.; Pearson, R.M.; Adame, M.F.; Andradi-Brown, D.A.; Arnell, A.; et al. Co-occurrence of biodiversity, carbon storage, coastal protection, and fish and invertebrate production to inform global mangrove conservation planning. Sci. Total. Environ. 2023, 904, 166357. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Gu, J.D. Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities. Int. Biodeterior. Biodegrad. 2021, 162, 105248. [Google Scholar] [CrossRef]
- Pattanaik, C.; Prasad, S.N. Assessment of aquaculture impact on mangroves of Mahanadi delta (Orissa), East coast of India using remote sensing and GIS. Ocean Coast. Manag. 2011, 54, 789–795. [Google Scholar] [CrossRef]
- Eyzaguirre, I.A.; Iwama, A.Y.; Fernandes, M.E. Integrating a conceptual framework for the sustainable development goals in the mangrove ecosystem: A systematic review. Environ. Dev. 2023, 100895. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Z.; Sheng, Y.; Zhou, Y. Remote sensing applications in monitoring of protected areas. Remote Sens. 2020, 12, 1370. [Google Scholar] [CrossRef]
- Du, Q.; Ren, H.; Chang, C.I. A comparative study for orthogonal subspace projection and constrained energy minimization. IEEE Trans. Geosci. Remote. Sens. 2003, 41, 1525–1529. [Google Scholar]
- Zhao, J.; Wang, G.; Zhou, B.; Ying, J.; Liu, J. SRA-CEM: An improved CEM target detection algorithm for hyperspectral images based on sub-region analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 6026–6037. [Google Scholar] [CrossRef]
- Parker, M.; Annamdevula, N.S.; Pleshinger, D.; Ijaz, Z.; Jalkh, J.; Penn, R.; Deshpande, D.; Rich, T.C.; Leavesley, S.J. Comparing performance of spectral image analysis approaches for detection of cellular signals in time-lapse hyperspectral imaging fluorescence excitation-scanning microscopy. Bioengineering 2023, 10, 642. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, F.; Yong, M.; Liu, J.; Li, X. Research on automatic extraction method for coastal aquaculture area using Landsat8 data. Remote Sens. Land Resour. 2018, 30, 96–105. [Google Scholar]
- Pacheco, C.F.; Queiroz, H.M.; Mazzuco, A.C.A.; Nóbrega, G.N.; Ferreira, T.O.; Bernardino, A.F. Soil greenhouse gas emissions from dead and natural mangrove forests in Southeastern Brazil. Mar. Pollut. Bull. 2024, 203, 116487. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Song, K.; Zhao, C.; Wang, C.; Xiao, X.; Wang, Y. Mapping global distribution of mangrove forests at 10-m resolution. Sci. Bull. 2023, 68, 1306–1316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, X.; Wang, Z.; Zhang, T.; Liu, X. Remote sensing based spatial-temporal monitoring of the changes in coastline mangrove forests in China over the last 40 years. Remote Sens. 2021, 13, 1986. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, W.; Zhang, Z.; Huang, H.; Meng, L. Urban land use land cover classification based on GF-6 satellite imagery and multi-feature optimization. Geocarto Int. 2023, 38, 2236579. [Google Scholar] [CrossRef]
- Yilmaz, V.; Serifoglu Yilmaz, C.; Güngör, O.; Shan, J. A genetic algorithm solution to the gram-schmidt image fusion. Int. J. Remote Sens. 2020, 41, 1458–1485. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, X.; Li, Y.; Yan, K.; Zhang, F.; Yang, S.; Yang, J. Monitoring Environment Transformation Along the BTIC Railway Based on Remote Sensing by Utilizing the R_RSEI. Photogramm. Eng. Remote Sens. 2022, 88, 517–525. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, W. Monitoring and evaluation of eco-environment quality based on remote sensing-based ecological index (RSEI) in Taihu Lake Basin, China. Sustainability 2022, 14, 5642. [Google Scholar] [CrossRef]
