A Comprehensive Review of Biomarker Sensors for a Breathalyzer Platform
Abstract
:1. Introduction
Disease | VOC Biomarker | Sample Source | Concentration (Normal) | Concentration (Diseased) | Reference |
---|---|---|---|---|---|
Neurological Diseases | |||||
Alzheimer’s Disease | 1,1-oxybis-octane, 1-chloro-nonadecane, 1-methyl-2-(1-methylethyl)-benzene, 1-methylpropyl-cyclooctane, 2,2,4,6,6-pentamethyl-heptane, 2,2-dimethylpropanoic acid, 2,3-dimethyl-heptane, 2,3,5-trimethyl-hexane, 2,4-dimethyl-1-heptene, 2,5,6-trimethyl-octane, 2,6,10-trimethyl-dodecane, 2,6,10,14-tetramethyl-hexadecane, 2,6-octadien-1-ol, 2-butyl-1-octanol, 2-ethylhexyl tetradecyl ester, 3-ethyl-2,2-dimethyl-pentane, 3,7-dimethyl-decane, 3,7-dimethyl-propanoate (E), 4-methyl-octane, 5-ethyl-2-methyl-octane, Butylated HydroxyToluene, Dodecane, Formaldehyde, Oxalic Acid, Propyl-Benzene, Styrene | Breath | 0.2–0.8 ppb | 1.0–2.5 ppb | [16,17] |
Parkinson’s Disease | 1-Methyl-3-(1-Methylethyl)-Benzene, 2,3-Dimethyl-Heptane, 2,3,5-Trimethyl-Hexane, 2,3,6,7-Tetramethyl-Octane, 3,7-Dimethyl-Decane, 5-Ethyl-2-Methyl-Octane, Butylated Hydroxytoluene, Decamethyl-Cyclopentasiloxane, Ethylbenzene, Hexadecane, Styrene | Breath | 0.2–0.8 ppb | 1.0–2.5 ppb | [16,17] |
Multiple Sclerosis | 5-Methyl-Undecane, Hexanal | Breath | 0.022–0.026 ppm | 0.009–0.01 ppm | [16,18] |
Epilepsy | 2-Acetyl-Pyrroline, 2-Acetylpyrrole, 2-Butanone, 2-Heptanone, 2-Pentanone, 2,3,5-Trithiahexane, 3,4-Dehydro-Exo-Brevicomin, Acetophenone, Dimethyl Trisulfide, Disulfide, Menthone, Methanethiol, Methane, Nitro-, Trimethylamine | Feces, Saliva, Urine | Not Reported | Not Reported | [19] |
Malignant Diseases | |||||
Lung Cancer | 1-(1-Ethoxyethoxy)-pentane, 1,1-Diethoxy-3-methylbutane, 1-Butanol, 1-Ethyl-2-methylbenzene, 1-Hexadecylindane, 1-Propanol, 1,2,4-Trimethylbenzene, 1,4-Pentadiene, 2,2-Dimethyl-hexanal, 2,2,6-Trimethyloctane, 2,3,3-Trimethylpentane, 2,3,5-Trimethylhexane, 2,4-Decadien-1-ol, 2,4-Dimethyl-1-heptene, 2,4-Dimethylheptane, 2,4-Dimethylundecane, 2,5-Dimethyl-furan, 2-Butanol, 2-Butanone, 2-Ethyl-1-hexanol, 2-Ethyldodecanal, 2-Ethyldodecanol, 2-Heptanone, 2-Hydroxyacetaldehyde, 2-Methyl-1-decanol, 2-Methyl-2-butenal, 2-Methylbutanal, 2-Methylbutane, 2-Methylfuran, 2-Methylheptane, 2-Methylpentane, 2-Methylpropanal, 2-Pentanone, 2-Phenyl-2-Butanone, 3,4-Dimethylheptane, 3,7-Dimethyl-decane, 3-Heptanone, 3-Hydroxy-2-butanone, 3-Methyl-3-Hexanol, 3-Methylbutanal, 3-Octanone, 4-Heptanone, 4-Methyloctane, Acetaldehyde, Acetone, Acetic acid, Acetonitrile, Amphetamine, Benzaldehyde, Benzene, Butanal, Butane, Butanoic acid, Butyl acetate, Cyclohexane, Cyclohexanol, Cyclohexanone, Decanal, Dodecane, Dimethyl sulfide (dimethyl sulphide), Dimethyl trisulfide, Dimethylsilanediol, Eicosenamide, Ethanol, Ethyl acetate, Ethylbenzene, Formaldehyde, Heptadecane, Heptanal, Heptane (n-heptane), Hexanal, Hexane, Hydrogen cyanide, Hydrazine, Interleukin-6, Isobutane, Isoprene, Linear and branched hydrocarbons C8–C24, Methyl acetate, Methyl vinyl ketone, Methylcyclopentane, Methacrylaldehyde, Methane, Methanol (methyl alcohol), Methanethiol, Naphthalene, Octanal, o-Xylene, Pentanal, Pentane (n-pentane), Pentamethyl heptane, Pentene, Phenol, p-Cresol, p-Xylene, Propanal, Propane, Propanol, Propene, Propionaldehyde, Propylbenzene (n-propyl benzene), Styrene, Thymol, Thiophene, Tetradecane, Tetrahydrofuran, Toluene (methylbenzene), trans-2-Hexenal, trans-2-Heptenal, trans-2-Nonenal, Trimethylamine, Trimethylbenzene, Undecane, 3,4-dehydro-exo-brevicomin | Breath, Blood, Urine | <35 ppb | Not Reported | [16,17,20,21,22,23,24,25,26,27,28,29] |
Pancreatic Cancer | 1-(Methylthio)-Propane, 1-Butanol, 1-Decene, 1-Heptene, 1-Nonene, 1-Octene, 2-Butanone, 2-Ethyl-1-Hexanol, 2-Nonene, 2-Pentanone, 2,6-Dimethyl-Octane, Acetaldehyde, Acetone, Acetone Dimer, Acetoin, Amylene Hydrate, Ammonia, Acrylonitrile, Benzaldehyde, Benzene, Butoxymethylbenzene, Carbon Disulfide, Dimethyl Sulfide, Ethane, Ethanol, Formaldehyde, Hydrogen Sulfide, Isoprene, Isopropyl Alcohol, n-Hexane, Nitro-, Nonanal, Pentane, Pentylbenzene, Sulfur Dioxide, Tetradecane, To1uene, Triethylamine, Trimethylamine (TMA) | Bile, Blood, Breath, Urine | 1–5 ppb | >5 ppb | [30,31,32,33,34,35,36,37,38] |
Gastric Cancer | 1,2,3-Trimethylbenzene, 1,3-Dioxolan-2-One, 1,3-Dioxolane-2-Methanol, 1,3-Propanediol, 1-Hexanol, 2-Butoxy-Ethanol, 2-Ethyl-1-Hexanol, 2-Methylhexane, 2-Methylpentane, 2-Pentyl Acetate, 2-Propanol, 2-Propenenitrile, 3-Methyl-2-Pentanone, 3-Methylhexane, 3-Methylpentane, 4-Ethyl Guaiacol, 4,5-Dimethyl-Nonane, 4-Methyl-3-Hexanone, Acetic Acid, Aceticamide, Acetone, Butanal, Butanoic Acid, Decanal, Decene, Dodecane, Dimethyl Disulphide, Ethanol, Ethylene, Furfural, Heptanal, Hexadecane, Hexanal, Hexanol, Isoprene, Menthol, Methyl Phenol, Methylisobutylketone, Naphthalene, Nonanal, Octanal, Pentanal, Pentanoic Acid, Phenol, Phenyl Acetate, Phenylacetic Acid, p-Cresol, Pivalic Acid, Propanal, Styrene, Tetradecane, Thiophene, Tolualdehyde, m-Xylene | Breath | 1–116 ppb | >200 ppb | [20,39,40,41,42] |
Head and Neck Cancer | 1-Butanol, 1-Decen-3-One, 1-Heptene, 1-Methyl-4-2-Methylpropyl-Benzene, 1,1,4,5,6-Pentamethyl-2,3-Dihydro-1H-Indene, 1,3-Bis-(1,1-Dimethylethyl)-Benzene, 2-Butanone, 2-Ethenylfuran, 2-Ethyl-1-Hexanol, 2-Methyl-5-(Methylthio)Furan, 2-Methylbutanal, 2-Methylbutanoic Acid, 2-Methylfuran, 2,2-Dimethyl-Decane, 2,2-Dimethyl-Propanoic Acid, 2,3-Dichloro-Benzeneamine, 2,4-Dimethylfuran, 2,5-Dimethylfuran, 2,6-Dimethyl-7-Octen-2-Ol, 3-Heptanone, 3-Hexanone, 3-Methyl-2-Pentanone, 3-Methylbutanal, 3-Methylfuran, 4-Ethyl-1,3-Benzenediol, 4-Heptanone, 4,6-Dimethyl-Dodecane, 4-Methyl-2-Heptanone, 4-Tolualdehyde, Acetic Acid, Acetone, Benzaldehyde, Benzyl Alcohol, Benzyl Chloride, Camphor, Decamethylcyclopentasiloxane, Dodecane, Dimethyl Disulphide, Dimethyl Trisulfide, Ethylbenzene, Furan, Hydrogen Cyanide, Hexanal, Hexanone, Isoprene, Linalool, Limone, Methyl Ethyl Ketone, Methyl Methacrylate, 2-Methylthiophene, Nonanal, Octanal, p-Cresol, p-Xylene, Phenol, Propanal, Styrene, Tetrahydrolinalool, Terpinolen, Thiophene, Trans-Calamenene, Toluene | Breath, Urine | >1 pbb | <1 pbb | [16,43,44,45] |
Breast Cancer | 1,1,3,3-Tetramethylurea, 2-Butanone, 2-Butyloctanol, 2-Cyclohexen-1-One, 2-Dodecanone, 2-Ethyl-1-Hexanol, 2-Butoxy-ethanol, 2-Heptanone, 2-Methylbutanoic Acid, 2-Methyl-1,2-Bis(Trimethylsiloxy)-Propane, 2-Methyl-1-Propenylbenzene, 2-Methylfuran, 2-Nonanone, 2-Pentanone, 2-Pentylfuran, 2,2-Dimethylbutane, 2,2-Dimethyl Decane, 2,3-Dimethylhexane, 2,4-Dimethylbenzaldehyde, 2,5-Dimethylfuran, 2,6-Dimethyl-2,4,6-Octatriene, 3,3-Dimethyl Pentane, 3,4-Dimethyl-2,4,6-Octatriene, 3,4-Dimethyl-2-Hexanone, 3-Hexanone, 3-Methyl-2-Heptanone, 3-Methyl-3-Buten-1-Ol, 3-Methyl-3-Butenol, 3-Methylpyridine, 3-Methoxy-1,2-Propanediol, 4-Ethyl-1,3-Benzenediol, 4-Hydroxybutanoic Acid, 4-Methyl-2-Heptanone, 5-Butylnonane, 5-Methyl-3-Hexanol, Alkanes, Allyl Isothiocyanate, Ammonium Thiocyanate, Acetic Acid, Acetaldehyde, Acetone, Acetophenone, Benzaldehyde, Benzenecarboxylic Acid, Benzoic Acid, Benzophenone, Benzocyclobutene, Benzyl Alcohol, Butyl Acetate, Cadalene, Carbon Disulphide, Cyclohexanol, Cyclohexanecarboxylic Acid, Cyclohexanone, Cyclooctylmethanol, Cyclopentane, Cyclopentanone, D-Limonene, Decanoic Acid, Dodecane, Dimethyl Disulfide, Dimethyl Trisulfide, Dimethylacetamide, Ethanol, Ethyl Acetate, Ethyl Benzene, Ethyl Ether, Ethyl Propanoate, Ethylene Carbonate, Furan, Furfural, Guaiacol, Heptanoic Acid, Hexadecane, Hexanal, Hexanoic Acid, Hexamethyldisilane, Isobutyric Acid, Isoprene, Isoterpinolene, L-Alanine, L-Isoleucine, L-Proline, Limonene, Menthomenthol, Menthol, Methanol, Methanethiol, Methyl Acetate, Methyl Chloride, Methyl Salicylate, Methylacrylic Acid, Naphthalene, Nonanal, Octanoic Acid, Pentane, Pentanoic Acid, Phellandranal, Phenol, Polycyclic Aromatic Hydrocarbons, Prehnitene, Propanal, Propanoic Acid, Pyrrolidine, Styrene, Tetradecane, Tetrahydrolinalool, Tetramethylsilicane, Toluene, Trans-2-Butene Oxide, Trimethyl Trisulfide, 1,2-Propanediol, 1,2,4-Trimethylbenzene, 1,3-Dimethylbenzene, 1,4-Cineole, 1,4-Dimethoxy-2,3-Butanediol, 1,5-Cyclohexadiene, 1-Hexadecanol, 1-Octanol, 1-Propanol, 2,2-Dimethylbutane, 2,3,4-Trimethylheptane, 2,3,6-Trimethyloctane, 2-Ethenylfuran, 2-Methoxythiophene, 3-Ethylcyclopentanone, 3-Methyl-2-Pentanone, 3-Methylfuran, 3-Methylthiophene, 4,6-Dimethyl-Dodecane, 4-Methyl-2-Hexanone, 6-Methyl-5-Hepten-2-One, α-Pinene, α-Terpinolene. | Breath, Cell Lines, Urine | 4–10 ppm | 8–50 ppm | [16,20,29,39,46,47,48] |
