Piezoresistive, Piezocapacitive and Memcapacitive Silk Fibroin-Based Cement Mortars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of SF Solutions
2.2. Preparation of the SF/Cement Mortars
2.3. Characterization of SF Solutions
2.4. Electromechanical Characterization of SF/Cement Mortars
3. Results and Discussion
3.1. Physicochemical Properties of SF Dispersions
3.2. Characterization of SFms
3.2.1. Cyclic Voltammetry Study of SFms
3.2.2. Electromechanical Properties of SFms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, B.; Yu, X.; Ou, J. Self-Sensing Concrete in Smart Structures; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Thomoglou, A.K.; Falara, M.G.; Gkountakou, F.I.; Elenas, A.; Chalioris, C.E. Smart Cementitious Sensors with Nano-, Micro-, and Hybrid-Modified Reinforcement: Mechanical and Electrical Properties. Sensors 2023, 23, 2405. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Sun, M. Pressure-Sensitive Capability of AgNPs Self-Sensing Cementitious Sensors. Sensors 2023, 23, 9629. [Google Scholar] [CrossRef] [PubMed]
- Glisic, B. Concise Historic Overview of Strain Sensors Used in the Monitoring of Civil Structures: The First One Hundred Years. Sensors 2022, 22, 2397. [Google Scholar] [CrossRef] [PubMed]
- Dizajghorbani Aghdam, H.; Azadi, H.; Esmaeilzadeh, M.; Moemen Bellah, S.; Malekfar, R. Ablation time and laser fluence impacts on the composition, morphology and optical properties of copper oxide nanoparticles. Opt. Mater. 2019, 91, 433–438. [Google Scholar] [CrossRef]
- Triana-Camacho, D.A.; Ospina-Ospina, R.; Quintero-Orozco, J.H. Method for fabricating self-powered cement sensors based on gold nanoparticles. MethodsX 2023, 11, 102280. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Coffetti, D.; Crotti, E.; Coppola, L.; Meoni, A.; Ubertini, F. Self-Sensing Properties of Green Alkali-Activated Binders with Carbon-Based Nanoinclusions. Sustainability 2020, 12, 9916. [Google Scholar] [CrossRef]
- Lian, X.; Liu, X.; Lyu, X.; Yang, Q.; Chen, J.; Yu, X.; Jiang, Y.; Zuo, J.; Shah, S.P. Research on the conductivity and self-sensing properties of high strength cement-based material with oriented copper-coated steel fibers. J. Build. Eng. 2024, 86, 108845. [Google Scholar] [CrossRef]
- Jannat, T.; Huang, Y.; Zhou, Z.; Zhang, D. Influences of CNT Dispersion Methods, W/C Ratios, and Concrete Constituents on Piezoelectric Properties of CNT-Modified Smart Cementitious Materials. Sensors 2023, 23, 2602. [Google Scholar] [CrossRef]
- Chung, D. A critical review of electrical-resistance-based self-sensing in conductive cement-based materials. Carbon 2023, 203, 311–325. [Google Scholar] [CrossRef]
- Wang, X.; Cao, B.; Vlachakis, C.; Al-Tabbaa, A.; Haigh, S.K. Characterization and piezo-resistivity studies on graphite-enabled self-sensing cementitious composites with high stress and strain sensitivity. Cem. Concr. Compos. 2023, 142, 105187. [Google Scholar] [CrossRef]
- Chanut, N.; Stefaniuk, D.; Weaver, J.C.; Zhu, Y.; Shao-Horn, Y.; Masic, A.; Ulm, F.J. Carbon–cement supercapacitors as a scalable bulk energy storage solution. Proc. Natl. Acad. Sci. USA 2023, 120, e2304318120. [Google Scholar] [CrossRef] [PubMed]
- Adresi, M.; Pakhirehzan, F. Evaluating the performance of Self-Sensing concrete sensors under temperature and moisture variations- a review. Constr. Build. Mater. 2023, 404, 132923. [Google Scholar] [CrossRef]
- Wang, H.; Gao, X.; Liu, J. Effects of salt freeze-thaw cycles and cyclic loading on the piezoresistive properties of carbon nanofibers mortar. Constr. Build. Mater. 2018, 177, 192–201. [Google Scholar] [CrossRef]
- Li, Y.; Dong, S.; Ahmed, R.; Zhang, L.; Han, B. Improving the mechanical characteristics of well cement using botryoid hybrid nano-carbon materials with proper dispersion. Constr. Build. Mater. 2021, 270, 121464. [Google Scholar] [CrossRef]
- Dhangar, K.; Kumar, M.; Aouad, M.; Mahlknecht, J.; Raval, N.P. Aggregation behaviour of black carbon in aquatic solution: Effect of ionic strength and coexisting metals. Chemosphere 2023, 311, 137088. [Google Scholar] [CrossRef]
