Mask-Guided Spatial–Spectral MLP Network for High-Resolution Hyperspectral Image Reconstruction
Abstract
:1. Introduction
- (1)
- We propose a simple yet effective S2MLPNet for hyperspectral image reconstruction. As far as we know, this study marks the first effort to investigate the potential of MLPs in HSI reconstruction. We believe it will offer new perspectives for future research on deep modelling architectures for HSIs.
- (2)
- We design a lightweight spatial and spectral MLP (S2MLP) module to efficiently capture non-local similarities and long-range dependencies across both spatial and spectral domains with linear complexity to the image size.
- (3)
- We investigate the use of an attention-based mask modelling module to capture the degradation representation and incorporate it into the S2MLP for learning the disentangled representations of latent HSI data.
- (4)
- We exploit the multi-level information fusion mechanism seen between different levels and the deep supervision strategy used to enhance robust representation learning and further employ a dual-domain loss function for ensuring optical measurement consistency.
2. Related Work
2.1. Incorporation of Degradation into HSI Reconstruction
2.2. Network Architectures for HSI Representation Learning
2.3. The Coded Mask in Spectral Snapshot Imaging Systems
3. Spectral Snapshot Imaging Model
4. Proposed Method
5. Experiments
5.1. Experimental Settings
5.2. Quantitative Results
5.3. Qualitative Results
5.4. Ablation Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maggiori, E.; Charpiat, G.; Tarabalka, Y.; Alliez, P. Recurrent neural networks to correct satellite image classification maps. IEEE Trans. Geosci. Remote Sens. 2016, 55, 4962–4971. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef]
- Hanachi, R.; Sellami, A.; Farah, I.R.; Mura, M.D. Multi-view graph representation learning for hyperspectral image classification with spectral–spatial graph neural networks. Neural Comput. Appl. 2024, 36, 3737–3759. [Google Scholar] [CrossRef]
- Borengasser, M.; Hungate, W.S.; Watkins, R. Hyperspectral Remote Sensing: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sensin 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Solomon, J.; Rock, B. Imaging spectrometry for earth remote sensing. Science 1985, 42, 1778–1790. [Google Scholar]
- Ding, C.; Zheng, M.; Zheng, S.; Xu, Y.; Zhang, L.; Wei, W. Integrating prototype learning with graph convolution network for effective active hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5504816. [Google Scholar] [CrossRef]
- Zhi, L.; Zhang, D.; Yan, J.Q.; Li, Q.L.; Tang, Q.L. Classification of hyperspectral medical tongue images for tongue diagnosis. Comput. Med. Imaging Graph. 2007, 31, 672–678. [Google Scholar] [CrossRef]
- Fei, B. Hyperspectral imaging in medical applications. In Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 32, pp. 523–565. [Google Scholar]
- Llull, P.; Liao, X.; Yuan, X.; Yang, J.; Kittle, D.; Carin, L.; Sapiro, G.; Brady, D.J. Coded aperture compressive temporal imaging. Opt. Express 2013, 21, 10526–10545. [Google Scholar] [CrossRef]
- Wagadarikar, A.; John, R.; Willett, R.; Brady, D. Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 2008, 47, B44–B51. [Google Scholar] [CrossRef]
- Wagadarikar, A.A.; Pitsianis, N.P.; Sun, X.; Brady, D.J. Video rate spectral imaging using a coded aperture snapshot spectral imager. Opt. Express 2009, 17, 6368–6388. [Google Scholar] [CrossRef]