Colon Cancer | 1,1,4,4-Tetramethyl-2,5-Dimetylene-Cyclohexane, 1,2-Dihydro-1,1,6-Trimethyl-Naphthalene, 1,2-Pentadiene, 1-Octanol, 1,3-Dimethylbenzene, 1,4-Dimethylbenzene, 1,3-Bis(1-Methylethenyl) Benzene, 2-Amido-5-Isopropyl-8-Methyl-1-Azulenecarbonitrile, 2-Ethylhexanol, 2-Methyl-3-Phenyl-2-Propenal, 2,2-Dimethyldecane, 2,7-Dimethylquinoline, 3-Ethylpentane, 3-Hydroxy-2,4,4-Trimethylpentyl 2-Methylpropanoate, 3-Methylpentane, 4-Ethyl-1-Octyn-3-Ol, 4-Methyl-2-Pentanone, 4-Methylphenol, 4-Methyloctane, 6,10-Dimethyl-5,9-Undecadien-2-One, 6-t-Butyl-2,2,9,9-Tetramethyl-3,5-Decadien-7-Yne, 6-t-Butyl-2,2,9,9-Tetramethyl-3,5-Decadien-7-Yne, Acetic Acid, Acetaldehyde, Acetone, Acetyloxime-Pyridine Carboxaldehyde, Allylisothiocyanate, Ammonia, Anisole, Benzoic Acid, Benzaldehyde, Butanol, Butanoic Acid, Butyl Hydroxy Toluene, Butylated Hydroxytoluene, Carbon Disulfide, Cyclohexane, Cyclohexanone, Cyclooctylmethanol, Dodecane, Dodecanoic Acid, Ethanol, Ethyl Acetate, Ethylbenzene, Ethylhexanol, Ethylaniline, Hexana, Heptanal, Hydrogen Sulphide, Indole, Methylbenzene, Methylcyclopentane, Methylcyclohexane, Nonanal, Octanoic Acid, Pentanoic Acid, Phenol, p-Cymene, Propanal, Propanol, Tetradecane, Tridecane. | Breath, Blood, Feces, Urine | Not Reported | Not Reported | [16,20,48,49] |
Prostate Cancer | 1-(2,4-Dimethylphenyl)-3-(Tetrahydrofuryl-2)Propane, 2-Acetylpyridine, 2-Butanone, 2-Eethylhexanol, 2-Hexanone, 2-Pentanone, 2,2-Dimethyl Decane, 2,5-Dimethylbenzaldehyde, 3-Carene, 3,5-Dimethylbenzaldehyde, 3-Methylphenol (m-Cresol), Acetaldehyde, Aldehydes, Estradiol, Furan, Hexanal, Indole, Isoterpinolene, Linalool, Methyl Butyrate, Phenol, Phenylacetaldehyde, Phenylpropionaldehyde, Pentanal, Propyl Propionate, Theaspirane, Terpinen-4-ol, Toluene, p-Xylene, 2,6-Dimethyl-7-Octen-2-Ol, 2-Amino-5-Isopropyl-8-Methyl-1-Azulenecarbonitrile. | Breath, Urine | Not Reported | Not Reported | [16,20,50,51,52] |
Liver Cancer | 1-Octen-3-Ol, 1,4-Pentadiene, Acetic Acid, Acetone, Allyl Methyl Sulfide, Camphene, Cyclopentane, Dimethyl Sulfide, Ethanol, Hexanal, Methane-Sulfonyl Chloride, Methylene Chloride, Octane, Phenol, 2-Pentanone, 2,3-Di-Hydro-Benzofuran | Breath, Blood | 0.5–1.5 ppb | 1.0–4.5 ppb | [16,17,53] |
Gastro-Esophageal Cancer | Acetaldehyde, Acetone, Acetic Acid, Ethanol, Ethyl Phenol, Formaldehyde, Hexanoic Acid, Hydrogen Cyanide, Hydrogen Sulfide, Methanol, Methyl Phenol, Phenol, Propanol. | Breath, Urine | 1–28 ppbv | >28 ppbv | [25,42,54] |
Leukemia | 2,4-Dimethylheptane, Benzene, 4-Methyl decane, Chloroform, 3,7-Dimethyl dodecane, Hexanol, Cyclohexanol, Hexadecane, p-Cresol, Dimethyl Disulphide | Cell Lines, Urine | Low Levels | 2× to 3× higher | [50,55,56] |
Renal Cell Carcinoma | 2-Oxopropanal, (1Z)-1-Propen-1-ylbenzene (a-methylstyrene), 2,5,8-Trimethyl-1,2,3,4-tetrahydronaphthalen-1-ol, [(3S,8R,9S,10R,13S,14S)-10,13-Dimethyl-17-oxo-1,2,3,4,7,8,9,11, 12,14,15,16-dodecahydrocyclopenta[a]phenanthren-3-yl] hydrogen sulphate (DHEA-S), 2-Oxopropanal (Pyruvaldehyde), 2-Methylpropan-2-ol, 2-Ethoxy-2-methylpropane, 2-Methylpropan-1-ol (Isobutanol), 2-Methylbutan-2-ol, Pentane-2-one, 2,2,5,5-Tetramethyltetrahydrofuran, 1-Methyl-1,4-cyclohexadiene, 4-Methylheptan-2-one, Phenol, 2-Pentylfuran†, 3,7,7-Trimethylcyclohept-3-ene (2-Carene), 2,2-Dimethylpropionic acid butyl ester, 6-Methyl-5-hepten-2-ol, 1-Methyl-4-(1-methylethenyl)-cyclohexene (Limonene), 1,2,3,4-Tetrahydro-1,5,7-trimethylnaphthalene†, 1-(2-Methylphenyl)-2-propen-1-one, 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN), 2-Methoxy-4-prop-2-enylphenol (Eugenol), (E)-1-(2,3,6-Trimethylphenyl)buta-1,3-diene, 1,1,5,6-Tetramethyl-1,2-dihydronaphthalene, 2,5,8-Trimethyl-1,2,3,4-tetrahydronaphthalen-1-ol, [(2E,4E,6E,8E)-3,7-dimethyl9-(2,6,6-trimethylcyclohexen-1-yl)nona-2,4,6,8-tetraenyl] acetate (Retinol acetate), [(3S,8R,9S,10R,13S,14S)-10,13-Dimethyl-17-oxo1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a] phenanthren-3-yl] hydrogen sulphate (DHEA-S) | Urine | Not Reported | Not Reported | [57] |
Metabolic Diseases | |||||
Diabetes | Acetone, Isoprene, Isopropanol, Ethanol, Methyl nitrate | Breath | 0.85–1.8 ppm | 0.39–0.8 ppm | [16,17,20,25] |
Hyperglycemia | Ethylbenzene, Methyl Nitrate, Xylene | Breath | Not Reported | Not Reported | [16] |
Phenylketonuria | Phenylacetic acid | Sweat, Urine, Skin | Not Reported | Not Reported | [16] |
Methionine Malabsorption Syndrome | α-hydroxybutyric acid | Breath, Skin | Not Reported | Not Reported | [16] |
Hypermethioninemia | Dimethyl Sulfide | Breath, Urine | Not Reported | Not Reported | [16] |
Trimethylaminuria | Trimethylamine | Breath, Sweat | Not Reported | Not Reported | [16] |
Other Diseases | |||||
Asthma | 2-Hexanone, 3,6-Dimethyldecane, 8-Isoprostane, Ammonia, Decane, Ethane, H2O2, Hexane, Nonal, Nonane, Pentane, Propanol, Tetradecane | Breath | 8–16 ppm | 10–30 ppm | [16,20,25,46] |
Chronic Obstructive Pulmonary Disease | 2-Acetylpyridine, 2-Butyloctanol, 2-Dimethyl-heptane, 2-Ethylmethyldecane, 2-Methylbutanoic Acid, 2-Pentanone, 2,4,4-Trimethylpentene, 2,4-Dimethylheptane, 2,6-Dimethyloctane, 3,4-Ethylmethylhexane, 3-Hexanone, 3-Methylcyclopentanone, 4-Heptanone, 4-Methyl-Octane, 4,7-Dimethyl-undecane, Acetaldehyde, Alkanes, Aldehydes, An Unidentified C16-Hydrocarbon, Butanal, Butane, Butylatedhydroxytoluene, Cyclohexane, Cyclohexanone, CO, Decane, Dimethyl Disulphide, Δ-Dodecalactone, Ethane, H2O2, Heptanal, Heptane, Hexadecane, Hexylethylphosphonofluoridate, Indole, Isoprene, Isopropanol, Limonene, Methylisobutyrate, Methylpropylsulphide, Nonanal, Nonanoic Acid, Nitro Tyrosine, Octane, Pentane, Propanal, Propanoic Acid, Tetradecane, Vinylpyrazine | Breath | Low or negligible | Elevated levels | [16,20,46,58] |
Halitosis | Allyl Isothiocyanate, Allyl Mercaptan, Allyl Thiocyanate, Ammonia, Carbon Disulfide, Dimethyl Amine, Dimethyl Pentasulfide, Dimethyl Sulfide, Ethyl Propyl Sulfide, Hydrogen Sulfide, Methyl Mercaptan, Methyl Thiolacetate, N-Butyric Acid, Propyl Mercaptan, Skatole, Trimethyl Amine, S-Methyl Pentanethioate | Breath, Saliva | 250 ppb | 400 ppb | [16,59] |
Inflammatory Bowel Disease | Acetic Acid, Acetaldehyde, Acetone, Acetonitrile, Acrylonitrile, Ammonia, Butanal, Butane, Butanol, Butyric Acid, Carbon Disulfide, Cyclopentane, Cumene, Decanal, Ethyl Cyanoformate, Ethyl Phenol, Ethane, Ethanol, Hexanoic Acid, Hexanal, Hexadecanal, Isoprene, Methyl Cyclopentene, Methyl Ethyl Ketone, Methyl Nitrate, Methyl Phenol, Methyl Sulfide, Nonanal, Octanal, Octane, Pentadecene, Pentanal, Pentane, Pentanoic Acid, Pentanol, Phenol, Propanoic Acid, Propane, Propanol, Propene, Propyl Ester, Pyridine, 1-Butoxy-2-Propanol, 1-Decene, 1-Heptene, 1-Nonene, 1-Octene, 2,2,4-Trimethylhexane, 2,2,4-Trimethylpentane, 2,4-Dimethylpentane, 3-Methyl-1-Butanol, 3-Methyl-1-Butyl Ester, 3-Methylhexane, Dimethyl Disulfide, Dimethyl Sulfide, Dimethylpyridine, Ethylene, Heptadecane, Hydrogen Cyanide, Hydrogen Sulfide, Limonene, Methanimine, 1-Hydroxy-2-Propanone, Methanol, Nitrous Acid, Toluene, Triethyl Amine, Trimethyl Amine, Trimethylpentane, Undecanal | Breath | Not Reported | Not Reported | [16,48] |
