Multi-Maneuvering Target Tracking Based on a Gaussian Process
Abstract
:1. Introduction
- (1)
- A data-driven MMTT state estimation method is proposed by combining a GP and the PHD filter. The method models the MMTT motion and observation models as nonlinear functions over time. It uses a GP to learn the unknown characteristics of the target motion and observation models from training data.
- (2)
- Based on the GP model learning, a cubature Kalman filter (CKF) [33] is utilized to propagate the uncertainty of the system to achieve accurate estimation. The GP possess provide model-learning capability, while the CKF efficiently handles nonlinear system through the ‘cubature sampling’ technique. This innovative design allows the GP-PHD filter to achieve excellent tracking accuracy and stability in uncertain and complex environments.
- (3)
- To verify the effectiveness of the proposed algorithm, two groups of simulation experiments with different scenarios are designed. The results demonstrate that, compared to the traditional MD method, the GP-based method offers significant advantages in an environment with unpredictable and highly dynamic target motion.
2. Problem Definition and Background
2.1. System Model
2.2. Multi-Target Bayesian Filtering
2.3. PHD Filter
3. Gaussian Process
3.1. Basic Gaussian Process Model
3.2. Hyperparameter Learning
3.3. Learning Prediction and Observation Models Using Gaussian Process
4. Gaussian Process Bayesian Filter
4.1. Gaussian Process for System Model
4.2. GP-CK-PHD Gaussian Mixture Implementation
Algorithm 1 The GP-PHD algorithm |
|
5. Simulation Experiments
5.1. Performance Evaluation
5.2. Simulation Results
- , ,
- , ,
- , .
- , ,
- , ,
- .
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, Y. Mission-Driven Autonomous Perception and Fusion Based on UAV Swarm. Chin. J. Aeronaut. 2020, 33, 2831–2834. [Google Scholar] [CrossRef]
- Fan, C.; Song, C.; Wang, M. Small Video Satellites Visual Tracking Control for Arbitrary Maneuvering Targets. In Proceedings of the 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), Xishuangbanna, China, 5–9 December 2022; pp. 951–957. [Google Scholar]
- Yu, J.; Shi, Z.; Dong, X.; Li, Q.; Lv, J.; Ren, Z. Impact Time Consensus Cooperative Guidance Against the Maneuvering Target: Theory and Experiment. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 4590–4603. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, W.; Zong, B.; Shi, J.; Xie, J. An Efficient Power Allocation Strategy for Maneuvering Target Tracking in Cognitive MIMO Radar. IEEE Trans. Signal Process. 2021, 69, 1591–1602. [Google Scholar] [CrossRef]
- Lucena de Souza, M.; Gaspar Guimarães, A.; Leite Pinto, E. A Novel Algorithm for Tracking a Maneuvering Target in Clutter. Digital Signal Process. 2022, 126, 103481. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, F.; Zhang, B.; Ma, R.; Hao, Q. Development of UAV-Based Target Tracking and Recognition Systems. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3409–3422. [Google Scholar] [CrossRef]
- Rong Li, X.; Jilkov, V.P. Survey of Maneuvering Target Tracking. Part I. Dynamic Models. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1333–1364. [Google Scholar] [CrossRef]
- Li, W.; Jia, Y. An Information Theoretic Approach to Interacting Multiple Model Estimation. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1811–1825. [Google Scholar] [CrossRef]