- Cao, X.; Yue, T.; Lin, X.; Lin, S.; Yuan, X.; Dai, Q.; Carin, L.; Brady, D.J. Computational snapshot multispectral cameras: Toward dynamic capture of the spectral world. IEEE Signal Process. Mag. 2016, 33, 95–108. [Google Scholar] [CrossRef]
- Gehm, M.E.; John, R.; Brady, D.J.; Willett, R.M.; Schulz, T.J. Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 2007, 15, 14013–14027. [Google Scholar] [CrossRef] [PubMed]
- Arce, G.R.; Brady, D.J.; Carin, L.; Arguello, H.; Kittle, D.S. Compressive coded aperture spectral imaging: An introduction. IEEE Signal Process. Mag. 2013, 31, 105–115. [Google Scholar] [CrossRef]
- Wang, L.; Xiong, Z.; Gao, D.; Shi, G.; Zeng, W.; Wu, F. High-speed hyperspectral video acquisition with a dual-camera architectur. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4942–4950. [Google Scholar]
- Liu, Y.; Yuan, X.; Suo, J.; Brady, D.J.; Dai, Q. Rank minimization for snapshot compressive imaging. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 2990–3006. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xiong, Z.; Shi, G.; Wu, F.; Zeng, W. Adaptive nonlocal sparse representation for dual-camera compressive hyperspectral imaging. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 2104–2111. [Google Scholar] [CrossRef]
- He, W.; Yao, Q.; Li, C.; Yokoya, N.; Zhao, Q.; Zhang, H.; Zhang, L. Non-local meets global: An iterative paradigm for hyperspectral image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 2089–2107. [Google Scholar] [CrossRef]
- Yuan, X. Generalized alternating projection based total variation minimization for compressive sensing. In Proceedings of the 2016 IEEE International Conference on Image Processing, Phoenix, AZ, USA, 25–28 September 2016; pp. 2539–2543. [Google Scholar]
- Figueiredo, M.A.; Nowak, R.D.; Wright, S.J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 2017, 1, 586–597. [Google Scholar] [CrossRef]
- Meng, Z.; Ma, J.; Yuan, X. End-to-end low cost compressive spectral imaging with spatial-spectral self attention. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 187–204. [Google Scholar]
- Hu, X.; Cai, Y.; Lin, J.; Wang, H.; Yuan, X.; Zhang, Y.; Timofte, R.; Gool, L.V. Hdnet: High-resolution dual-domain learning for spectral compressive imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Miao, X.; Yuan, X.; Pu, Y.; Athitsos, V. l-net: Reconstruct hyperspectral images from a snapshot measurement. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Wang, L.; Sun, C.; Fu, Y.; Kim, M.H.; Huang, H. Hyperspectral image reconstruction using a deep spatial-spectral prior. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Yorimoto, K.; Han, X.H. HyperMixNet: Hyperspectral Image Reconstruction with Deep Mixed Network from a Snapshot Measurement. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 1184–1193. [Google Scholar]
- Zhang, X.; Zhang, Y.; Xiong, R.; Sun, Q.; Zhang, J. Herosnet: Hyperspectral explicable reconstruction and optimal sampling deep network for snapshot compressive imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 17532–17541. [Google Scholar]
- Takabe, T.; Han, X.; Chen, Y. Deep Versatile Hyperspectral Reconstruction Model from A Snapshot Measurement with Arbitrary Masks. In Proceedings of the ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 2390–2394. [Google Scholar]
- Han, X.; Wang, J.; Chen, Y. Hyperspectral Image Reconstruction Using Hierarchical Neural Architecture Search from A Snapshot Image. In Proceedings of the ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 2500–2504. [Google Scholar]