Heart failure | NO | Breath | Not Reported | Not Reported | [16] |
Hepatic encephalopathy | 3-methylbutanol; Limonene; Methyl Mercaptan | Blood, Breath | Not Reported | Not Reported | [16] |
Liver failure | Acetic Acid, Acetaldehyde, Ammonia, Ethane, Ethanol, Limonene, Methanol, Methylmercaptan, Pentane, Propionic Acid, Trimethylamine, Dimethyl Sulfide, Carbonyl Sulfide | Breath | 2–836 ppb | >1000 ppb | [16,41,60] |
Chronic Renal Failure/Uremia | 1,8-Cineol, 2-Butanone, 2-Ethyl-1-Hexanol, 2-Methyl Pentane, 2-Methylpropyl Methyl Ketone, 2,4-Dimethyl-Heptane, 2,2,6-Trimethyl-Octane, 3-Carene, 3-Heptanone, Acetaldehyde, Acetone, Acetic Acid Ethyl Ester, Acetophenone, Azulene, Cyclohexanone, Decane, Dihydro-2(3H)-Furanone, Dimethylamine, Dimethyl Selenide, Ethyl Cyclohexane, Ethylene Oxide, Heptane, Isoprene, m-Xylene, Myrcene, n-Nonane, Octadecane, Octanal, o-Xylene, Pentadecane, Phenol Alcohol, p-Xylene, Sulfur Dioxide, Trichloroethene, Trimethylamine, γ-Terpinene | Breath | 250 ppb | 400 ppb | [16,17,61] |
Schizophrenia | 1-Hexanol, Carbon Disulfide, Ethane, N-Butylamine, Pentane | Breath | 5–140 ppb | Decreased Levels | [16,46,62] |
Cystic fibrosis | Hydrogen Cyanide, Methyl Thiocyanate | Breath | 0–12 ppb | Not Reported | [25,46,63] |
Disease | Biomarker | Concentration (Normal) | Concentration (Diseased) | Sample Source | Reference |
COVID-19 | 2-Butanone, 2,2-Dimethyloctane, 2,2,4-Trimethylheptane, 2-Pentyl Furan, 3,6-Methylundecane, Acetaldehyde, Acetone, Benzaldehyde, Butane, Butene, Butyraldehyde, Camphene, Carbon Dioxide, Decane, Decene, Dimethyldecane, Dodecane, Ethan-1-ol, Ethanol, Ethyl Butanoate, Heptanal, Iodobenzene, Isoprene, Isopropanol, Methylcyclopentane, Methyldecane, Methylpent-2-Enal, Nonanal, Nitrogen Monoxide, Nitrogen Oxide, Octanal, Propanol, Propionic Acid, SARS-CoV-2 RBD Spike Protein, Tridecane, and Trimethyloctane | 0.45 to 2.34 ppbv | 3 to 10 ppbv | Breath | [64,65,66,67,68,69,70,71] |
Influenza | 1-Butyl-2-Ethylcyclopentane, 1-Docosene, 1-Decanal, 1-Hexadecene, 1-Octadecene, 1-Tetradecene, 1-Phenoxypropan-2-Ol, 1,2,6,6-Tetramethyl-1,3-Cyclohexadiene, 2-Butanamine, 2-Deoxyecdysone 22-Phosphate, 3-Methyl-Butane, 3-Methyl-Pentane, 4-Quinolinecarboxaldehyde, 4-Tetradecene, 5-(1-Methylpropyl)-Nonane, 6-Dodecene, 6-Methyl-4E-Decene, 7-Hexadecene, 7-Octadecene, 9-Eicosene, 9-Hexadecenoic Acid, Acetaldehyde, Acetone, Alpha-Pinene, Benzoic Acid, Benzoic Acid Alkane Ester I, Benzoic Acid Alkane Ester II, Decanal, Dimethyl-2-Propylcyclohexane, Dodecanal, Dodecyl Nonyl Ether, Ethyl 4-Ethoxybenzoate, Hexanal, Heptane, Homotyrosine, L-Tyrosine Methyl Ester, Linalyl Propionate, Lubiminol, Octadecanoic Acid, Octanal, Propanol, N-Propyl Acetate, Tetradecanal, Tridecadienoic Acid, Tridecynoic Acid, Trimethyl Octene | 1–100 ppb | >500 ppb | Breath, Cell Culture | [72,73,74,75] |
Tuberculosis | 1-Methyl-Naphthalene, 1,2,3-Trimethylbenzene, 1,4-Dimethyl-Cyclohexane, 1-Nitroadamantane, 1-Propynylbenzene, 2-Ethylhexyl Isobutyl Sulfite, 2-Pinene, 2,2,3-Trimethylhexane, 2,2,4,6,6-Pentamethylheptane, 2,3,6-Trimethylheptane, 2,3,6-Trimethylnapthalene, 2,5-Dimethyldecane, 3-Heptanone, 3-Pentanol, 3-Hydroxy-3-Methylbutanoic Acid, 4-Ethyl-2,2,6,6-Tetramethylheptane, 4-Methyl-1-Decene, 4-Tert-Amyl Phenol, Azulene, Benzophenone, Butyl Acetate, Cyclohexane, Cymol, Ethyl Butyrate, Heptanal, Indane, Isopropyl Acetate, Naphthalene, O-Xylene, beta-Phellandrene | Low or negligible | 2 to 5 ppbv | Breath, Cell Culture, Urine | [76,77] |
Chronic hepatitis | 1-Decene, 1-Heptene, 1-Nonene, 1-Octene, 2-Propanol, Acetaldehyde, Acetone, Acrylonitrile, Ammonia, Benzene, Carbon Disulfide, Dimethyl Sulfide, Ethane, Ethanol, Hydrogen Sulfide, Isoprene, Pentane, Triethyl Amine, Trimethyl Amine, 3-Methylhexane | 0.45 to 1.2 ppbv | 1.08 to 2.08 ppbv | Breath | [75,78,79] |
Sinusitis, pneumonia | 1-Vinylaziridine, 2-Aminoacetophenone, 2-Methylbutyric Acid, 2-Nonanone, 2-Propanol, Acacetamide, Acetaldehyde, Acetone, Acetoin, Acetic Acid, Benzoic Acid, Benzyl Alcohol, Benzophenone, Butan-1-ol, Butyrolactone, Caprolactam, Dimethylsulfide, Dimethylsulfone, Furfuryl Alcohol, Hydroxyacetone, Indole, Isobutyric Acid, Isovaleric Acid, Methyl Thiocyanate, Nitrogen Oxide, p-Cresol, p-Ethylphenol, Phenol, Propanoic Acid, 3-Hydroxy-2-Butanone, 3-Methyl-1-Butanol, 3-Methylpyrrole, Pyrrole, 1-Undecene | 0.5 to 1.5 ppbv | 1 to 10 ppbv | Sinus Mucus | [80,81] |
Bronchitis, pneumonia | Butraldehyde, octyle acetate, tridecanol, dodecanal, butanoic acid, N-acetyl-S-(4-hydroxy-2-butenyl)-l-cysteine, N-acetyl-S-(2-carbamoylethyl)-l-cysteine, N-acetyl-S-(2-cyanoethyl)-l-cysteine, N-acetyl-S-(N-methylcarbamoyl)-l-cysteine, N-acetyl-S-(benzyl)-l-cysteine, N-acetyl-S-(3-hydroxypropyl-1-methyl)-l-cysteine, Benzene, 1,4-Dichlorobenzene, Ethylbenzene, o-Xylene, Styrene, Trichloroethene, Toluene, p-Xylene | 0.5 to 1 ppbv | 1 to 2 ppbv | Blood, Urine | [82,83] |
2. Screening Methods for VOC Analysis
2.1. Methods Based on Variation of Electrical Properties
2.1.1. Electrochemical Sensors
2.1.2. Chemiresistors
2.2. Methods Based on Variations of Other Properties
2.2.1. Quartz Crystal Microbalance (QCM)
2.2.2. Surface Acoustic Wave Sensors
2.2.3. Thermal Sensor (Pellistors)
2.2.4. Optical Methods
2.2.5. Photoionization Detectors
2.2.6. Gas Chromatography Coupled with Mass Spectrometer and Ion Mobility Mass Spectrometer
3. Functionalized MIP-Based Sensors
4. Discussion and Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hodgson, M.; Levin, H.; Wolkoff, P. Volatile Organic Compounds and Indoor Air. J. Allergy Clin. Immunol. 1994, 94, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Broza, Y.Y.; Vishinkin, R.; Barash, O.; Nakhleh, M.K.; Haick, H. Synergy between Nanomaterials and Volatile Organic Compounds for Non-Invasive Medical Evaluation. Chem. Soc. Rev. 2018, 47, 4781–4859. [Google Scholar] [CrossRef] [PubMed]
- Amann, A.; Costello, B.d.L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The Human Volatilome: Volatile Organic Compounds (VOCs) in Exhaled Breath, Skin Emanations, Urine, Feces and Saliva. J. Breath Res. 2014, 8, 034001. [Google Scholar] [CrossRef]
- Volatile Organic Compounds of Lung Cancer and Possible Biochemical Pathways|Chemical Reviews. Available online: https://pubs.acs.org/doi/10.1021/cr300174a (accessed on 7 November 2024).
- Anderson, J.C.; Babb, A.L.; Hlastala, M.P. Modeling Soluble Gas Exchange in the Airways and Alveoli. Ann. Biomed. Eng. 2003, 31, 1402–1422. [Google Scholar] [CrossRef] [PubMed]
- Kalliomäki, P.L.; Korhonen, O.; Vaaranen, V.; Kalliomäki, K.; Koponen, M. Lung Retention and Clearance of Shipyard Arc Welders. Int. Arch. Occup. Environ. Health 1978, 42, 83–90. [Google Scholar] [CrossRef]
- Vishinkin, R.; Busool, R.; Mansour, E.; Fish, F.; Esmail, A.; Kumar, P.; Gharaa, A.; Cancilla, J.C.; Torrecilla, J.S.; Skenders, G.; et al. Profiles of Volatile Biomarkers Detect Tuberculosis from Skin. Adv. Sci. 2021, 8, e2100235. [Google Scholar] [CrossRef]
- Corradi, M.; Mutti, A. News from the Breath Analysis Summit 2011. J. Breath Res. 2012, 6, 020201. [Google Scholar] [CrossRef]
- Punyadeera, C.; van der Merwe, M.T.; Crowther, N.J.; Toman, M.; Immelman, A.R.; Schlaphoff, G.P.; Gray, I.P. Weight-Related Differences in Glucose Metabolism and Free Fatty Acid Production in Two South African Population Groups. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Tisch, U.; Haick, H. Arrays of Chemisensitive Monolayer-Capped Metallic Nanoparticles for Diagnostic Breath Testing. Rev. Chem. Eng. 2010, 26, 171–179. [Google Scholar] [CrossRef]
- Volatile Organic Compounds in Exhaled Breath as Biomarkers for the Early Detection and Screening of Lung Cancer. Available online: https://www.researchgate.net/publication/271066018_Volatile_Organic_Compounds_in_Exhaled_Breath_as_Biomarkers_for_the_Early_Detection_and_Screening_of_Lung_Cancer (accessed on 7 November 2024).