- Xu, H.; Pan, Q.; Xu, H.; Quan, Y. Adaptive IMM Smoothing Algorithms for Jumping Markov System with Mismatched Measurement Noise Covariance Matrix. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 5467–5480. [Google Scholar] [CrossRef]
- Xu, W.; Xiao, J.; Xu, D.; Wang, H.; Cao, J. An Adaptive IMM Algorithm for a PD Radar with Improved Maneuvering Target Tracking Performance. Remote Sens. 2024, 16, 1051. [Google Scholar] [CrossRef]
- Li, X.; Lu, B.; Li, Y.; Lu, X.; Jin, H. Adaptive Interacting Multiple Model for Underwater Maneuvering Target Tracking with One-Step Randomly Delayed Measurements. Ocean Eng. 2023, 280, 114933. [Google Scholar] [CrossRef]
- Han, B.; Huang, H.; Lei, L.; Huang, C.; Zhang, Z. An Improved IMM Algorithm Based on STSRCKF for Maneuvering Target Tracking. IEEE Access 2019, 7, 57795–57804. [Google Scholar] [CrossRef]
- Lu, C.; Feng, W.; Li, W.; Zhang, Y.; Guo, Y. An Adaptive IMM Filter for Jump Markov Systems with Inaccurate Noise Covariances in the Presence of Missing Measurements. Digital Signal Process. 2022, 127, 103529. [Google Scholar] [CrossRef]
- Kirubarajan, T.; Bar-Shalom, Y.; Pattipati, K.R.; Kadar, I. Ground Target Tracking with Variable Structure IMM Estimator. IEEE Trans. Aerosp. Electron. Syst. 2000, 36, 26–46. [Google Scholar] [CrossRef]
- Pasha, S.A.; Vo, B.-N.; Tuan, H.D.; Ma, W.-K. A Gaussian Mixture PHD Filter for Jump Markov System Models. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 919–936. [Google Scholar] [CrossRef]
- Sithiravel, R.; McDonald, M.; Balaji, B.; Kirubarajan, T. Multiple Model Spline Probability Hypothesis Density Filter. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1210–1226. [Google Scholar] [CrossRef]
- Georgescu, R.; Willett, P. The multiple model CPHD tracker. IEEE Trans. Signal Process. 2012, 60, 1741–1751. [Google Scholar] [CrossRef]
- Dong, P.; Jing, Z.; Li, M.; Pan, H. The variable structure multiple model GM-PHD filter based on likely model set algorithm. In Proceedings of the 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016; IEEE: New York, NY, USA, 2016; pp. 2289–2295. [Google Scholar]
- Dunne, D.; Kirubarajan, T. Multiple Model Multi-Bernoulli Filters for Manoeuvering Targets. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 2679–2692. [Google Scholar] [CrossRef]
- Reuter, S.; Scheel, A.; Dietmayer, K. The multiple model labeled multi-Bernoulli filter. In Proceedings of the 2015 18th International Conference on Information Fusion (FUSION), Washington, DC, USA, 6–9 July 2015; IEEE: New York, NY, USA, 2015; pp. 1574–1580. [Google Scholar]
- Punchihewa, Y.; Vo, B.N.; Vo, B.T. A generalized labeled multi-Bernoulli filter for maneuvering targets. In Proceedings of the 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016; IEEE: New York, NY, USA, 2016; pp. 980–986. [Google Scholar]
- Seeger, M. Gaussian Processes for Machine Learning. Int. J. Neural Syst. 2004, 14, 69–106. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; Fox, D. GP-BayesFilters: Bayesian Filtering Using Gaussian Process Prediction and Observation Models. Auton Robot. 2009, 27, 75–90. [Google Scholar] [CrossRef]
- Kowsari, E.; Safarinejadian, B. Applying GP-EKF and GP-SCKF for Non-Linear State Estimation and Fault Detection in a Continuous Stirred-Tank Reactor System. Trans. Inst. Meas. Control 2017, 39, 1486–1496. [Google Scholar] [CrossRef]
- Todescato, M.; Carron, A.; Carli, R.; Pillonetto, G.; Schenato, L. Efficient Spatio-Temporal Gaussian Regression via Kalman Filtering. Automatica 2020, 118, 109032. [Google Scholar] [CrossRef]