- Cui, K.; Zhang, J.; Chang, J.; Sabri, M.M.S.; Huang, J. Research on the Properties and Mechanism of Carbon Nanotubes Reinforced Low-Carbon Ecological Cement-Based Materials. Materials 2022, 15, 6435. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, S.; Ren, J.; Ling, S. Flame-Retardant and Sustainable Silk Ionotronic Skin for Fire Alarm Systems. ACS Mater. Lett. 2020, 2, 712–720. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, Q.; Da, G.; Yao, J.; Shao, Z.; Chen, X. A highly stretchable and anti-freezing silk-based conductive hydrogel for application as a self-adhesive and transparent ionotronic skin. J. Mater. Chem. C 2021, 9, 8955–8965. [Google Scholar] [CrossRef]
- Cao, L.; Liu, Q.; Ren, J.; Chen, W.; Pei, Y.; Kaplan, D.L.; Ling, S. Electro-Blown Spun Silk/Graphene Nanoionotronic Skin for Multifunctional Fire Protection and Alarm. Adv. Mater. 2021, 33, 2102500. [Google Scholar] [CrossRef]
- Chen, Q.; Tang, H.; Liu, J.; Wang, R.; Sun, J.; Yao, J.; Shao, Z.; Chen, X. Silk-based pressure/temperature sensing bimodal ionotronic skin with stimulus discriminability and low temperature workability. J. Chem. Eng. 2021, 422, 130091. [Google Scholar] [CrossRef]
- Strynadka, N.C.; James, M.N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu. Rev. Biochem. 1989, 58, 951–999. [Google Scholar] [CrossRef] [PubMed]
- Partlow, B.P.; Hanna, C.W.; Rnjak-Kovacina, J.; Moreau, J.E.; Applegate, M.B.; Burke, K.A.; Marelli, B.; Mitropoulos, A.N.; Omenetto, F.G.; Kaplan, D.L. Highly Tunable Elastomeric Silk Biomaterials. Adv. Funct. Mater. 2014, 24, 4615–4624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xia, M.; Zhuge, F.; Zhou, Y.; Wang, Z.; Dong, B.; Fu, Y.; Yang, K.; Li, Y.; He, Y.; et al. Nanochannel-Based Transport in an Interfacial Memristor Can Emulate the Analog Weight Modulation of Synapses. Nano Lett. 2019, 19, 4279–4286. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhao, Q.; Chen, A.P.; Zhao, J.; Zhou, Z.; Wang, J.; Wang, H.; Zhang, L.; Li, X.; Xiao, Z.; et al. Vacancy-Induced Synaptic Behavior in 2D WS2 Nanosheet–Based Memristor for Low-Power Neuromorphic Computing. Small 2019, 15, 1901423. [Google Scholar] [CrossRef]
- Libera, V.; Malaspina, R.; Bittolo Bon, S.; Cardinali, M.A.; Chiesa, I.; De Maria, C.; Paciaroni, A.; Petrillo, C.; Comez, L.; Sassi, P.; et al. Conformational transitions in redissolved silk fibroin films and application for printable self-powered multistate resistive memory biomaterials. RSC Adv. 2024, 14, 22393–22402. [Google Scholar] [CrossRef]
- Yin, Z.; Wu, F.; Xing, T.; Yadavalli, V.K.; Kundu, S.C.; Lu, S. A silk fibroin hydrogel with reversible sol–gel transition. RSC Adv. 2017, 7, 24085–24096. [Google Scholar] [CrossRef]
- Kamath, K.R.; Park, K. Biodegradable hydrogels in drug delivery. Adv. Drug Deliv. Rev. 1993, 11, 59–84. [Google Scholar] [CrossRef]
- Jin, H.J.; Kaplan, D.L. Mechanism of silk processing in insects and spiders. Nature 2003, 424, 1057–1061. [Google Scholar] [CrossRef]
- Matsumoto, A.; Chen, J.; Collette, A.L.; Kim, U.J.; Altman, G.H.; Cebe, P.; Kaplan, D.L. Mechanisms of Silk Fibroin Sol−Gel Transitions. J. Phys. Chem. B 2006, 110, 21630–21638. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, S.; Kundu, S.C. Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater. 2016, 31, 17–32. [Google Scholar] [CrossRef]
- Gong, Z.; Yang, Y.; Ren, Q.; Chen, X.; Shao, Z. Injectable thixotropic hydrogel comprising regenerated silk fibroin and hydroxypropylcellulose. Soft Matter. 2012, 8, 2875–2883. [Google Scholar] [CrossRef]
- Lu, Q.; Hu, X.; Wang, X.; Kluge, J.A.; Lu, S.; Cebe, P.; Kaplan, D.L. Water-insoluble silk films with silk I structure. Acta Biomater. 2010, 6, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Kaplan, D.; Cebe, P. Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy. Macromolecules 2006, 39, 6161–6170. [Google Scholar] [CrossRef]