- Bachar, N.; Mintz, L.; Zilberman, Y.; Ionescu, R.; Feng, X.; Müllen, K.; Haick, H. Polycyclic Aromatic Hydrocarbon for the Detection of Nonpolar Analytes under Counteracting Humidity Conditions. ACS Appl. Mater. Interfaces 2012, 4, 4960–4965. [Google Scholar] [CrossRef]
- Konvalina, G.; Haick, H. Effect of Humidity on Nanoparticle-Based Chemiresistors: A Comparison between Synthetic and Real-World Samples. ACS Appl. Mater. Interfaces 2012, 4, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Zilberman, Y.; Ionescu, R.; Feng, X.; Müllen, K.; Haick, H. Nanoarray of Polycyclic Aromatic Hydrocarbons and Carbon Nanotubes for Accurate and Predictive Detection in Real-World Environmental Humidity. ACS Nano 2011, 5, 6743–6753. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing Lung Cancer in Exhaled Breath Using Gold Nanoparticles. Nat. Nanotechnol. 2009, 4, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Broza, Y.Y.; Haick, H. Nanomaterial-Based Sensors for Detection of Disease by Volatile Organic Compounds. Nanomedicine 2013, 8, 785–806. [Google Scholar] [CrossRef] [PubMed]
- Velusamy, P.; Su, C.-H.; Ramasamy, P.; Arun, V.; Rajnish, N.; Raman, P.; Baskaralingam, V.; Senthil Kumar, S.M.; Gopinath, S.C.B. Volatile Organic Compounds as Potential Biomarkers for Noninvasive Disease Detection by Nanosensors: A Comprehensive Review. Crit. Rev. Anal. Chem. 2023, 53, 1828–1839. [Google Scholar] [CrossRef] [PubMed]
- Broza, Y.Y.; Har-Shai, L.; Jeries, R.; Cancilla, J.C.; Glass-Marmor, L.; Lejbkowicz, I.; Torrecilla, J.S.; Yao, X.; Feng, X.; Narita, A.; et al. Exhaled Breath Markers for Nonimaging and Noninvasive Measures for Detection of Multiple Sclerosis. ACS Chem. Neurosci. 2017, 8, 2402–2413. [Google Scholar] [CrossRef]
- Fujita, A.; Ota, M.; Kato, K. Urinary Volatile Metabolites of Amygdala-Kindled Mice Reveal Novel Biomarkers Associated with Temporal Lobe Epilepsy. Sci. Rep. 2019, 9, 10586. [Google Scholar] [CrossRef]
- Moura, P.C.; Raposo, M.; Vassilenko, V. Breath Volatile Organic Compounds (VOCs) as Biomarkers for the Diagnosis of Pathological Conditions: A Review. Biomed. J. 2023, 46, 100623. [Google Scholar] [CrossRef]
- Jia, Z.; Patra, A.; Kutty, V.K.; Venkatesan, T. Critical Review of Volatile Organic Compound Analysis in Breath and In Vitro Cell Culture for Detection of Lung Cancer. Metabolites 2019, 9, 52. [Google Scholar] [CrossRef]
- Rudnicka, J.; Kowalkowski, T.; Buszewski, B. Searching for Selected VOCs in Human Breath Samples as Potential Markers of Lung Cancer. Lung Cancer 2019, 135, 123–129. [Google Scholar] [CrossRef]
- Zhong, X.; Li, D.; Du, W.; Yan, M.; Wang, Y.; Huo, D.; Hou, C. Rapid Recognition of Volatile Organic Compounds with Colorimetric Sensor Arrays for Lung Cancer Screening. Anal. Bioanal. Chem. 2018, 410, 3671–3681. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Z.; Li, Y.; Feng, Z. A Dual-Resonant Shorted Patch Antenna for Wearable Application in 430 MHz Band. IEEE Trans. Antennas Propagat. 2013, 61, 6195–6200. [Google Scholar] [CrossRef]
- Buszewski, B.; Grzywinski, D.; Ligor, T.; Stacewicz, T.; Bielecki, Z.; Wojtas, J. Detection of Volatile Organic Compounds as Biomarkers in Breath Analysis by Different Analytical Techniques. Bioanalysis 2013, 5, 2287–2306. [Google Scholar] [CrossRef] [PubMed]
- Janssens, E.; van Meerbeeck, J.P.; Lamote, K. Volatile Organic Compounds in Human Matrices as Lung Cancer Biomarkers: A Systematic Review. Crit. Rev. Oncol. Hematol. 2020, 153, 103037. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, H.; Ong, C.N.; Patra, A.; Lu, Y.; Lim, C.T.; Venkatesan, T. Detection of Lung Cancer: Concomitant Volatile Organic Compounds and Metabolomic Profiling of Six Cancer Cell Lines of Different Histological Origins. ACS Omega 2018, 3, 5131–5140. [Google Scholar] [CrossRef]
- Thriumani, R.; Zakaria, A.; Hashim, Y.Z.H.-Y.; Jeffree, A.I.; Helmy, K.M.; Kamarudin, L.M.; Omar, M.I.; Shakaff, A.Y.M.; Adom, A.H.; Persaud, K.C. A Study on Volatile Organic Compounds Emitted by In-Vitro Lung Cancer Cultured Cells Using Gas Sensor Array and SPME-GCMS. BMC Cancer 2018, 18, 362. [Google Scholar] [CrossRef]
- Pathak, A.K.; Swargiary, K.; Kongsawang, N.; Jitpratak, P.; Ajchareeyasoontorn, N.; Udomkittivorakul, J.; Viphavakit, C. Recent Advances in Sensing Materials Targeting Clinical Volatile Organic Compound (VOC) Biomarkers: A Review. Biosensors 2023, 13, 114. [Google Scholar] [CrossRef] [PubMed]
- Pelling, M.; Chandrapalan, S.; West, E.; Arasaradnam, R.P. A Systematic Review and Meta-Analysis: Volatile Organic Compound Analysis in the Detection of Hepatobiliary and Pancreatic Cancers. Cancers 2023, 15, 2308. [Google Scholar] [CrossRef]
- Tiankanon, K.; Pungpipattrakul, N.; Sukaram, T.; Chaiteerakij, R.; Rerknimitr, R. Identification of Breath Volatile Organic Compounds to Distinguish Pancreatic Adenocarcinoma, Pancreatic Cystic Neoplasm, and Patients without Pancreatic Lesions. World J. Gastrointest. Oncol. 2024, 16, 894. [Google Scholar] [CrossRef]
- Princivalle, A.; Monasta, L.; Butturini, G.; Bassi, C.; Perbellini, L. Pancreatic Ductal Adenocarcinoma Can Be Detected by Analysis of Volatile Organic Compounds (VOCs) in Alveolar Air. BMC Cancer 2018, 18, 529. [Google Scholar] [CrossRef]
- Markar, S.R.; Brodie, B.; Chin, S.-T.; Romano, A.; Spalding, D.; Hanna, G.B. Profile of Exhaled-Breath Volatile Organic Compounds to Diagnose Pancreatic Cancer. Br. J. Surg. 2018, 105, 1493–1500. [Google Scholar] [CrossRef] [PubMed]
- Daulton, E.; Wicaksono, A.N.; Tiele, A.; Kocher, H.M.; Debernardi, S.; Crnogorac-Jurcevic, T.; Covington, J.A. Volatile Organic Compounds (VOCs) for the Non-Invasive Detection of Pancreatic Cancer from Urine. Talanta 2021, 221, 121604. [Google Scholar] [CrossRef] [PubMed]
- Nissinen, S.I.; Roine, A.; Hokkinen, L.; Karjalainen, M.; Venäläinen, M.; Helminen, H.; Niemi, R.; Lehtimäki, T.; Rantanen, T.; Oksala, N. Detection of Pancreatic Cancer by Urine Volatile Organic Compound Analysis. Anticancer Res. 2019, 39, 73–79. [Google Scholar] [CrossRef]
- Martínez-Moral, M.-P.; Tena, M.T.; Martín-Carnicero, A.; Martínez, A. Highly Sensitive Serum Volatolomic Biomarkers for Pancreatic Cancer Diagnosis. Clin. Chim. Acta 2024, 557, 117895. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, U.; Parsi, M.A.; Gutierrez, N.G.; Bhatt, A.; Venkatesh, P.G.K.; Lourdusamy, D.; Grove, D.; Hammel, J.P.; Jang, S.; Sanaka, M.R.; et al. Volatile Organic Compounds in Bile Can Diagnose Malignant Biliary Strictures in the Setting of Pancreatic Cancer: A Preliminary Observation. Gastrointest Endosc. 2014, 80, 1038–1045. [Google Scholar] [CrossRef]
- Arasaradnam, R.P.; Wicaksono, A.; O’Brien, H.; Kocher, H.M.; Covington, J.A.; Crnogorac-Jurcevic, T. Noninvasive Diagnosis of Pancreatic Cancer Through Detection of Volatile Organic Compounds in Urine. Gastroenterology 2018, 154, 485–487.e1. [Google Scholar] [CrossRef]
- Leemans, M.; Bauër, P.; Cuzuel, V.; Audureau, E.; Fromantin, I. Volatile Organic Compounds Analysis as a Potential Novel Screening Tool for Breast Cancer: A Systematic Review. Biomark. Insights 2022, 17, 11772719221100709. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Y.; Luo, Z.; Qian, C.; Li, W.; Duan, Y. Breath Volatile Organic Compound Analysis: An Emerging Method for Gastric Cancer Detection. J. Breath Res. 2021, 15, 044002. [Google Scholar] [CrossRef] [PubMed]
- Fenske, J.D.; Paulson, S.E. Human Breath Emissions of VOCs. J. Air Waste Manag. Assoc. 1999, 49, 594–598. [Google Scholar] [CrossRef]
- Xiang, L.; Wu, S.; Hua, Q.; Bao, C.; Liu, H. Volatile Organic Compounds in Human Exhaled Breath to Diagnose Gastrointestinal Cancer: A Meta-Analysis. Front. Oncol. 2021, 11, 606915. [Google Scholar] [CrossRef]
- Dharmawardana, N.; Woods, C.; Watson, D.I.; Yazbeck, R.; Ooi, E.H. A Review of Breath Analysis Techniques in Head and Neck Cancer. Oral. Oncol. 2020, 104, 104654. [Google Scholar] [CrossRef] [PubMed]
- Opitz, P.; Herbarth, O. The Volatilome—Investigation of Volatile Organic Metabolites (VOM) as Potential Tumor Markers in Patients with Head and Neck Squamous Cell Carcinoma (HNSCC). J. Otolaryngol.-Head Neck Surg. 2018, 47, 42. [Google Scholar] [CrossRef]
- Taware, R.; Taunk, K.; Pereira, J.A.M.; Dhakne, R.; Kannan, N.; Soneji, D.; Câmara, J.S.; Nagarajaram, H.A.; Rapole, S. Investigation of Urinary Volatomic Alterations in Head and Neck Cancer: A Non-Invasive Approach towards Diagnosis and Prognosis. Metabolomics 2017, 13, 111. [Google Scholar] [CrossRef]
- Probert, C.S.J.; Ahmed, I.; Khalid, T.; Johnson, E.; Smith, S.; Ratcliffe, N. Volatile Organic Compounds as Diagnostic Biomarkers in Gastrointestinal and Liver Diseases. J. Gastrointest. Liver Dis. 2009, 18, 337–343. [Google Scholar]
- Lavra, L.; Catini, A.; Ulivieri, A.; Capuano, R.; Baghernajad Salehi, L.; Sciacchitano, S.; Bartolazzi, A.; Nardis, S.; Paolesse, R.; Martinelli, E.; et al. Investigation of VOCs Associated with Different Characteristics of Breast Cancer Cells. Sci. Rep. 2015, 5, 13246. [Google Scholar] [CrossRef]
- Vernia, F.; Valvano, M.; Fabiani, S.; Stefanelli, G.; Longo, S.; Viscido, A.; Latella, G. Are Volatile Organic Compounds Accurate Markers in the Assessment of Colorectal Cancer and Inflammatory Bowel Diseases? A Review. Cancers 2021, 13, 2361. [Google Scholar] [CrossRef]
- Di Lena, M.; Porcelli, F.; Altomare, D.F. Volatile Organic Compounds as New Biomarkers for Colorectal Cancer: A Review. Color. Dis. 2016, 18, 654–663. [Google Scholar] [CrossRef]
- Wen, Q.; Boshier, P.; Myridakis, A.; Belluomo, I.; Hanna, G.B. Urinary Volatile Organic Compound Analysis for the Diagnosis of Cancer: A Systematic Literature Review and Quality Assessment. Metabolites 2020, 11, 17. [Google Scholar] [CrossRef]
- Gao, Q.; Su, X.; Annabi, M.H.; Schreiter, B.R.; Prince, T.; Ackerman, A.; Morgas, S.; Mata, V.; Williams, H.; Lee, W.-Y. Application of Urinary Volatile Organic Compounds (VOCs) for the Diagnosis of Prostate Cancer. Clin. Genitour. Cancer 2019, 17, 183–190. [Google Scholar] [CrossRef]
- Lima, A.R.; Pinto, J.; Azevedo, A.I.; Barros-Silva, D.; Jerónimo, C.; Henrique, R.; de Lourdes Bastos, M.; Guedes de Pinho, P.; Carvalho, M. Identification of a Biomarker Panel for Improvement of Prostate Cancer Diagnosis by Volatile Metabolic Profiling of Urine. Br. J. Cancer 2019, 121, 857–868. [Google Scholar] [CrossRef]