- Wang, L.; Sun, C.; Zhang, M.; Fu, Y.; Huang, H. Dnu: Deep non-local unrolling for computational spectral imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 1661–1671. [Google Scholar]
- Huang, T.; Dong, W.; Yuan, X.; Wu, J.; Shi, G. Deep gaussian scale mixture prior for spectral compressive imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2021; pp. 16216–16225. [Google Scholar]
- Cai, Y.; Lin, J.; Wang, H.; Yuan, X.; Ding, H.; Zhang, Y.; Timofte, R.; Gool, L.V. Degradation-aware unfolding half-shuffle transformer for spectral compressive imaging. Adv. Neural Inf. Process. Syst. 2022, 35, 37749–37761. [Google Scholar]
- Li, M.; Fu, Y.; Liu, J.; Zhang, Y. Pixel adaptive deep unfolding transformer for hyperspectral image reconstruction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023. [Google Scholar]
- Eason, D.T.; Andrews, M. Total variation regularization via continuation to recover compressed hyperspectral images. IEEE Trans. Image Process. 2014, 24, 284–293. [Google Scholar] [CrossRef]
- Dias, J.M.B.; Figueiredo, M.A. A new twist: Two step iterative shrinkage-thresholding algorithms for image restoration. IEEE Trans. Image Process. 2007, 16, 2992–3004. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, Y.; Fu, H.; Huang, S.L.; Zhan, L. A spectral reconstruction algorithm of miniature spectrometer based on sparse optimization and dictionary learning. Sensors 2018, 18, 644. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Liu, Y.; Wu, J.; Dai, Q. Spatialspectral encoded compressive hyperspectral imaging. ACM Trans. Graph. (TOG) 2014, 33, 1–11. [Google Scholar] [CrossRef]
- Fu, Y.; Zheng, Y.; Sato, I.; Sato, Y. Exploiting spectral-spatial correlation for coded hyperspectral image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3727–3766. [Google Scholar]
- Zhang, S.; Wang, L.; Fu, Y.; Zhong, X.; Huang, H. Computational hyperspectral imaging based on dimension-discriminative low-rank tensor recovery. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019; pp. 10183–10192. [Google Scholar]
- Ma, J.; Liu, X.; Shou, Z.; Yuan, X. Deep tensor admm-net for snapshot compressive imaging. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- Cai, Y.; Lin, J.; Hu, X.; Wang, H.; Yuan, X.; Zhang, Y.; Timofte, R.; Gool, L.V. Coarse-to-fine sparse transformer for hyperspectral image reconstruction. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022. [Google Scholar]
- Cai, Y.; Lin, J.; Hu, X.; Wang, H.; Yuan, X.; Zhang, Y.; Timofte, R.; Gool, L.V. Mask-guided spectral-wise transformer for efficient hyperspectral image reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 17502–17511. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021. [Google Scholar]
- Chen, S.; Xie, E.; GE, C.; Chen, R.; Liang, D.; Luo, P. CycleMLP: A MLP-like Architecture for Dense Prediction. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 14284–14300. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Gao, D.; Qiu, T.; Li, Y.; Yang, M.; Shi, G. Residual Degradation Learning Unfolding Framework with Mixing Priors across Spectral and Spatial for Compressive Spectral Imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Zhang, J.; Zeng, H.; Chen, Y.; Yu, D.; Zhao, Y.P. Improving Spectral Snapshot Reconstruction with Spectral-Spatial Rectification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 17–21 June 2024; pp. 25817–25826. [Google Scholar]