- Teeuwen, R.; Milias, V.; Bozzon, A.; Psyllidis, A. How well do NDVI and OpenStreetMap data capture people’s visual perceptions of urban greenspace? Landsc. Urban Plan. 2024, 245, 105009. [Google Scholar] [CrossRef]
- Özelkan, E. Water body detection analysis using NDWI indices derived from Landsat-8 OLI. Pol. J. Environ. Stud. 2020, 29, 1759–1769. [Google Scholar] [CrossRef]
- Wall, M.E.; Rechtsteiner, A.; Rocha, L.M. Singular value decomposition and principal component analysis. In A Practical Approach to Microarray Data Analysis; Springer: Boston, MA, USA, 2003; pp. 91–109. [Google Scholar]
- Elliott, M.A.; Walter, G.A.; Swift, A.; Vandenborne, K.; Schotland, J.C.; Leigh, J.S. Spectral quantitation by principal component analysis using complex singular value decomposition. Magn. Reson. Med. 1999, 41, 450–455. [Google Scholar] [CrossRef]
- Yu, C.; Lee, L.-C.; Chang, C.-I.; Xue, B.; Song, M.; Chen, J. Band-Specified Virtual Dimensionality for Band Selection: An Orthogonal Subspace Projection Approach. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2822–2832. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Patil, P.P.; Jagtap, M.P.; Khatri, N.; Madan, H.; Vadduri, A.A.; Patodia, T. Exploration and advancement of NDDI leveraging NDVI and NDWI in Indian semi-arid regions: A remote sensing-based study. Case Stud. Chem. Environ. Eng. 2024, 9, 100573. [Google Scholar] [CrossRef]
- Jayaram, C.; Patidar, G.; Swain, D.; Chowdary, V.; Bandyopadhyay, S. Total suspended matter distribution in the Hooghly river estuary and the Sundarbans: A remote sensing approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9064–9070. [Google Scholar] [CrossRef]
- Chang, C.I. Orthogonal subspace projection (OSP) revisited: A comprehensive study and analysis. IEEE Trans. Geosci. Remote Sens. 2005, 43, 502–518. [Google Scholar] [CrossRef]
- Chang, C.I.; Chen, J. Orthogonal subspace projection using data sphering and low-rank and sparse matrix decomposition for hyperspectral target detection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8704–8722. [Google Scholar] [CrossRef]
- Minet, J.; Taboury, J.; Goudail, F.; Péalat, M.; Roux, N.; Lonnoy, J.; Ferrec, Y. Influence of band selection and target estimation error on the performance of the matched filter in hyperspectral imaging. Appl. Opt. 2011, 50, 4276–4285. [Google Scholar] [CrossRef]
- Shi, Z.; Yang, S.; Jiang, Z. Target detection using difference measured function based matched filter for hyperspectral imagery. Opt.-Int. J. Light Electron Opt. 2013, 124, 3017–3021. [Google Scholar] [CrossRef]
- Wang, C.; Tindemans, S.H.; Palensky, P. Improved Anomaly Detection and Localization Using Whitening-Enhanced Autoencoders. IEEE Trans. Ind. Inform. 2023, 20, 659–668. [Google Scholar] [CrossRef]
- Deshpande, S.S. Bank Line Extraction by Integration of Orthoimages and Lidar Digital Elevation Model Using Principal Component Analysis and Alpha Matting. Photogramm. Eng. Remote Sens. 2024, 90, 631–638. [Google Scholar] [CrossRef]