- Ha, S.W.; Tonelli, A.E.; Hudson, S.M. Structural Studies of Bombyx mori Silk Fibroin during Regeneration from Solutions and Wet Fiber Spinning. Biomacromolecules 2005, 6, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.U.; Hassan, G.; Bae, J. Soft ionic liquid based resistive memory characteristics in a two terminal discrete polydimethylsiloxane cylindrical microchannel. J. Mater. Chem. C 2020, 8, 13368–13374. [Google Scholar] [CrossRef]
- Chougale, M.; Patil, S.; Shinde, S.; Khot, S.; Patil, A.; Khot, A.; Chougule, S.S.; Volos, C.; Kim, S.; Dongale, D.T. Memristive switching in ionic liquid–based two-terminal discrete devices. Ionics 2019, 25, 5575–5583. [Google Scholar] [CrossRef]
- Yu, X.; Hu, Y.; Shi, H.; Sun, Z.; Li, J.; Liu, H.; Lyu, H.; Xia, J.; Meng, J.; Lu, X.; et al. Molecular Design and Preparation of Protein-Based Soft Ionic Conductors with Tunable Properties. ACS Appl. Mater. Interfaces 2022, 14, 48061–48071. [Google Scholar] [CrossRef]
- Huang, R.; Xie, Y. Matching Faradaic reaction of multi-transition metal compounds as supercapacitor electrode materials: A review. J. Alloys Compd. 2024, 1002, 175367. [Google Scholar] [CrossRef]
- Hota, M.K.; Bera, M.K.; Kundu, B.; Kundu, S.C.; Maiti, C.K. A Natural Silk Fibroin Protein-Based Transparent Bio-Memristor. Adv. Funct. Mater. 2012, 22, 4493–4499. [Google Scholar] [CrossRef]
- Przyczyna, D.; Suchecki, M.; Adamatzky, A.; Szaciłowski, K. Towards Embedded Computation with Building Materials. Materials 2021, 14, 1724. [Google Scholar] [CrossRef]
- Yang, J.; Luo, J.; Liu, H.; Shi, L.; Welch, K.; Wang, Z.; Strømme, M. Electrochemically Active, Compressible, and Conducting Silk Fibroin Hydrogels. Ind. Eng. Chem. Res. 2020, 59, 9310–9317. [Google Scholar] [CrossRef]
- Chung, D.; Wang, Y. Capacitance-based stress self-sensing in cement paste without requiring any admixture. Cem. Concr. Compos. 2018, 94, 255–263. [Google Scholar] [CrossRef]
- Hu, Y.G.; Awol, J.F.; Chen, S.; Jiang, J.; Pu, X.; Jia, X.; Xu, X. Experimental study of the electrical resistance of graphene oxide-reinforced cement-based composites with notch or rebar. J. Build. Eng. 2022, 51, 104331. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, J.; Ni, Z.; Hang, Z.; Feng, C.; Yang, J.; Su, Y.; Weng, G.J. A two-step homogenization micromechanical model for strain-sensing of graphene reinforced porous cement composites. J. Build. Eng. 2023, 71, 106546. [Google Scholar] [CrossRef]
Specimens | Cement (c) | Sand | Water (w) | SF | Ratio (w/c) |
---|---|---|---|---|---|
(g) | (g) | (g) | (mg/mL) | ||
SFm0 | 172 | 602 | 86 | 0 | 0.5 |
SFm50 | 172 | 602 | 86 | 50 | 0.5 |
SFm100 | 172 | 602 | 86 | 100 | 0.5 |
SFm200 | 172 | 602 | 86 | 200 | 0.5 |
Specimen | E (MPa) | ||
---|---|---|---|
SFm0 | 1455.34 ± 39.31 | −13.17 ± 0.85 | 13.33 ± 0.75 |
SFm50 | 1281.30 ± 21.56 | −92.26 ± 1.37 | 103.62 ± 1.46 |
SFm100 | 1182.49 ± 19.26 | −131.84 ± 7.71 | 156.70 ± 8.12 |
SFm200 | 1272.15 ± 11.85 | −115.68 ± 5.86 | 136.72 ± 9.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triana-Camacho, D.A.; D’Alessandro, A.; Bittolo Bon, S.; Malaspina, R.; Ubertini, F.; Valentini, L. Piezoresistive, Piezocapacitive and Memcapacitive Silk Fibroin-Based Cement Mortars. Sensors 2024, 24, 7357. https://doi.org/10.3390/s24227357
Triana-Camacho DA, D’Alessandro A, Bittolo Bon S, Malaspina R, Ubertini F, Valentini L. Piezoresistive, Piezocapacitive and Memcapacitive Silk Fibroin-Based Cement Mortars. Sensors. 2024; 24(22):7357. https://doi.org/10.3390/s24227357
Chicago/Turabian StyleTriana-Camacho, Daniel A., Antonella D’Alessandro, Silvia Bittolo Bon, Rocco Malaspina, Filippo Ubertini, and Luca Valentini. 2024. "Piezoresistive, Piezocapacitive and Memcapacitive Silk Fibroin-Based Cement Mortars" Sensors 24, no. 22: 7357. https://doi.org/10.3390/s24227357
APA StyleTriana-Camacho, D. A., D’Alessandro, A., Bittolo Bon, S., Malaspina, R., Ubertini, F., & Valentini, L. (2024). Piezoresistive, Piezocapacitive and Memcapacitive Silk Fibroin-Based Cement Mortars. Sensors, 24(22), 7357. https://doi.org/10.3390/s24227357