- Yao, Z.; Liu, S.; Yuan, X.; Fang, L. SPECAT: SPatial-spEctral Cumulative-Attention Transformer for High-Resolution Hyperspectral Image Reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 17–21 June 2024. [Google Scholar]
- Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J. Mlp-mixer: An all-mlp architecture for vision. Adv. Neural Inf. Process. Syst. 2021, 34, 24261–24272. [Google Scholar]
- Liu, H.; Dai, Z.; So, D.; Le, Q.V. Pay attention to mlps. Adv. Neural Inf. Process. Syst. 2021, 34, 9204–9215. [Google Scholar]
- Touvron, H.; Bojanowski, P.; Caron, M.; Cord, M.; ElNouby, A.; Grave, E.; Izacard, G.; Joulin, A.; Synnaeve, G.; Verbeek, J. Resmlp: Feedforward networks for image classification with data-efficient training. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 5314–5321. [Google Scholar] [CrossRef]
- Motoki, Y.; Yoshikazu, Y.; Takayuki, K. Video-rate hyperspectral camera based on a cmoscompatible random array of fabry–pérot filters. Nat. Photonics 2023, 17, 218–223. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Yasuma, F.; Mitsunaga, T.; Iso, D.; Nayar, S.K. Generalized assorted pixel camera: Postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process. 2010, 19, 2241–2253. [Google Scholar] [CrossRef]
- Choi, I.; Jeon, D.S.; Nam, G.; Gutierrez, D.; Kim, M.H. High-quality hyperspectral reconstruction using a spectral prior. ACM Trans. Graph. 2017, 36, 1–13. [Google Scholar] [CrossRef]
- Meng, Z.; Jalali, S.; Yuan, X. Gap-net for snapshot compressive imaging. arXiv 2020, arXiv:2012.08364. [Google Scholar]
- Hu, Q.; Ma, J.; Gao, Y.; Jiang, J.; Yuan, Y. MAUN: Memory-Augmented Deep Unfolding Network for Hyperspectral Image Reconstruction. IEEE/CAA J. Autom. Sin. 2024, 11, 1139–1150. [Google Scholar] [CrossRef]
Methods | Params | GFLOPs | s1 | s2 | s3 | s4 | s5 | s6 | s7 | s8 | s9 | s10 | Avg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TwIST [35] | - | - | 25.16 | 23.02 | 21.40 | 30.19 | 21.41 | 20.95 | 22.20 | 21.82 | 22.42 | 22.67 | 23.12 |
0.700 | 0.604 | 0.711 | 0.851 | 0.635 | 0.644 | 0.643 | 0.650 | 0.690 | 0.569 | 0.669 | |||
GAP-TV [20] | - | - | 26.82 | 22.89 | 26.31 | 30.65 | 23.64 | 21.85 | 23.76 | 21.98 | 22.63 | 23.1 | 24.36 |
0.754 | 0.610 | 0.802 | 0.852 | 0.703 | 0.663 | 0.688 | 0.655 | 0.682 | 0.584 | 0.669 | |||
DeSCI [17] | - | - | 27.13 | 23.04 | 26.62 | 34.96 | 23.94 | 22.38 | 24.45 | 22.03 | 24.56 | 23.59 | 25.27 |
0.748 | 0.620 | 0.818 | 0.897 | 0.706 | 0.683 | 0.743 | 0.673 | 0.732 | 0.587 | 0.721 | |||
-Net [24] | 62.64M | 117.98 | 30.10 | 28.49 | 27.73 | 37.01 | 26.19 | 28.64 | 26.47 | 26.09 | 27.50 | 27.13 | 28.53 |
0.849 | 0.805 | 0.870 | 0.934 | 0.817 | 0.853 | 0.806 | 0.831 | 0.826 | 0.816 | 0.841 | |||
TSA-Net [22] | 44.25M | 110.06 | 32.03 | 31.00 | 32.25 | 39.19 | 29.39 | 31.44 | 30.32 | 29.35 | 30.01 | 29.59 | 31.46 |
0.892 | 0.858 | 0.915 | 0.953 | 0.884 | 0.908 | 0.878 | 0.888 | 0.890 | 0.874 | 0.894 | |||
DGSMP [31] | 3.76M | 646.65 | 33.26 | 32.09 | 33.06 | 40.54 | 28.86 | 33.08 | 30.74 | 31.55 | 31.66 | 31.44 | 32.63 |
0.915 | 0.898 | 0.925 | 0.964 | 0.882 | 0.937 | 0.886 | 0.923 | 0.911 | 0.925 | 0.917 | |||
GAP-Net [55] | 4.27M | 78.58 | 33.74 | 33.26 | 34.28 | 41.03 | 31.44 | 32.40 | 32.27 | 30.46 | 33.51 | 30.24 | 33.26 |
0.911 | 0.900 | 0.929 | 0.967 | 0.919 | 0.925 | 0.902 | 0.905 | 0.915 | 0.895 | 0.917 | |||
ADMM-Net [40] | 4.27M | 78.58 | 34.12 | 33.62 | 35.04 | 41.15 | 31.82 | 32.54 | 32.42 | 30.74 | 33.75 | 30.68 | 33.58 |