- Sukaram, T.; Tansawat, R.; Apiparakoon, T.; Tiyarattanachai, T.; Marukatat, S.; Rerknimitr, R.; Chaiteerakij, R. Exhaled Volatile Organic Compounds for Diagnosis of Hepatocellular Carcinoma. Sci. Rep. 2022, 12, 5326. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Kumar, S.; Abbassi-Ghadi, N.; Spaněl, P.; Smith, D.; Hanna, G.B. Selected Ion Flow Tube Mass Spectrometry Analysis of Volatile Metabolites in Urine Headspace for the Profiling of Gastro-Esophageal Cancer. Anal. Chem. 2013, 85, 3409–3416. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Lu, Y.; Zhang, L.; Wu, Z.; Hou, X.; Xia, H. Determination of Volatile Organic Compounds Exhaled by Cell Lines Derived from Hematological Malignancies. Biosci. Rep. 2017, 37, BSR20170106. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Chong, N.S.; Lim, S.H. Endogenous Volatile Organic Compounds in Acute Myeloid Leukemia: Origins and Potential Clinical Applications. J. Breath Res. 2018, 12, 034002. [Google Scholar] [CrossRef]
- Monteiro, M.; Moreira, N.; Pinto, J.; Pires-Luís, A.S.; Henrique, R.; Jerónimo, C.; Bastos, M.d.L.; Gil, A.M.; Carvalho, M.; Guedes de Pinho, P. GC-MS Metabolomics-Based Approach for the Identification of a Potential VOC-Biomarker Panel in the Urine of Renal Cell Carcinoma Patients. J. Cell. Mol. Med. 2017, 21, 2092–2105. [Google Scholar] [CrossRef]
- Pizzini, A.; Filipiak, W.; Wille, J.; Ager, C.; Wiesenhofer, H.; Kubinec, R.; Blaško, J.; Tschurtschenthaler, C.; Mayhew, C.A.; Weiss, G.; et al. Analysis of Volatile Organic Compounds in the Breath of Patients with Stable or Acute Exacerbation of Chronic Obstructive Pulmonary Disease. J. Breath Res. 2018, 12, 036002. [Google Scholar] [CrossRef]
- Monedeiro, F.; Milanowski, M.; Ratiu, I.-A.; Zmysłowski, H.; Ligor, T.; Buszewski, B. VOC Profiles of Saliva in Assessment of Halitosis and Submandibular Abscesses Using HS-SPME-GC/MS Technique. Molecules 2019, 24, 2977. [Google Scholar] [CrossRef]
- De Vincentis, A.; Vespasiani-Gentilucci, U.; Sabatini, A.; Antonelli-Incalzi, R.; Picardi, A. Exhaled Breath Analysis in Hepatology: State-of-the-Art and Perspectives. World J. Gastroenterol. 2019, 25, 4043–4050. [Google Scholar] [CrossRef]
- Seong, S.-H.; Kim, H.S.; Lee, Y.-M.; Kim, J.-S.; Park, S.; Oh, J. Exploration of Potential Breath Biomarkers of Chronic Kidney Disease through Thermal Desorption-Gas Chromatography/Mass Spectrometry. Metabolites 2023, 13, 837. [Google Scholar] [CrossRef]
- Jiang, C.; Dobrowolny, H.; Gescher, D.M.; Meyer-Lotz, G.; Steiner, J.; Hoeschen, C.; Frodl, T. Volatile Organic Compounds from Exhaled Breath in Schizophrenia. World J. Biol. Psychiatry 2022, 23, 773–784. [Google Scholar] [CrossRef]
- Shestivska, V.; Nemec, A.; Dřevínek, P.; Sovová, K.; Dryahina, K.; Španěl, P. Quantification of Methyl Thiocyanate in the Headspace of Pseudomonas Aeruginosa Cultures and in the Breath of Cystic Fibrosis Patients by Selected Ion Flow Tube Mass Spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 2459–2467. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qi, X.; Zhang, L.; Li, X.; Ma, J.; Zhang, C.; Feng, H.; Yao, M. COVID-19 Screening Using Breath-Borne Volatile Organic Compounds. J. Breath Res. 2021, 15, 047104. [Google Scholar] [CrossRef] [PubMed]
- Ruszkiewicz, D.M.; Sanders, D.; O’Brien, R.; Hempel, F.; Reed, M.J.; Riepe, A.C.; Bailie, K.; Brodrick, E.; Darnley, K.; Ellerkmann, R.; et al. Diagnosis of COVID-19 by Analysis of Breath with Gas Chromatography-Ion Mobility Spectrometry—A Feasibility Study. eClinicalMedicine 2020, 29, 100609. [Google Scholar] [CrossRef] [PubMed]
- Liangou, A.; Tasoglou, A.; Huber, H.J.; Wistrom, C.; Brody, K.; Menon, P.G.; Bebekoski, T.; Menschel, K.; Davidson-Fiedler, M.; DeMarco, K.; et al. A Method for the Identification of COVID-19 Biomarkers in Human Breath Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry. eClinicalMedicine 2021, 42, 101207. [Google Scholar] [CrossRef]
- Berna, A.Z.; Akaho, E.H.; Harris, R.M.; Congdon, M.; Korn, E.; Neher, S.; M’farrej, M.; Burns, J.; John, A.R.O. Reproducible Breath Metabolite Changes in Children with SARS-CoV-2 Infection. ACS Infect. Dis. 2021, 7, 2596–2603. [Google Scholar] [CrossRef]
- Ibrahim, W.; Cordell, R.L.; Wilde, M.J.; Richardson, M.; Carr, L.; Sundari Devi Dasi, A.; Hargadon, B.; Free, R.C.; Monks, P.S.; Brightling, C.E.; et al. Diagnosis of COVID-19 by Exhaled Breath Analysis Using Gas Chromatography-Mass Spectrometry. ERJ Open Res. 2021, 7, 00139–02021. [Google Scholar] [CrossRef]
- Laird, S.; Debenham, L.; Chandla, D.; Chan, C.; Daulton, E.; Taylor, J.; Bhat, P.; Berry, L.; Munthali, P.; Covington, J.A. Breath Analysis of COVID-19 Patients in a Tertiary UK Hospital by Optical Spectrometry: The E-Nose CoVal Study. Biosensors 2023, 13, 165. [Google Scholar] [CrossRef]
- Sharma, R.; Zang, W.; Tabartehfarahani, A.; Lam, A.; Huang, X.; Sivakumar, A.D.; Thota, C.; Yang, S.; Dickson, R.P.; Sjoding, M.W.; et al. Portable Breath-Based Volatile Organic Compound Monitoring for the Detection of COVID-19 During the Circulation of the SARS-CoV-2 Delta Variant and the Transition to the SARS-CoV-2 Omicron Variant. JAMA Netw. Open 2023, 6, e230982. [Google Scholar] [CrossRef]
- Shi, X.; Sadeghi, P.; Lobandi, N.; Emam, S.; Seyed Abrishami, S.M.; Martos-Repath, I.; Mani, N.; Nasrollahpour, M.; Sun, W.; Rones, S.; et al. Novel, Accurate Pathogen Sensors for Fast Detection of SARS-CoV-2 in the Aerosol in Seconds for a Breathalyzer Platform. Biosens. Bioelectron. X 2023, 14, 100369. [Google Scholar] [CrossRef]
- Borras, E.; McCartney, M.M.; Thompson, C.H.; Meagher, R.J.; Kenyon, N.J.; Schivo, M.; Davis, C.E. Exhaled Breath Biomarkers of Influenza Infection and Influenza Vaccination. J. Breath Res. 2021, 15, 046004. [Google Scholar] [CrossRef]
- Danaher, P.J.; Phillips, M.; Schmitt, P.; Richard, S.A.; Millar, E.V.; White, B.K.; Okulicz, J.F.; Coles, C.L.; Burgess, T.H. Breath Biomarkers of Influenza Infection. Open Forum Infect. Dis. 2022, 9, ofac489. [Google Scholar] [CrossRef] [PubMed]
- McCartney, M.M.; Linderholm, A.L.; Yamaguchi, M.S.; Falcon, A.K.; Harper, R.W.; Thompson, G.R.; Ebeler, S.E.; Kenyon, N.J.; Davis, C.E.; Schivo, M. Predicting Influenza and Rhinovirus Infections in Airway Cells Utilizing Volatile Emissions. J. Infect. Dis. 2021, 224, 1742–1750. [Google Scholar] [CrossRef] [PubMed]
- Eng, K.; Alkhouri, N.; Cikach, F.; Patel, N.; Yan, C.; Grove, D.; Lopez, R.; Rome, E.; Dweik, R.A. Analysis of Breath Volatile Organic Compounds in Children with Chronic Liver Disease Compared to Healthy Controls. J. Breath Res. 2015, 9, 026002. [Google Scholar] [CrossRef] [PubMed]
- Mellors, T.R.; Nasir, M.; Franchina, F.A.; Smolinska, A.; Blanchet, L.; Flynn, J.L.; Tomko, J.; O’Malley, M.; Scanga, C.A.; Lin, P.L.; et al. Identification of Mycobacterium Tuberculosis Using Volatile Biomarkers in Culture and Exhaled Breath. J. Breath Res. 2018, 13, 016004. [Google Scholar] [CrossRef]
- Banday, K.M.; Pasikanti, K.K.; Chan, E.C.Y.; Singla, R.; Rao, K.V.S.; Chauhan, V.S.; Nanda, R.K. Use of Urine Volatile Organic Compounds to Discriminate Tuberculosis Patients from Healthy Subjects. Anal. Chem. 2011, 83, 5526–5534. [Google Scholar] [CrossRef]
- Sukaram, T.; Apiparakoon, T.; Tiyarattanachai, T.; Ariyaskul, D.; Kulkraisri, K.; Marukatat, S.; Rerknimitr, R.; Chaiteerakij, R. VOCs from Exhaled Breath for the Diagnosis of Hepatocellular Carcinoma. Diagnostics 2023, 13, 257. [Google Scholar] [CrossRef]
- Alkhouri, N.; Singh, T.; Alsabbagh, E.; Guirguis, J.; Chami, T.; Hanouneh, I.; Grove, D.; Lopez, R.; Dweik, R. Isoprene in the Exhaled Breath Is a Novel Biomarker for Advanced Fibrosis in Patients with Chronic Liver Disease: A Pilot Study. Clin. Transl. Gastroenterol. 2015, 6, e112. [Google Scholar] [CrossRef]
- Preti, G.; Thaler, E.; Hanson, C.W.; Troy, M.; Eades, J.; Gelperin, A. Volatile Compounds Characteristic of Sinus-Related Bacteria and Infected Sinus Mucus: Analysis by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 2011–2018. [Google Scholar] [CrossRef]
- Ferraro, V.A.; Zanconato, S.; Baraldi, E.; Carraro, S. Nitric Oxide and Biological Mediators in Pediatric Chronic Rhinosinusitis and Asthma. J. Clin. Med. 2019, 8, 1783. [Google Scholar] [CrossRef]
- Wang, Y.; Han, X.; Li, J.; Zhang, L.; Liu, Y.; Jin, R.; Chen, L.; Chu, X. Associations between the Compositional Patterns of Blood Volatile Organic Compounds and Chronic Respiratory Diseases and Ages at Onset in NHANES 2003–2012. Chemosphere 2023, 327, 138425. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Y.; Zhang, X.; Zhang, H.; Zhang, Y.; Wang, S.; Yin, L. Combined Association of Urinary Volatile Organic Compounds with Chronic Bronchitis and Emphysema among Adults in NHANES 2011–2014: The Mediating Role of Inflammation. Chemosphere 2024, 361, 141485. [Google Scholar] [CrossRef] [PubMed]
- Silvester, D.S. New Innovations in Ionic Liquid–Based Miniaturised Amperometric Gas Sensors. Curr. Opin. Electrochem. 2019, 15, 7–17. [Google Scholar] [CrossRef]
- Miah, M.R.; Yang, M.; Khandaker, S.; Bashar, M.M.; Alsukaibi, A.K.D.; Hassan, H.M.A.; Znad, H.; Awual, M.d.R. Polypyrrole-Based Sensors for Volatile Organic Compounds (VOCs) Sensing and Capturing: A Comprehensive Review. Sens. Actuators A Phys. 2022, 347, 113933. [Google Scholar] [CrossRef]
- Kumar, P.; Kim, K.-H.; Mehta, P.K.; Ge, L.; Lisak, G. Progress and Challenges in Electrochemical Sensing of Volatile Organic Compounds Using Metal-Organic Frameworks. Crit. Rev. Environ. Sci. Technol. 2019, 49, 2016–2048. [Google Scholar] [CrossRef]
- Epping, R.; Koch, M. On-Site Detection of Volatile Organic Compounds (VOCs). Molecules 2023, 28, 1598. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Gupta, R.; Bansal, D.; Bhateria, R.; Sharma, M. A Review on Recent Trends and Future Developments in Electrochemical Sensing. ACS Omega 2024, 9, 7336. [Google Scholar] [CrossRef]
- Popoola, O.A.; Stewart, G.B.; Mead, M.I.; Jones, R.L. Development of a Baseline-Temperature Correction Methodology for Electrochemical Sensors and Its Implications for Long-Term Stability. Atmos. Environ. 2016, 147, 330–343. [Google Scholar] [CrossRef]
- Lamas-Ardisana, P.J.; Loaiza, O.A.; Añorga, L.; Jubete, E.; Borghei, M.; Ruiz, V.; Ochoteco, E.; Cabañero, G.; Grande, H.J. Disposable Amperometric Biosensor Based on Lactate Oxidase Immobilised on Platinum Nanoparticle-Decorated Carbon Nanofiber and Poly(Diallyldimethylammonium Chloride) Films. Biosens. Bioelectron. 2014, 56, 345–351. [Google Scholar] [CrossRef]
