The Application of Augmented Reality Technology in Perioperative Visual Guidance: Technological Advances and Innovation Challenges
Abstract
:1. Introduction
2. Methods
2.1. Related Works
2.2. Literature Search Strategy
- First set: ((“AR *” or “Hybrid Reality *” or “Augmented Reality ”) and (“surgery” or “surgical operation *” or “perioperative period *” or “preoperative planning *”) and (“visual guidance *” or “visual direct *” or “visual lead *”));
- Second set: ((“AR *” or “hybrid reality *” or “Augmented Reality ”) and (“medicine” or “medical field *” or “medical Science *”) and (“3D reconstruction *” or “3D modeling *”));
- Third set: ((“AR *” or “hybrid reality *” or “Augmented Reality *”) and((“spatial positioning *” or “spatial navigation *” or “registration *”)));
- Fourth set: ((“AR *” or “Hybrid Reality *” or “Augmented Reality *”) and (“display device *” or “display screen *” or “HMD *”)).
3. Image Processing and 3D Reconstruction for AR Visual Guidance Systems
4. Spatial Positioning and Registration Techniques for AR Visual Guidance Systems
5. Status of AR Device Applications
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buhre, W.; Rossaint, R. Perioperative management and monitoring in anaesthesia. Lancet 2003, 362, 1839–1846. [Google Scholar] [CrossRef] [PubMed]
- Elmallah, R.K.; Cherian, J.J.; Pierce, T.P.; Jauregui, J.J.; Harwin, S.F.; Mont, M.A. New and common perioperative pain management techniques in total knee arthroplasty. J. Knee Surg. 2016, 29, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Boysen, P.G. Perioperative management of the thoracotomy patient. Clin. Chest Med. 1993, 14, 321–333. [Google Scholar] [CrossRef]
- Zhang, G.; Bartels, J.; Martin-Gomez, A.; Armand, M. Towards reducing visual workload in surgical navigation: Proof-of-concept of an augmented reality haptic guidance system. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2023, 11, 1073–1080. [Google Scholar] [CrossRef]
- van Leeuwen, F.W.; Valdés-Olmos, R.; Buckle, T.; Vidal-Sicart, S.J. Hybrid surgical guidance based on the integration of radionuclear and optical technologies. Br. J. Radiol. 2016, 89, 20150797. [Google Scholar] [CrossRef] [PubMed]
- Staub, C.; Knoll, A.; Osa, T.; Bauernschmitt, R. Autonomous high precision positioning of surgical instruments in robot-assisted minimally invasive surgery under visual guidance. In Proceedings of the 2010 Sixth International Conference on Autonomic and Autonomous Systems, Cancun, Mexico, 7–13 March 2010; pp. 64–69. [Google Scholar] [CrossRef]
- Metson, R.; Cosenza, M.; Gliklich, R.E.; Montgomery, W.W. The role of image-guidance systems for head and neck surgery. Arch. Otolaryngol. Neck Surg. 1999, 125, 1100–1104. [Google Scholar] [CrossRef]
- Herline, A.J.; Stefansic, J.D.; Debelak, J.P.; Hartmann, S.L.; Pinson, C.W.; Galloway, R.L.; Chapman, W.C. Image-guided surgery. Arch. Surg. 1999, 280, 62–69. [Google Scholar] [CrossRef]
- Shuhaiber, J.H. Augmented reality in surgery. Arch. Surg. 2004, 139, 170–174. [Google Scholar] [CrossRef]
- Gutierrez, N. The ballad of morton heilig: On VR’s mythic past. J. Ciné. Media Stud. 2023, 62, 86–106. [Google Scholar] [CrossRef]
- Sutherland, I.E. A head-mounted three dimensional display. In Proceedings of the Fall Joint Computer Conference, Part I, San Franciso, CA, USA, 9–11 December 1968; pp. 757–764. [Google Scholar] [CrossRef]
- Furness, L.T.A. The Application of Head-Mounted Displays to Airborne Reconnaissance and Weapon Delivery; Wright-Patterson Air Force Base: Dayton, OH, USA, 1969. [Google Scholar]
- Azuma, R.T. A survey of augmented reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Carmigniani, J.; Furht, B.; Anisetti, M.; Ceravolo, P.; Damiani, E.; Ivkovic, M. Augmented reality technologies, systems and applications. Multimedia Tools Appl. 2011, 51, 341–377. [Google Scholar] [CrossRef]