- Lee, T. Adaptive learning Kalman filter with Gaussian process. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; IEEE: New York, NY, USA, 2020; pp. 4442–4447. [Google Scholar]
- Aftab, W.; Mihaylova, L. A Gaussian Process Regression Approach for Point Target Tracking. In Proceedings of the 2019 22th International Conference on Information Fusion (FUSION), Ottawa, ON, Canada, 2–5 July 2019; IEEE: New York, NY, USA, 2019; pp. 1–8. [Google Scholar]
- Aftab, W.; Mihaylova, L. A Learning Gaussian Process Approach for Maneuvering Target Tracking and Smoothing. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 278–292. [Google Scholar] [CrossRef]
- Sun, M.; Davies, M.E.; Proudler, I.K.; Hopgood, J.R. A Gaussian Process Regression based Dynamical Models Learning Algorithm for Target Tracking. arXiv 2022, arXiv:2211.14162. [Google Scholar]
- Hu, Z.; Li, T. A Particle Bernoulli Filter Based on Gaussian Process Learning for Maneuvering Target Tracking. In Proceedings of the 2022 30th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 29 August–2 September 2022; IEEE: New York, NY, USA, 2022; pp. 777–781. [Google Scholar]
- Guo, Q.; Teng, L.; Yin, T.; Guo, Y.; Wu, X.; Song, W. Hybrid-Driven Gaussian Process Online Learning for Highly Maneuvering Multi-Target Tracking. Front. Inform. Technol. Electron. Eng. 2023, 24, 1647–1656. [Google Scholar] [CrossRef]
- Mahler, R.P.S. Multitarget Bayes Filtering via First-Order Multitarget Moments. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1152–1178. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S. Cubature Kalman Filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef]
- Vo, B.N.; VO, B.T.; Clark, D. Bayesian multiple target filtering using random finite sets. In Integrated Tracking, Classification, and Sensor Management; Wiley: Hoboken, NJ, USA, 2013; pp. 75–126. [Google Scholar] [CrossRef]
- Rahmathullah, A.S.; García-Fernández, Á.F.; Svensson, L. Generalized Optimal Sub-Pattern Assignment Metric. In Proceedings of the 2017 20th International Conference on Information Fusion (FUSION), Xi’an, China, 10–13 July 2017; IEEE: New York, NY, USA, 2017; pp. 1–8. [Google Scholar]
GP-PHD | 18.81 | 28.82 | 39.19 | 53.52 |
VSMM-PHD | 24.26 | 36.43 | 47.57 | 64.93 |
MM-PHD | 27.03 | 38.68 | 50.13 | 67.65 |
GM-PHD-M1 | 39.46 | 49.49 | 62.61 | 74.69 |
GM-PHD-M2 | 39.85 | 52.84 | 64.05 | 77.04 |
GM-PHD-M3 | 45.07 | 54.24 | 68.35 | 79.02 |
GP-PHD | 22.03 | 23.87 | 25.63 | 27.72 | 30.64 |
VSMM-PHD | 23.15 | 24.04 | 26.49 | 28.93 | 32.75 |
MM-PHD | 23.62 | 25.31 | 27.92 | 30.22 | 34.93 |
GM-PHD-M1 | 42.51 | 44.86 | 47.14 | 49.81 | 52.39 |
GM-PHD-M2 | 33.81 | 35.63 | 36.74 | 39.23 | 41.98 |
GM-PHD-M3 | 37.88 | 40.62 | 44.17 | 46.31 | 49.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Chen, H. Multi-Maneuvering Target Tracking Based on a Gaussian Process. Sensors 2024, 24, 7270. https://doi.org/10.3390/s24227270
Zhao Z, Chen H. Multi-Maneuvering Target Tracking Based on a Gaussian Process. Sensors. 2024; 24(22):7270. https://doi.org/10.3390/s24227270
Chicago/Turabian StyleZhao, Ziwen, and Hui Chen. 2024. "Multi-Maneuvering Target Tracking Based on a Gaussian Process" Sensors 24, no. 22: 7270. https://doi.org/10.3390/s24227270
APA StyleZhao, Z., & Chen, H. (2024). Multi-Maneuvering Target Tracking Based on a Gaussian Process. Sensors, 24(22), 7270. https://doi.org/10.3390/s24227270