- Kim, J.; Valdés-Ramírez, G.; Bandodkar, A.J.; Jia, W.; Martinez, A.G.; Ramírez, J.; Mercier, P.; Wang, J. Non-Invasive Mouthguard Biosensor for Continuous Salivary Monitoring of Metabolites. Analyst 2014, 139, 1632–1636. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, T.; Hou, X.; Fang, Z.; Rajan, K.; Di, Y.; Peng, W.; Deng, Y.; Liang, T. Zirconia Nanofibers-Loaded Reduced Graphene Oxide Fabrication for Specific Electrochemical Detection of Methyl Parathion. J. Alloys Compd. 2022, 904, 163798. [Google Scholar] [CrossRef]
- Ho, C.K.; Hughes, R.C. In-Situ Chemiresistor Sensor Package for Real-Time Detection of Volatile Organic Compounds in Soil and Groundwater. Sensors 2002, 2, 23–34. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Kwoka, M.; Gang, M.; Kumar, M. IoT-Enabled Surface-Active Pd-Anchored Metal Oxide Chemiresistor for H2S Gas Detection. Sens. Actuators B Chem. 2023, 402, 135065. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured Materials for Room-Temperature Gas Sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef]
- Dai, J.; Ogbeide, O.; Macadam, N.; Sun, Q.; Yu, W.; Li, Y.; Su, B.-L.; Hasan, T.; Huang, X.; Huang, W. Printed Gas Sensors. Chem. Soc. Rev. 2020, 49, 1756–1789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-L.; Evans, S.; Henderson, J.; Miles, R.; Shen, T. Vapour Sensing Using Surface Functionalized Gold Nanoparticles. Nanotechnology 2002, 13, 439–444. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, A.; Sahz, M.A.; Yadav, B.C.; Pandey, N.K. Development of V2O5@GO (1D/2D) Nanohybrid Based Chemiresistor for Low-Trace of Toluene. Sens. Actuators B Chem. 2024, 400, 134817. [Google Scholar] [CrossRef]
- Wang, Z.; Bu, M.; Hu, N.; Zhao, L. An Overview on Room-Temperature Chemiresistor Gas Sensors Based on 2D Materials: Research Status and Challenge. Compos. Part B Eng. 2023, 248, 110378. [Google Scholar] [CrossRef]
- Emam, S.; Nasrollahpour, M.; Colarusso, B.; Cai, X.; Grant, S.; Kulkarni, P.; Ekenseair, A.; Gharagouzloo, C.; Ferris, C.F.; Sun, N.-X. Detection of Presymptomatic Alzheimer’s Disease through Breath Biomarkers. Alzheimers Dement. 2020, 12, e12088. [Google Scholar]
- Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I. Review on Ion Mobility Spectrometry. Part 2: Hyphenated Methods and Effects of Experimental Parameters. Analyst 2015, 140, 1391–1410. [Google Scholar] [CrossRef]
- Bogue, R. Recent Developments in MEMS Sensors: A Review of Applications, Markets and Technologies. Sens. Rev. 2013, 33, 300–304. [Google Scholar] [CrossRef]
- Acharyya, S.; Nag, S.; Kimbahune, S.; Ghose, A.; Pal, A.; Guha, P.K. Selective Discrimination of VOCs Applying Gas Sensing Kinetic Analysis over a Metal Oxide-Based Chemiresistive Gas Sensor. ACS Sens. 2021, 6, 2218–2224. [Google Scholar] [CrossRef] [PubMed]
- Fois, M.; Cox, T.; Ratcliffe, N.; de Lacy Costello, B. Rare Earth Doped Metal Oxide Sensor for the Multimodal Detection of Volatile Organic Compounds (VOCs). Sens. Actuators B Chem. 2021, 330, 129264. [Google Scholar] [CrossRef]
- Pargoletti, E.; Cappelletti, G. Breakthroughs in the Design of Novel Carbon-Based Metal Oxides Nanocomposites for VOCs Gas Sensing. Nanomaterials 2020, 10, 1485. [Google Scholar] [CrossRef] [PubMed]
- Baur, T.; Amann, J.; Schultealbert, C.; Schütze, A. Field Study of Metal Oxide Semiconductor Gas Sensors in Temperature Cycled Operation for Selective VOC Monitoring in Indoor Air. Atmosphere 2021, 12, 647. [Google Scholar] [CrossRef]
- Gao, Y.; Kong, Q.; Zhang, J.; Xi, G. General Fabrication and Enhanced VOC Gas-Sensing Properties of Hierarchically Porous Metal Oxides. RSC Adv. 2017, 7, 35897–35904. [Google Scholar] [CrossRef]
- Song, L.; Lukianov, A.; Butenko, D.; Li, H.; Zhang, J.; Feng, M.; Liu, L.; Chen, D.; Klyui, N.I. Facile Synthesis of Hierarchical Tin Oxide Nanoflowers with Ultra-High Methanol Gas Sensing at Low Working Temperature. Nanoscale Res. Lett. 2019, 14, 84. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors 2017, 17, 1520. [Google Scholar] [CrossRef]
- Vaughan, S.R.; Pérez, R.L.; Chhotaray, P.; Warner, I.M. Quartz Crystal Microbalance Based Sensor Arrays for Detection and Discrimination of VOCs Using Phosphonium Ionic Liquid Composites. Sensors 2020, 20, 615. [Google Scholar] [CrossRef]
- Regmi, B.P.; Adhikari, P.L.; Dangi, B.B. Ionic Liquid-Based Quartz Crystal Microbalance Sensors for Organic Vapors: A Tutorial Review. Chemosensors 2021, 9, 194. [Google Scholar] [CrossRef]
- Zhang, D.; Mao, R.; Song, X.; Wang, D.; Zhang, H.; Xia, H.; Ma, Y.; Gao, Y. Humidity Sensing Properties and Respiratory Behavior Detection Based on Chitosan-Halloysite Nanotubes Film Coated QCM Sensor Combined with Support Vector Machine. Sens. Actuators B Chem. 2023, 374, 132824. [Google Scholar] [CrossRef]
- Fauzi, F.; Rianjanu, A.; Santoso, I.; Triyana, K. Gas and Humidity Sensing with Quartz Crystal Microbalance (QCM) Coated with Graphene-Based Materials—A Mini Review. Sens. Actuators A Phys. 2021, 330, 112837. [Google Scholar] [CrossRef]
- Speight, R.E.; Cooper, M.A. A Survey of the 2010 Quartz Crystal Microbalance Literature. J. Mol. Recognit. 2012, 25, 451–473. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, C.K.; Guilbault, G.G. Commercial Quartz Crystal Microbalances—Theory and Applications. Biosens. Bioelectron. 1999, 14, 663–670. [Google Scholar] [CrossRef]
- Horrillo, M.C.; Fernández, M.J.; Fontecha, J.L.; Sayago, I.; García, M.; Aleixandre, M.; Santos, J.P.; Arés, L.; Gutiérrez, J.; Gràcia, I.; et al. Detection of Volatile Organic Compounds Using Surface Acoustic Wave Sensors with Different Polymer Coatings. Thin Solid Film. 2004, 467, 234–238. [Google Scholar] [CrossRef]
- Gao, F.; Boussaid, F.; Xuan, W.; Tsui, C.-Y.; Bermak, A. Dual transduction surface acoustic wave gas sensor for VOC dis-crimination. IEEE Electron. Device Lett. 2018, 39, 1920–1923. [Google Scholar] [CrossRef]
- Viespe, C.; Miu, D. Characteristics of Surface Acoustic Wave Sensors with Nanoparticles Embedded in Polymer Sensitive Layers for VOC Detection. Sensors 2018, 18, 2401. [Google Scholar] [CrossRef]
- Kus, F.; Altinkok, C.; Zayim, E.; Erdemir, S.; Tasaltin, C.; Gurol, I. Surface Acoustic Wave (SAW) Sensor for Volatile Organic Compounds (VOCs) Detection with Calix [4] Arene Functionalized Gold Nanorods (AuNRs) and Silver Nanocubes (AgNCs). Sens. Actuators B Chem. 2021, 330, 129402. [Google Scholar] [CrossRef]
- Palla-Papavlu, A.; Voicu, S.I.; Dinescu, M. Sensitive Materials and Coating Technologies for Surface Acoustic Wave Sensors. Chemosensors 2021, 9, 105. [Google Scholar] [CrossRef]
- Pan, Y.; Yan, C.; Gao, X.; Yang, J.; Guo, T.; Zhang, L.; Wang, W. A Passive Wireless Surface Acoustic Wave (SAW) Sensor System for Detecting Warfare Agents Based on Fluoroalcohol Polysiloxane Film. Microsyst. Nanoeng. 2024, 10, 4. [Google Scholar] [CrossRef]
- Szulczyński, B.; Gębicki, J. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air. Environments 2017, 4, 21. [Google Scholar] [CrossRef]
- Kulinyi, S.; Brandszájsz, D.; Amine, H.; Ádám, M.; Fürjes, P.; Bársony, I.; Dücső, C. Olfactory Detection of Methane, Propane, Butane and Hexane Using Conventional Transmitter Norms. Sens. Actuators B Chem. 2005, 111, 286–292. [Google Scholar] [CrossRef]
- Caucheteur, C.; Debliquy, M.; Lahem, D.; Megret, P. Catalytic fiber Bragg grating sensor for hydrogen leak detection in air. IEEE Photonics Technol. Lett. 2008, 20, 96–98. [Google Scholar] [CrossRef]
- Nemirovsky, Y.; Stolyarova, S.; Blank, T.; Bar-Lev, S.; Svetlitza, A.; Zviagintsev, A.; Brouk, I. A New Pellistor-like Gas Sensor Based on Micromachined CMOS Transistor. IEEE Trans. Electron. Devices 2018, 65, 5494–5498. [Google Scholar] [CrossRef]
- Avraham, M.; Krayden, A.; Ashkar, H.; Aronin, D.; Stolyarova, S.; Blank, T.; Shlenkevitch, D.; Nemirovsky, Y. A Novel Miniature and Selective CMOS Gas Sensor for Gas Mixture Analysis—Part 4: The Effect of Humidity. Micromachines 2024, 15, 264. [Google Scholar] [CrossRef] [PubMed]
- Goikhman, B.; Avraham, M.; Bar-Lev, S.; Stolyarova, S.; Blank, T.; Nemirovsky, Y. A Novel Miniature and Selective CMOS Gas Sensor for Gas Mixture Analysis—Part 3: Extending the Chemical Modeling. Micromachines 2023, 14, 270. [Google Scholar] [CrossRef]
- Khan, S.; Newport, D.; Le Calvé, S. Gas Detection Using Portable Deep-UV Absorption Spectrophotometry: A Review. Sensors 2019, 19, 5210. [Google Scholar] [CrossRef]
- Li, Z.; Askim, J.R.; Suslick, K.S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem. Rev. 2018, 119, 231–292. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Lei, Y. Fluorescence Based Explosive Detection: From Mechanisms to Sensory Materials. Chem. Soc. Rev. 2015, 44, 8019–8061. [Google Scholar] [CrossRef]
- Li, G.; Liu, Z.; Gao, W.; Tang, B. Recent Advancement in Graphene Quantum Dots Based Fluorescent Sensor: Design, Construction and Bio-Medical Applications. Coord. Chem. Rev. 2023, 478, 214966. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Xu, T.; She, M.; Chen, J.; Jia, X.; Liu, P.; Liu, X.; Li, J. Red Emissive Carbon Dots as a Fluorescent Sensor for Fast Specific Monitoring and Imaging of Polarity in Living Cells. J. Mater. Chem. A 2023, 11, 2679–2689. [Google Scholar] [CrossRef]
- Keerthana, P.; Das, A.K.; Bharath, M.; Ghosh, M.; Varghese, A. A Ratiometric Fluorescent Sensor Based on Dual-Emissive Carbon Dot for the Selective Detection of Cd2+. J. Environ. Chem. Eng. 2023, 11, 109325. [Google Scholar] [CrossRef]
- Li, W.; Liu, L.; Li, X.; Ren, H.; Zhang, L.; Parvez, M.K.; Al-Dosari, M.S.; Fan, L.; Liu, J. A Ni(II)MOF-Based Hypersensitive Dual-Function Luminescent Sensor towards the 3-Nitrotyrosine Biomarker and 6-Propyl-2-Thiouracil Antithyroid Drug in Urine. J. Mater. Chem. B 2024. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Ma, Z.; Wang, S.; Gong, X.; Zhang, S.; Zhang, X. Hydrogen Sulfide Detection Based on Reflection: From a Poison Test Approach of Ancient China to Single-Cell Accurate Localization. Anal. Chem. 2014, 86, 7734–7739. [Google Scholar] [CrossRef]
- Askim, J.R.; Suslick, K.S. Hand-held reader for colorimetric sensor arrays. Anal. Chem. 2015, 87, 7810–7816. [Google Scholar] [CrossRef] [PubMed]
- Askim, J.R.; Li, Z.; LaGasse, M.K.; Rankin, J.M.; Suslick, K.S. An Optoelectronic Nose for Identification of Explosives. Chem. Sci. 2016, 7, 199–206. [Google Scholar] [CrossRef]
- Nassau, K. The Physics and Chemistry of Color: The Fifteen Causes of Color 2001. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/col.10085 (accessed on 27 August 2002).