0.918 | 0.902 | 0.931 | 0.966 | 0.922 | 0.924 | 0.896 | 0.907 | 0.915 | 0.895 | 0.918 | |||
HDNet [23] | 2.37M | 154.76 | 35.14 | 35.67 | 36.03 | 42.30 | 32.69 | 34.46 | 33.67 | 32.48 | 34.89 | 32.38 | 34.97 |
0.935 | 0.940 | 0.943 | 0.969 | 0.946 | 0.952 | 0.926 | 0.941 | 0.942 | 0.937 | 0.943 | |||
MST-L [42] | 2.03M | 28.15 | 35.40 | 35.87 | 36.51 | 42.27 | 32.77 | 34.80 | 33.66 | 32.67 | 35.39 | 32.50 | 35.18 |
0.941 | 0.944 | 0.953 | 0.973 | 0.947 | 0.955 | 0.925 | 0.948 | 0.949 | 0.941 | 0.948 | |||
CST-L [41] | 3.00M | 40.01 | 35.96 | 36.84 | 38.16 | 42.44 | 33.25 | 35.72 | 34.86 | 34.34 | 36.51 | 33.09 | 36.12 |
0.949 | 0.955 | 0.962 | 0.975 | 0.955 | 0.963 | 0.944 | 0.961 | 0.957 | 0.945 | 0.957 | |||
DAUHST-L [32] | 6.15M | 79.50 | 37.25 | 39.02 | 41.05 | 46.15 | 35.80 | 37.08 | 37.57 | 35.10 | 40.02 | 34.59 | 38.36 |
0.958 | 0.967 | 0.971 | 0.983 | 0.969 | 0.970 | 0.963 | 0.966 | 0.970 | 0.956 | 0.967 | |||
PADUT-L [33] | 5.38M | 90.46 | 37.36 | 40.43 | 42.38 | 46.62 | 36.26 | 37.27 | 37.83 | 35.33 | 40.86 | 34.55 | 38.89 |
0.962 | 0.978 | 0.979 | 0.990 | 0.974 | 0.974 | 0.966 | 0.974 | 0.978 | 0.963 | 0.974 | |||
MAUN-L [56] | 3.77M | 143.83 | 37.78 | 40.53 | 41.88 | 46.85 | 36.74 | 37.78 | 37.44 | 36.05 | 40.54 | 34.90 | 39.05 |
0.963 | 0.976 | 0.973 | 0.986 | 0.973 | 0.974 | 0.961 | 0.971 | 0.973 | 0.962 | 0.971 | |||
RDLUF [45] | 1.81M | 115.16 | 37.94 | 40.95 | 43.25 | 47.83 | 37.11 | 37.47 | 38.58 | 35.50 | 41.83 | 35.23 | 39.57 |
0.966 | 0.977 | 0.979 | 0.990 | 0.976 | 0.975 | 0.969 | 0.970 | 0.978 | 0.962 | 0.974 | |||
MG-S2MLPNet | 0.31M | 15.12 | 39.47 | 42.26 | 41.39 | 45.08 | 39.15 | 39.86 | 38.97 | 37.05 | 40.93 | 37.05 | 40.12 |
0.982 | 0.989 | 0.982 | 0.990 | 0.988 | 0.988 | 0.976 | 0.980 | 0.987 | 0.988 | 0.985 |
CS2MLP (C = 28, B = 3) | ✓ | |||||||
CS2MLP (C = 56, B = 2) | ✓ | |||||||
CS2MLP (C = 56, B = 4) | ✓ | |||||||
CS2MLP (C = 56, B = 3) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
MAMM | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
P-loss | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
MIFM | ✓ | ✓ | ✓ | ✓ | ||||
DS | ✓ | ✓ | ✓ | |||||
PSNR | 34.89 | 39.53 | 39.66 | 39.27 | 39.97 | 39.10 | 40.12 | 40.25 |
SSIM | 0.962 | 0.983 | 0.984 | 0.981 | 0.985 | 0.984 | 0.985 | 0.985 |
Architectures | Step Sizes in CycleFC | Value in Equation (7) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ResBlock | SWin | Spe-Trans | S2MLP | 7 | 9 | 11 | 13 | 0.1 | 0.2 | 0.5 | |
PSNR | 35.89 | 39.47 | 39.35 | 40.12 | 39.97 | 40.11 | 40.12 | 39.96 | 40.13 | 40.12 | 40.10 |
SSIM | 0.968 | 0.981 | 0.980 | 0.985 | 0.984 | 0.985 | 0.985 | 0.984 | 0.985 | 0.985 | 0.985 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.-H.; Wang, J.; Chen, Y.-W. Mask-Guided Spatial–Spectral MLP Network for High-Resolution Hyperspectral Image Reconstruction. Sensors 2024, 24, 7362. https://doi.org/10.3390/s24227362
Han X-H, Wang J, Chen Y-W. Mask-Guided Spatial–Spectral MLP Network for High-Resolution Hyperspectral Image Reconstruction. Sensors. 2024; 24(22):7362. https://doi.org/10.3390/s24227362
Chicago/Turabian StyleHan, Xian-Hua, Jian Wang, and Yen-Wei Chen. 2024. "Mask-Guided Spatial–Spectral MLP Network for High-Resolution Hyperspectral Image Reconstruction" Sensors 24, no. 22: 7362. https://doi.org/10.3390/s24227362
APA StyleHan, X. -H., Wang, J., & Chen, Y. -W. (2024). Mask-Guided Spatial–Spectral MLP Network for High-Resolution Hyperspectral Image Reconstruction. Sensors, 24(22), 7362. https://doi.org/10.3390/s24227362