Instant-SFH: Non-Iterative Sparse Fourier Holograms Using Perlin Noise
Abstract
:1. Introduction
- We examine how the Gaussian-weighted Gerchberg–Saxton algorithm optimizes sparse holograms and discover that the frequency of the image–plane phase decreases until convergence.
- We propose to use low-frequency Perlin noise as the image–plane phase, allowing us to create sparse holograms in about one millisecond.
- We explore the relationship between the frequency of the image–plane phase and the reconstruction quality of sparse holograms.
2. Background and Related Work
2.1. Sparse Holograms
2.2. Holographic Displays and Algorithms
2.3. Gerchberg–Saxton Phase Retrieval
3. Method
3.1. Gaussian-Weighted Gerchberg–Saxton
3.2. Perlin Noise
4. Experiments
4.1. Implementation and Setup
4.2. Frequency Ablation
4.3. Amplitude vs. Phase Frequency
4.4. Performance
4.5. Quality
4.6. Optical Verification
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoffman, D.M.; Girshick, A.R.; Akeley, K.; Banks, M.S. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 2008, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Kramida, G. Resolving the Vergence-Accommodation Conflict in Head-Mounted Displays. IEEE Trans. Vis. Comput. Graph. 2016, 22, 1912–1931. [Google Scholar] [CrossRef] [PubMed]
- Krokos, E.; Varshney, A. Quantifying VR cybersickness using EEG. Virtual Real. 2022, 26, 77–89. [Google Scholar] [CrossRef]
- Jang, S.W.; Choi, W.; Kim, S.; Lee, J.; Na, S.; Ham, S.; Park, J.; Kang, H.; Ju, B.K.; Kim, H. Complex spatial light modulation capability of a dual layer in-plane switching liquid crystal panel. Sci. Rep. 2022, 12, 8277. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Xu, Y.; Gu, J.; Li, Y.; Tian, Z.; Singh, R.; Zhang, S.; Han, J.; Zhang, W. Broadband metasurface holograms: Toward complete phase and amplitude engineering. Sci. Rep. 2016, 6, 32867. [Google Scholar] [CrossRef]
- Lee, G.Y.; Yoon, G.; Lee, S.Y.; Yun, H.; Cho, J.; Lee, K.; Kim, H.; Rho, J.; Lee, B. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale 2018, 10, 4237–4245. [Google Scholar] [CrossRef]
- Jiang, Q.; Jin, G.; Cao, L. When metasurface meets hologram: Principle and advances. Adv. Opt. Photon. 2019, 11, 518–576. [Google Scholar] [CrossRef]
- Deng, Z.L.; Jin, M.; Ye, X.; Wang, S.; Shi, T.; Deng, J.; Mao, N.; Cao, Y.; Guan, B.O.; Alù, A.; et al. Full-Color Complex-Amplitude Vectorial Holograms Based on Multi-Freedom Metasurfaces. Adv. Funct. Mater. 2020, 30, 1910610. [Google Scholar] [CrossRef]
- Sun, J.; Timurdogan, E.; Yaacobi, A.; Hosseini, E.S.; Watts, M.R. Large-scale nanophotonic phased array. Nature 2013, 493, 195–199. [Google Scholar] [CrossRef]
- Raval, M.; Yaacobi, A.; Coleman, D.; Fahrenkopf, N.M.; Baiocco, C.; Leake, G.; Adam, T.N.; Coolbaugh, D.; Watts, M.R. Nanophotonic phased array for visible light image projection. In Proceedings of the 2016 IEEE Photonics Conference (IPC), Waikoloa, HI, USA, 2–6 October 2016; pp. 206–207. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Huang, P.C.; Acharjee, N.; Dagenais, M.; Peckerar, M.; Varshney, A. Correcting the Proximity Effect in Nanophotonic Phased Arrays. IEEE Trans. Vis. Comput. Graph. 2020, 26, 3503–3513. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Huang, P.; Acharjee, N.; Dagenais, M.; Peckerar, M.; Varshney, A. Proximity Effect Correction for Fresnel Holograms on Nanophotonic Phased Arrays. In Proceedings of the 2021 IEEE Virtual Reality and 3D User Interfaces (VR), Lisbon, Portugal, 27 March–1 April 2021; pp. 353–362. [Google Scholar] [CrossRef]
- Jabbireddy, S.; Zhang, Y.; Peckerar, M.; Dagenais, M.; Varshney, A. Sparse Nanophotonic Phased Arrays for Energy-Efficient Holographic Displays. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Christchurch, New Zealand, 12–16 March 2022; pp. 553–562. [Google Scholar] [CrossRef]