- Toby, S. Chemiluminescence in the Reactions of Ozone. Chem. Rev. 1984, 84, 277–285. [Google Scholar] [CrossRef]
- Low-Pressure Gas-Phase Ozone-Olefin Reactions. Chemiluminescence, Kinetics, and Mechanisms. J. Am. Chem. Soc. 1974, 96, 5356–5367. [Google Scholar]
- Ohira, S.-I.; Li, J.; Lonneman, W.A.; Dasgupta, P.K.; Toda, K. Can Breath Isoprene Be Measured by Ozone Chemiluminescence? Anal. Chem. 2007, 79, 2641–2649. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, J.; Song, Y.; Li, Z.; Liu, X.; Zhang, M.; Zang, H.; Cao, X.; Lv, C. An Environment-Friendly Device for Rapid Determination of Chemical Oxygen Demand in Waters Based on Ozone-Induced Chemiluminescence Technology. Anal. Methods 2019, 11, 1707–1714. [Google Scholar] [CrossRef]
- Matsumoto, J. Measurements of Total Ozone Reactivity in a Suburban Forest in Japan. Atmos. Environ. 2021, 246, 117990. [Google Scholar] [CrossRef]
- Jha, R.K. Non-dispersive infrared gas sensing technology: A review. IEEE Sens. J. 2021, 22, 6–15. [Google Scholar] [CrossRef]
- Dinh, T.-V.; Choi, I.-Y.; Son, Y.-S.; Kim, J.-C. A Review on Non-Dispersive Infrared Gas Sensors: Improvement of Sensor Detection Limit and Interference Correction. Sens. Actuators B Chem. 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, H.; Li, J.; Wan, H.; Guo, Q.; Zhu, H.; Liu, H.; Yi, F. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nat. Commun. 2020, 11, 5245. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Peng, B.; Zhu, X.; Guo, Y. Multi-Gas Detection System Based on Non-Dispersive Infrared (NDIR) Spectral Technology. Sensors 2022, 22, 836. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, S.; Tiele, A.; Agbroko, S.O.; Covington, J.A. Development of a Tuneable NDIR Optical Electronic Nose. Sensors 2020, 20, 6875. [Google Scholar] [CrossRef]
- Petrov, D.V.; Matrosov, I.I. Enhancement of Raman Scattering Intensity Due to an Internal-Field Factor. Opt. Spectrosc. 2021, 129, 674–678. [Google Scholar] [CrossRef]
- Fast and Highly Sensitive Fiber-Enhanced Raman Spectroscopic Monitoring of Molecular H2 and CH4 for Point-of-Care Diagnosis of Malabsorption Disorders in Exhaled Human Breath. Available online: http://ouci.dntb.gov.ua/en/works/9jQDy6wl/ (accessed on 8 November 2024).
- Zhao, Y.-X.; Zhu, W.-W.; Wu, Y.-Y.; Chen, Y.-Y.; Du, F.-K.; Yan, J.; Tan, X.-C.; Wang, Q. Sensitive Surface-Enhanced Raman Scattering for the Quantitative Detection of Formaldehyde in Foods Using Gold Nanorod Substrate. Microchem. J. 2021, 160, 105727. [Google Scholar] [CrossRef]
- Xu, W.; Ling, X.; Xiao, J.; Dresselhaus, M.S.; Kong, J.; Xu, H.; Liu, Z.; Zhang, J. Surface Enhanced Raman Spectroscopy on a Flat Graphene Surface. Proc. Natl. Acad. Sci. USA 2012, 109, 9281–9286. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, C.; Shi, Y.; Wang, L.-X.; Mao, Z.-S.; Sun, H.; Wan, H.; Chen, F.; Cao, Y. Dual-Mode Separation and SERS Detection of Carbaryl with PA-6/AuNRs@ZIF-8 Films. Anal. Chem. 2024, 96, 1941–1947. [Google Scholar] [CrossRef]
- Velez, J.G.; Muller, A. Trace Gas Sensing Using Diode-Pumped Collinearly Detected Spontaneous Raman Scattering Enhanced by a Multipass Cell. Opt. Lett. 2020, 45, 133–136. [Google Scholar] [CrossRef]
- Hanf, S.; Keiner, R.; Yan, D.; Popp, J.; Frosch, T. Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis. Anal. Chem. 2014, 86, 5278–5285. [Google Scholar] [CrossRef] [PubMed]
- Agbroko, S.O.; Covington, J. A Novel, Low-Cost, Portable PID Sensor for the Detection of Volatile Organic Compounds. Sens. Actuators B Chem. 2018, 275, 10–15. [Google Scholar] [CrossRef]
- Pang, X.; Nan, H.; Zhong, J.; Ye, D.; Shaw, M.D.; Lewis, A.C. Low-Cost Photoionization Sensors as Detectors in GC × GC Systems Designed for Ambient VOC Measurements. Sci. Total Environ. 2019, 664, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Spadi, A.; Angeloni, G.; Guerrini, L.; Corti, F.; Maioli, F.; Calamai, L.; Parenti, A.; Masella, P. A Conventional VOC-PID Sensor for a Rapid Discrimination among Aromatic Plant Varieties: Classification Models Fitted to a Rosemary Case-Study. Appl. Sci. 2022, 12, 6399. [Google Scholar] [CrossRef]
- Zabiegała, B.; Przyk, E.; Przyjazny, A.; Namieśnik, J. Evaluation of Indoor Air Quality on the Basis of Measurements of VOC Concentrations. Chem. Anal. 2000, 45, 11–26. [Google Scholar]
- Lawson, A.M. Mass Spectrometry; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2021; Volume 1. [Google Scholar]
- Mielczarek, P.; Silberring, J.; Smoluch, M. Miniaturization in Mass Spectrometry. Mass Spectrom. Rev. 2020, 39, 453–470. [Google Scholar] [CrossRef]
- Evans-Nguyen, K.; Stelmack, A.R.; Clowser, P.C.; Holtz, J.M.; Mulligan, C.C. Fieldable Mass Spectrometry for Forensic Science, Homeland Security, and Defense Applications. Mass Spectrom. Rev. 2021, 40, 628–646. [Google Scholar] [CrossRef]
- Allsworth, M. Detecting Biomarkers in Breath Using GC–MS. LCGC Int. 2020, 16, 14–17. [Google Scholar]
- De Vietro, N.; Aresta, A.M.; Picciariello, A.; Altomare, D.F.; Lucarelli, G.; Di Gilio, A.; Palmisani, J.; De Gennaro, G.; Zambonin, C. Optimization of a Breath Analysis Methodology to Potentially Diagnose Transplanted Kidney Rejection: A Preclinic Study. Appl. Sci. 2023, 13, 2852. [Google Scholar] [CrossRef]
- Hill, H.H., Jr.; Siems, W.F.; St. Louis, R.H. Ion Mobility Spectrometry. Anal. Chem. 1990, 62, 1201–1209. [Google Scholar] [CrossRef]
- Gabelica, V.; Marklund, E. Fundamentals of Ion Mobility Spectrometry. Curr. Opin. Chem. Biol. 2018, 42, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, A.; Zimmermann, S. Towards a Hand-Held, Fast, and Sensitive Gas Chromatograph-Ion Mobility Spectrometer for de-Tecting Volatile Compounds. Anal. Bioanal. Chem. 2021, 413, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, A.; Hitzemann, M.; Zimmermann, S. Miniaturized High-Performance Drift Tube Ion Mobility Spectrometer. Int. J. Ion Mobil. Spectrom. 2019, 22, 77–83. [Google Scholar] [CrossRef]
- Fulton, A.C.; Vaughan, S.R.; DeGreeff, L.E. Non-contact Detection of Fentanyl by a Field-portable Ion Mobility Spectrometer. Drug Test. Anal. 2022, 14, 1451–1459. [Google Scholar] [CrossRef]
- Ratiu, I.A.; Bocos-Bintintan, V.; Patrut, A.; Moll, V.H.; Turner, M.; Thomas, C.P. Discrimination of Bacteria by Rapid Sensing Their Metabolic Volatiles Using an Aspiration-Type Ion Mobility Spectrometer (a-IMS) and Gas Chromatography-Mass Spectrom-Etry GC-MS. Anal. Chim. Acta 2017, 982, 209–217. [Google Scholar] [CrossRef]
- Guo, X.; Schwab, W.; Ho, C.-T.; Song, C.; Wan, X. Characterization of the Aroma Profiles of Oolong Tea Made from Three Tea Cultivars by Both GC–MS and GC-IMS. Food Chem. 2022, 376, 131933. [Google Scholar] [CrossRef]
- Hua, Y.; Kumar, V.; Kim, K.-H. Recent Progress on Hollow Porous Molecular Imprinted Polymers as Sorbents of Environmental Samples. Microchem. J. 2021, 171, 106848. [Google Scholar] [CrossRef]
- Uzun, L.; Turner, A.P. Molecularly-Imprinted Polymer Sensors: Realising Their Potential. Biosens. Bioelectron. 2016, 76, 131–144. [Google Scholar] [CrossRef]
- Chauhan, R.; Singh, J.; Sachdev, T.; Basu, T.; Malhotra, B. Recent advances in mycotoxins detection. Biosens. Bioelectron. 2016, 81, 532–545. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Liu, Q. Gas sensors based on molecular imprinting technology. Sensors 2017, 17, 1567. [Google Scholar] [CrossRef]
- Kang, M.S.; Cho, E.; Choi, H.E.; Amri, C.; Lee, J.-H.; Kim, K.S. Molecularly Imprinted Polymers (MIPs): Emerging Biomaterials for Cancer Theragnostic Applications. Biomater. Res. 2023, 27, 45. [Google Scholar] [CrossRef] [PubMed]
- Emam, S.; Nasrollahpour, M.; Allen, J.P.; He, Y.; Hussein, H.; Shah, H.S.; Tavangarian, F.; Sun, N.-X. A Handheld Electronic Device with the Potential to Detect Lung Cancer Biomarkers from Exhaled Breath. Biomed. Microdevices 2022, 24, 41. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, C.; Xu, X.-F.; Xu, W.; Liu, S.-W. Structural and Functional Properties of SARS-CoV-2 Spike Protein: Potential Antivirus Drug Development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. [Google Scholar] [CrossRef]
- Zamzami, M.A.; Rabbani, G.; Ahmad, A.; Basalah, A.A.; Al-Sabban, W.H.; Ahn, S.N.; Choudhry, H. Carbon Nanotube Field-Effect Transistor (CNT-FET)-Based Biosensor for Rapid Detection of SARS-CoV-2 (COVID-19) Surface Spike Protein S1. Bioelectrochemistry 2022, 143, 107982. [Google Scholar] [CrossRef]
- Paknahad, M.; Bachhal, J.S.; Hoorfar, M. Diffusion-Based Humidity Control Membrane for Microfluidic-Based Gas Detectors. Anal. Chim. Acta 2018, 1021, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Dey, A. Semiconductor Metal Oxide Gas Sensors: A Review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Schütze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How To? Environments 2017, 4, 20. [Google Scholar] [CrossRef]
- Xu, W.; Cai, Y.; Gao, S.; Hou, S.; Yang, Y.; Duan, Y.; Fu, Q.; Chen, F.; Wu, J. New Understanding of Miniaturized VOCs Monitoring Device: PID-Type Sensors Performance Evaluations in Ambient Air. Sens. Actuators B Chem. 2021, 330, 129285. [Google Scholar] [CrossRef]
- Thompson, J.E. Crowd-Sourced Air Quality Studies: A Review of the Literature & Portable Sensors. Trends Environ. Anal. Chem. 2016, 11, 23–34. [Google Scholar]
- Hurot, C.; Scaramozzino, N.; Buhot, A.; Hou, Y. Bio-Inspired Strategies for Improving the Selectivity and Sensitivity of Artificial Noses: A Review. Sensors 2020, 20, 1803. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Jadon, N.; Jain, R.; Sharma, S.; Singh, K. Recent Trends in Electrochemical Sensors for Multianalyte Detection—A Review. Talanta 2016, 161, 894–916. [Google Scholar] [CrossRef]
- Djeziri, M.; Benmoussa, S.; Bendahan, M.; Seguin, J.-L. Review on Data-Driven Approaches for Improving the Selectivity of MOX-Sensors. Microsyst. Technol. 2024, 30, 791–807. [Google Scholar] [CrossRef]