- Kessy, A.; Lewin, A.; Strimmer, K. Optimal whitening and decorrelation. Am. Stat. 2018, 72, 309–314. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, D.; Zeng, L.; Li, Z. Weighted least square filter via deep unsupervised learning. Multimed. Tools Appl. 2024, 83, 31361–31377. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 11, 23–27. [Google Scholar] [CrossRef]
- Fung, T.; LeDrew, E. For change detection using various accuracy. Photogramm. Eng. Remote Sens. 1988, 54, 1449–1454. [Google Scholar]
- Liu, C.; Frazier, P.; Kumar, L. Comparative assessment of the measures of thematic classification accuracy. Remote Sens. Environ. 2007, 107, 606–616. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, H.; Lin, H.; Fang, C. Textural–Spectral Feature-Based Species Classification of Mangroves in Mai Po Nature Reserve from Worldview-3 Imagery. Remote Sens. 2016, 8, 24. [Google Scholar] [CrossRef]
- Alavipanah, S.K.; Karimi Firozjaei, M.; Sedighi, A.; Fathololoumi, S.; Zare Naghadehi, S.; Saleh, S.; Naghdizadegan, M.; Gomeh, Z.; Arsanjani, J.J.; Makki, M.; et al. The Shadow Effect on Surface Biophysical Variables Derived from Remote Sensing: A Review. Land 2022, 11, 2025. [Google Scholar] [CrossRef]
- Chang, C.I. Constrained Energy Minimization (CEM) for Hyperspectral Target Detection: Theory and Generalizations. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5522921. [Google Scholar] [CrossRef]
Feature Information | Feature Index | Mathematical Expression |
---|---|---|
Spectral Features | NDVI | |
EVI | ||
NDWI | ||
TSM |
Area A | ||||||
---|---|---|---|---|---|---|
Metrics | OMF-WLS | OMF | MF | CEM | ACE | MLE |
OA | 0.99366 | 0.95702 | 0.94834 | 0.96379 | 0.90774 | 0.93233 |
AA | 0.98761 | 0.95496 | 0.93621 | 0.92454 | 0.81986 | 0.85944 |
PA | 0.99702 | 0.87755 | 0.87412 | 0.99644 | 0.93829 | 0.98994 |
Kappa | 0.98233 | 0.88436 | 0.85917 | 0.89442 | 0.71469 | 0.79322 |
Area B | ||||||
---|---|---|---|---|---|---|
Metrics | OMF-WLS | OMF | MF | CEM | ACE | MLE |
OA | 0.98256 | 0.97988 | 0.95222 | 0.90389 | 0.90925 | 0.94142 |
AA | 0.98161 | 0.97975 | 0.93275 | 0.85014 | 0.85781 | 0.90857 |
PA | 0.96678 | 0.95847 | 0.96839 | 0.99611 | 0.99997 | 0.99838 |
Kappa | 0.96000 | 0.95397 | 0.88727 | 0.75997 | 0.77409 | 0.85839 |
Area C | ||||||
---|---|---|---|---|---|---|
Metrics | OMF-WLS | OMF | MF | CEM | ACE | MLE |
OA | 0.98682 | 0.98644 | 0.94060 | 0.96824 | 0.92683 | 0.97953 |
AA | 0.96329 | 0.96332 | 0.94219 | 0.89635 | 0.85074 | 0.93159 |
PA | 0.98095 | 0.97773 | 0.73395 | 0.99179 | 0.76160 | 0.99959 |
Kappa | 0.94696 | 0.94552 | 0.79087 | 0.86376 | 0.70891 | 0.91461 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ma, J.; Fu, D.; Yuan, J.; Liu, D. Mangrove Extraction Algorithm Based on Orthogonal Matching Filter-Weighted Least Squares. Sensors 2024, 24, 7224. https://doi.org/10.3390/s24227224
Li Y, Ma J, Fu D, Yuan J, Liu D. Mangrove Extraction Algorithm Based on Orthogonal Matching Filter-Weighted Least Squares. Sensors. 2024; 24(22):7224. https://doi.org/10.3390/s24227224
Chicago/Turabian StyleLi, Yongze, Jin Ma, Dongyang Fu, Jiajun Yuan, and Dazhao Liu. 2024. "Mangrove Extraction Algorithm Based on Orthogonal Matching Filter-Weighted Least Squares" Sensors 24, no. 22: 7224. https://doi.org/10.3390/s24227224
APA StyleLi, Y., Ma, J., Fu, D., Yuan, J., & Liu, D. (2024). Mangrove Extraction Algorithm Based on Orthogonal Matching Filter-Weighted Least Squares. Sensors, 24(22), 7224. https://doi.org/10.3390/s24227224