- Shirah, G. Inside Hurricane Maria in 360 Degrees. In Proceedings of the ACM SIGGRAPH 2019 Computer Animation Festival, New York, NY, USA, 28 July 2019. [Google Scholar] [CrossRef]
- He, Z.; Du, R.; Perlin, K. CollaboVR: A Reconfigurable Framework for Creative Collaboration in Virtual Reality. In Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Virtual, 9–13 November 2020; pp. 542–554. [Google Scholar] [CrossRef]
- Olwal, A.; Balke, K.; Votintcev, D.; Starner, T.; Conn, P.; Chinh, B.; Corda, B. Wearable Subtitles: Augmenting Spoken Communication with Lightweight Eyewear for All-Day Captioning. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, UIST ’20, New York, NY, USA, 20–23 October 2020; pp. 1108–1120. [Google Scholar] [CrossRef]
- Gerchberg, R.W. A practical algorithm for the determination of plane from image and diffraction pictures. Optik 1972, 35, 237–246. [Google Scholar]
- Pang, H.; Wang, J.; Zhang, M.; Cao, A.; Shi, L.; Deng, Q. Non-iterative phase-only Fourier hologram generation with high image quality. Opt. Express 2017, 25, 14323–14333. [Google Scholar] [CrossRef] [PubMed]
- Perlin, K. An Image Synthesizer. In Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’85, New York, NY, USA, 22–26 July 1985; pp. 287–296. [Google Scholar] [CrossRef]
- Perlin, K. Improving Noise. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’02, New York, NY, USA, 21–26 July 2002; pp. 681–682. [Google Scholar] [CrossRef]
- Shi, L.; Hassanieh, H.; Davis, A.; Katabi, D.; Durand, F. Light Field Reconstruction Using Sparsity in the Continuous Fourier Domain. ACM Trans. Graph. 2015, 34, 1–13. [Google Scholar] [CrossRef]
- Maimone, A.; Georgiou, A.; Kollin, J.S. Holographic Near-Eye Displays for Virtual and Augmented Reality. ACM Trans. Graph. 2017, 36, 1–16. [Google Scholar] [CrossRef]
- Peng, Y.; Choi, S.; Padmanaban, N.; Kim, J.; Wetzstein, G. Neural Holography. In Proceedings of the ACM SIGGRAPH 2020 Emerging Technologies, SIGGRAPH ’20, New York, NY, USA, 17 August 2020. [Google Scholar] [CrossRef]
- Brown, M.D. Phase and amplitude modulation with acoustic holograms. Appl. Phys. Lett. 2019, 115, 053701. [Google Scholar] [CrossRef]
- Rosen, J.; Alford, S.; Allan, B.; Anand, V.; Arnon, S.; Arockiaraj, F.G.; Art, J.; Bai, B.; Balasubramaniam, G.M.; Birnbaum, T.; et al. Roadmap on computational methods in optical imaging and holography [invited]. Appl. Phys. B 2024, 130, 166. [Google Scholar] [CrossRef]
- Khare, K.; Butola, M.; Rajora, S. Image Reconstruction from Projections. In Fourier Optics and Computational Imaging; Springer International Publishing: Cham, Switzerland, 2023; pp. 271–279. [Google Scholar] [CrossRef]
- Donatelli, M.; Serra-Capizzano, S. Computational Methods for Inverse Problems in Imaging; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1. [Google Scholar]
- Chen, L.; Zhang, H.; He, Z.; Wang, X.; Cao, L.; Jin, G. Weighted Constraint Iterative Algorithm for Phase Hologram Generation. Appl. Sci. 2020, 10, 3652. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Cao, L.; Jin, G. Non-iterative phase hologram generation with optimized phase modulation. Opt. Express 2020, 28, 11380–11392. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Chen, C.; Liu, C.J.; Jin, F.M.; Chen, N. Adaptive weighted Gerchberg-Saxton algorithm for generation of phase-only hologram with artifacts suppression. Opt. Express 2021, 29, 1412–1427. [Google Scholar] [CrossRef]
- Thimons, T.; Wittle, L. Investigating the Gerchberg-Saxton Phase Retrieval Algorithm. SIAM Undergrad. Res. Online 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Cruz-López, M.L.; González-Velázquez, K.G. Analysis of random-phase distributions and Perlin noise in CGH: A study of its effects on Fourier and Fresnel holograms reconstruction. Opt. Eng. 2020, 59, 102419. [Google Scholar] [CrossRef]