- Kresnawaty, I.; Mulyatni, A.; Eris, D.; Prakoso, H.; Triyana, K.; Widiastuti, H. Electronic Nose for Early Detection of Basal Stem Rot Caused by Ganoderma in Oil Palm. IOP Conf. Ser. Earth Environ. Sci. 2020, 468, 012029. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Cheng, S.; Wang, Y. Detection of Pest Species with Different Ratios in Tea Plant Based on Electronic Nose. Ann. Appl. Biol. 2019, 174, 209–218. [Google Scholar] [CrossRef]
- Xue, S.; Cao, S.; Huang, Z.; Yang, D.; Zhang, G. Improving Gas-Sensing Performance Based on MOS Nanomaterials: A Review. Materials 2021, 14, 4263. [Google Scholar] [CrossRef]
- Shen, Y.; Tissot, A.; Serre, C. Recent progress on MOF-based optical sensors for VOC sensing. Chem. Sci. 2022, 13, 13978–14007. [Google Scholar] [CrossRef]
- Cui, S.; Ling, P.; Zhu, H.; Keener, H.M. Plant Pest Detection Using an Artificial Nose System: A Review. Sensors 2018, 18, 378. [Google Scholar] [CrossRef]
- Wei, L.; Yu, L.; Jiaoqi, H.; Guorong, H.; Yang, Z.; Weiling, F. Application of terahertz spectroscopy in biomolecule detection. Front. Lab. Med. 2018, 2, 127–133. [Google Scholar] [CrossRef]
- Molaei, M.J. A Review on Nanostructured Carbon Quantum Dots and Their Applications in Biotechnology, Sensors, and Chem-Iluminescence. Talanta 2019, 196, 456–478. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Lu, L.; Zhang, Q.; Yu, P.; Fan, Y.; Zhang, F. NIR-II Chemiluminescence Molecular Sensor for in Vivo High-contrast Inflammation Imaging. Angew. Chem. Int. Ed. 2020, 59, 18380–18385. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Gao, Q.; Li, J.; Lin, J.-M. Graphene Materials-Based Chemiluminescence for Sensing. J. Photochem. Photobiol. C Photochem. Rev. 2016, 27, 54–71. [Google Scholar] [CrossRef]
- Deepa, S.; Venkatesan, R.; Jayalakshmi, S.; Priya, M.; Kim, S.-C. Recent Advances in Catalyst-Enhanced Luminol Chemilumi-Nescence System and Its Environmental and Chemical Applications. J. Environ. Chem. Eng. 2023, 11, 109853. [Google Scholar] [CrossRef]
- Gao, M.; Tang, B.Z. Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives. ACS Sens. 2017, 2, 1382–1399. [Google Scholar] [CrossRef] [PubMed]
- Acha, N.; Elosúa, C.; Corres, J.M.; Arregui, F.J. Fluorescent Sensors for the Detection of Heavy Metal Ions in Aqueous Media. Sensors 2019, 19, 599. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Nabeel, F.; Iqbal, H.M.; Li, C.; Zhou, Y. Fluorescent Sensor Based Models for the Detection of Environ-Mentally-Related Toxic Heavy Metals. Sci. Total Environ. 2018, 615, 476–485. [Google Scholar] [CrossRef]
- Guo, C.; Sedgwick, A.C.; Hirao, T.; Sessler, J.L. Supramolecular Fluorescent Sensors: An Historical Overview and Update. Coord. Chem. Rev. 2021, 427, 213560. [Google Scholar] [CrossRef]
- Lapthorn, C.; Pullen, F.; Chowdhry, B.Z. Ion Mobility Spectrometry-mass Spectrometry (IMS-MS) of Small Molecules: Sepa-Rating and Assigning Structures to Ions. Mass Spectrom. Rev. 2013, 32, 43–71. [Google Scholar] [CrossRef]
- Awang, Z. Gas sensors: A review. Sens. Transducers 2014, 168, 61–75. [Google Scholar]
- Li, Z.; Paul, R.; Ba Tis, T.; Saville, A.C.; Hansel, J.C.; Yu, T.; Ristaino, J.B.; Wei, Q. Non-Invasive Plant Disease Diagnostics Enabled by Smartphone-Based Fingerprinting of Leaf Volatiles. Nat. Plants 2019, 5, 856–866. [Google Scholar] [CrossRef]
- Liu, B.; Zhuang, J.; Wei, G. Recent Advances in the Design of Colorimetric Sensors for Environmental Monitoring. Environ. Sci. Nano 2020, 7, 2195–2213. [Google Scholar] [CrossRef]
- Guerra, L.R.; de Souza, A.M.T.; Côrtes, J.A.; Lione, V.d.O.F.; Castro, H.C.; Alves, G.G. Assessment of Predictivity of Volatile Organic Compounds Carcinogenicity and Mutagenicity by Freeware in Silico Models. Regul. Toxicol. Pharmacol. 2017, 91, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Ahmed, A.; Jalal, A.H.; Siddiquee, I.; Adury, R.Z.; Hossain, G.M.M.; Pala, N. Recent Progress and Challenges of Implantable Biodegradable Biosensors. Micromachines 2024, 15, 475. [Google Scholar] [CrossRef] [PubMed]
Method | Approach | Sensitivity | Specificity | Time | Body Fluids | Vendors |
---|---|---|---|---|---|---|
RT-PCR | RNA | 95–100% | 95–100% | 3 h | Respiratory Specimens | LabCrop, Roche, etc. |
Antibody | IgM, IgG | 80–100% | 90–100% | 15–30 min | Blood | Cellex, etc. |
Antigen | RNA | 20–71% | 85–100% | 15–30 min | Blood | UCSD |
CRISP-based | RNA | 95% | 100% | 40 min | Respiratory specimens | Sherlock Biosciences |
LAMP-based | RNA | 97% | 100% | 30 min | Respiratory specimens | MicrosensDx |
Saliva-based | RNA | 91% | 98% | 45 min | Saliva | Yale School of Public Health |
Breath-based | GC-MS VOC | 91% | 99% | 5–10 min | Air | Inspect-IR, Breathomix |
Our Sensor | RBD S-Protein | 98.40% | 100% | 10 s | Aerosol/Air | Winchester Technologies |
Antibody | IgM, IgG | 80–100% | 90–100% | 15–30 min | Blood | Cellex, etc. |
Antigen | RNA | 20–71% | 85–100% | 15–30 min | Blood | UCSD |
CRISP-based | RNA | 95% | 100% | 40 min | Respiratory specimens | Sherlock Biosciences |
Method | Sensitivity | Specificity | Accuracy |
---|---|---|---|
Human-Brain Decision | 98.41% | 100% | 99.26% |
Wavelet Method | 92.10% | 90.30% | 91.10% |
Deep-Learning Method | 95.20% | 90.30% | 92.60% |
Curve-Fitting Method | 95.23% | 100% | 97.78% |
Sensor Type | Sensitivity | Selectivity | Comments | Reference |
---|---|---|---|---|
Photoionization Detectors (PID) | ++++ | ++ | + real-time response + low LOD + cost-effective + portable and simple to use –- requires maintenance – sensitive to humidity – limited gas detection – inconsistent response | [109,182,183,184] |
Electrochemical Sensors | +++++ | ++++ | + broadband sensors + low power consumption + durable + real-time response + room temperature operation + cost-effective + low LOD + rapid response – limited shelf life – cross-sensitivity to other gases – requires maintenance – low baseline stability | [184,185,186,187] |
Chemiresistors | +++ | ++ | + good durability + portable + cost-effective + simple and easy to use + real-time response + non-destructive + portable + responds to significant number of gases – influenced by humidity and temperature – high working temperature – not very flexible – more fragile, easily damaged during preparation | [184,188,189,190,191] |
Quartz Crystal Microbalance (QCM) | ++++ | +++ | + real-time response + cost-effective + long lifetime + non-destructive + low power consumption + ease of modification + portable + low LOD – humidity/temperature sensitive – limited measurement range – requires precise calibration – limited to specific target molecules – poor reproducibility | [184,192,193] |
Surface Acoustic Wave (SAW) | ++++ | +++ | + versatile + portable +cost-effective + low power consumption + high-frequency operation + fast response + long lifetime – limited measurement range – temperature sensitive – signal-to-noise ratio – noisy – poor reproducibility – limited to specific target molecules | [167,177] |
Nondispersive infrared sensors (NDIRs) | +++ | +++++ | + real-time response + long-term stability + portable + low power consumption – difficult to miniaturize – limited to specific gases – humidity/temperature sensitive – expensive instrumentation | [136,137,167] |
Raman Sensors | +++ | ++++ | + non-destructive + minimal sample preparation + high specificity + real-time response – expensive instrumentation – limited portability – complicated data analysis | [149,150,151,152] |
Chemiluminescence Sensors | ++++ | +++ | + lower background emission than fluorescent sensors, avoiding noise caused by light scattering. + low LOD + detects chemicals with short lifespan + versatile with many catalysts + stable in most conditions + easy to use + has cost-effective options – irreversible exposure limits lifespan – reagents are expensive and often poisonous – conventional sensors only operate within 400–850 nm range – limited commercial availability – often limited portability | [194,195,196,197,198] |
Fluorescent Sensors | ++++ | +++ | + rapid response + portable + real-time monitoring + simple operation + strong reversibility and recovery post-exposure + stable, withstands range of temperatures and pH variations – limited portability – more background interference compared to other sensors | [199,200,201,202] |
Gas Chromatography Coupled with Mass Spectrometer and Ion Mobility Mass Spectrometer | +++++ | +++++ | + fast response + low LOD – expensive – high energy consumption – operates well in ambient conditions – Regular calibration and maintenance needed – tends to struggle with certain chemicals like alkenes – large instruments | [101,203] |
Molecularly Imprinted Polymers (MIPs) | +++++ | +++++ | +can be designed to operate in various environments. + cost-effective + portable + low LOD – limited to the specific molecules for which they are imprinted – sensitive to temperature and humidity – requires careful template removal | [66,156] |
Pellistors | +++ | ++++ | + small + cost-effective + fast response time + cost-effective + durable in harsh conditions – moderate LOD – sensitive to environment changes – maintenance required | [102,204] |
Colorimetric | +++ | ++++ | + disposable + low LOD + simple to use + portable + cost-effective + easy fabrication + operate at room temperature – susceptible to environmental changes – slower response time compared to some advanced sensor types – may require frequent recalibration depending on the application | [193,205,206] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghi, P.; Alshawabkeh, R.; Rui, A.; Sun, N.X. A Comprehensive Review of Biomarker Sensors for a Breathalyzer Platform. Sensors 2024, 24, 7263. https://doi.org/10.3390/s24227263
Sadeghi P, Alshawabkeh R, Rui A, Sun NX. A Comprehensive Review of Biomarker Sensors for a Breathalyzer Platform. Sensors. 2024; 24(22):7263. https://doi.org/10.3390/s24227263
Chicago/Turabian StyleSadeghi, Pardis, Rania Alshawabkeh, Amie Rui, and Nian Xiang Sun. 2024. "A Comprehensive Review of Biomarker Sensors for a Breathalyzer Platform" Sensors 24, no. 22: 7263. https://doi.org/10.3390/s24227263
APA StyleSadeghi, P., Alshawabkeh, R., Rui, A., & Sun, N. X. (2024). A Comprehensive Review of Biomarker Sensors for a Breathalyzer Platform. Sensors, 24(22), 7263. https://doi.org/10.3390/s24227263