- Rhoades, J.; Turk, G.; Bell, A.; State, A.; Neumann, U.; Varshney, A. Real-Time Procedural Textures. In Proceedings of the 1992 Symposium on Interactive 3D Graphics, I3D ’92, New York, NY, USA, 29 March–1 April 1992; pp. 95–100. [Google Scholar] [CrossRef]
- Génevaux, J.D.; Galin, E.; Guérin, E.; Peytavie, A.; Benes, B. Terrain Generation Using Procedural Models Based on Hydrology. ACM Trans. Graph. 2013, 32, 1–13. [Google Scholar] [CrossRef]
- Agustsson, E.; Timofte, R. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1122–1131. [Google Scholar] [CrossRef]
- Zea, A.V.; Ramirez, J.F.B.; Torroba, R. Optimized random phase only holograms. Opt. Lett. 2018, 43, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, C.K.; Sawchuk, A.A. Computer-generated double-phase holograms. Appl. Opt. 1978, 17, 3874–3883. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Chen, C.; Liu, C.J.; Jin, F.M.; Hu, Y.H. Generation of Phase-Only Fourier Hologram Based on Double Phase Method and Quantization Error Analysis. IEEE Photonics J. 2020, 12, 1–13. [Google Scholar] [CrossRef]
- Eitz, M.; Hays, J.; Alexa, M. How Do Humans Sketch Objects? ACM Trans. Graph. (Proc. SIGGRAPH) 2012, 31, 44:1–44:10. [Google Scholar] [CrossRef]
- Chakravarthula, P.; Baek, S.H.; Schiffers, F.; Tseng, E.; Kuo, G.; Maimone, A.; Matsuda, N.; Cossairt, O.; Lanman, D.; Heide, F. Pupil-Aware Holography. ACM Trans. Graph. 2022, 41, 1–15. [Google Scholar] [CrossRef]
- Choi, S.; Gopakumar, M.; Peng, Y.; Kim, J.; O’Toole, M.; Wetzstein, G. Time-Multiplexed Neural Holography: A Flexible Framework for Holographic Near-Eye Displays with Fast Heavily-Quantized Spatial Light Modulators. In Proceedings of the ACM SIGGRAPH 2022 Conference Proceedings, SIGGRAPH ’22, Vancouver, BC, Canada, 8–11 August 2022. [Google Scholar] [CrossRef]
- Kavaklı, K.; Itoh, Y.; Urey, H.; Akşit, K. Realistic Defocus Blur for Multiplane Computer-Generated Holography. In Proceedings of the 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR), Shanghai, China, 25–29 March 2023; pp. 418–426. [Google Scholar] [CrossRef]
- Chakravarthula, P.; Peng, Y.; Kollin, J.; Fuchs, H.; Heide, F. Wirtinger Holography for Near-Eye Displays. ACM Trans. Graph. 2019, 38, 1–13. [Google Scholar] [CrossRef]
- Jang, C.; Bang, K.; Moon, S.; Kim, J.; Lee, S.; Lee, B. Retinal 3D: Augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans. Graph. 2017, 36, 1–13. [Google Scholar] [CrossRef]
Method | Generate | Truncate | Reconstruct | Total |
---|---|---|---|---|
GGS | ||||
(std) | ||||
Instant-SFH | ||||
(std) |
Resolution | Generate | Truncate | Reconstruct | Total |
---|---|---|---|---|
(std) | ||||
720p | ||||
(std) | ||||
1080p | ||||
(std) |
Method | Initial Phase | PSNR (dB) | SSIM |
---|---|---|---|
GGS | Random | 36.12 (4.16) | 0.944 (0.034) |
Instant-SFH | Random | 10.88 (2.29) | 0.118 (0.064) |
Instant-SFH | Quadratic | 10.90 (2.18) | 0.139 (0.070) |
Instant-SFH | Zeros | 34.98 (4.24) | 0.918 (0.050) |
Instant-SFH | ORAP | 36.02 (4.15) | 0.943 (0.035) |
Instant-SFH | Perlin | 36.19 (4.21) | 0.945 (0.034) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Jabbireddy, S.; Zhang, Y.; Metzler, C.; Varshney, A. Instant-SFH: Non-Iterative Sparse Fourier Holograms Using Perlin Noise. Sensors 2024, 24, 7358. https://doi.org/10.3390/s24227358
Li D, Jabbireddy S, Zhang Y, Metzler C, Varshney A. Instant-SFH: Non-Iterative Sparse Fourier Holograms Using Perlin Noise. Sensors. 2024; 24(22):7358. https://doi.org/10.3390/s24227358
Chicago/Turabian StyleLi, David, Susmija Jabbireddy, Yang Zhang, Christopher Metzler, and Amitabh Varshney. 2024. "Instant-SFH: Non-Iterative Sparse Fourier Holograms Using Perlin Noise" Sensors 24, no. 22: 7358. https://doi.org/10.3390/s24227358
APA StyleLi, D., Jabbireddy, S., Zhang, Y., Metzler, C., & Varshney, A. (2024). Instant-SFH: Non-Iterative Sparse Fourier Holograms Using Perlin Noise. Sensors, 24(22), 7358. https://doi.org/10.3390/s24227358