- Masutani, Y.; Dohi, T.; Yamane, F.; Iseki, H.; Takakura, K. Augmented reality visualization system for intravascular neurosurgery. Comput. Aided Surg. 1998, 3, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Aghdasi, N.; Youngquist, J.A. Methods and Systems for Registering Preoperative Image Data to Intraoperative Image Data of a Scene, such as a Surgical Scene. U.S. Patent 11295460B1, 5 April 2022. [Google Scholar]
- Lin, M.A.; Siu, A.F.; Bae, J.H.; Cutkosky, M.R.; Daniel, B.L. HoloNeedle: Augmented reality guidance system for needle placement investigating the advantages of three-dimensional needle shape reconstruction. IEEE Robot. Autom. Lett. 2018, 3, 4156–4162. [Google Scholar] [CrossRef]
- Ackermann, J.; Liebmann, F.; Hoch, A.; Snedeker, J.G.; Farshad, M.; Rahm, S.; Zingg, P.O.; Fürnstahl, P. Augmented reality based surgical navigation of complex pelvic osteotomies—A feasibility study on cadavers. Appl. Sci. 2021, 11, 1228. [Google Scholar] [CrossRef]
- Chen, F.; Cui, X.; Han, B.; Liu, J.; Zhang, X.; Liao, H. Augmented reality navigation for minimally invasive knee surgery using enhanced arthroscopy. Comput. Methods Progr. Biomed. 2021, 201, 105952. [Google Scholar] [CrossRef] [PubMed]
- Creighton, F.X.; Unberath, M.; Song, T.; Zhao, Z.; Armand, M.; Carey, J. Early feasibility studies of augmented reality navigation for lateral skull base surgery. Otol. Neurotol. 2020, 41, 883–888. [Google Scholar] [CrossRef]
- Deib, G.; Johnson, A.; Unberath, M.; Yu, K.; Andress, S.; Qian, L.; Osgood, G.; Navab, N.; Hui, F.; Gailloud, P. Image guided percutaneous spine procedures using an optical see-through head mounted display: Proof of concept and rationale. J. NeuroInterventional Surg. 2018, 10, 1187–1191. [Google Scholar] [CrossRef]
- Gu, W.; Shah, K.; Knopf, J.; Navab, N.; Unberath, M. Visualization. Feasibility of image-based augmented reality guidance of total shoulder arthroplasty using microsoft HoloLens 1. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2021, 9, 261–270. [Google Scholar] [CrossRef]
- Liounakos, J.I.; Urakov, T.; Wang, M.Y. Head-up display assisted endoscopic lumbar discectomy—A technical note. Int. J. Med Robot. Comput. Assist. Surg. 2020, 16, e2089. [Google Scholar] [CrossRef]
- Fida, B.; Cutolo, F.; di Franco, G.; Ferrari, M.; Ferrari, V. Augmented reality in open surgery. Updat. Surg. 2018, 70, 389–400. [Google Scholar] [CrossRef]
- Jud, L.; Fotouhi, J.; Andronic, O.; Aichmair, A.; Osgood, G.; Navab, N.; Farshad, M. Applicability of augmented reality in orthopedic surgery–A systematic review. BMC Musculoskelet. Disord. 2020, 21, 103. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, H.; Kim, Y.O. Virtual reality and augmented reality in plastic surgery: A review. Arch. Plast. Surg. 2017, 44, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Barcali, E.; Iadanza, E.; Manetti, L.; Francia, P.; Nardi, C.; Bocchi, L. Augmented reality in surgery: A scoping review. Appl. Sci. 2022, 12, 6890. [Google Scholar] [CrossRef]
- Simpson, A.L.; Adams, L.B.; Allen, P.J.; D’Angelica, M.I.; DeMatteo, R.P.; Fong, Y.; Kingham, T.P.; Leung, U.; Miga, M.I.; Parada, E.P. Texture analysis of preoperative CT images for prediction of postoperative hepatic insufficiency: A preliminary study. J. Am. Coll. Surg. 2015, 220, 339–346. [Google Scholar] [CrossRef]
- Houssami, N.; Hayes, D.F. Review of preoperative magnetic resonance imaging (MRI) in breast cancer: Should MRI be performed on all women with newly diagnosed, early stage breast cancer? CA Cancer J. Clin. 2009, 59, 290–302. [Google Scholar] [CrossRef]
- Zheng, Y.-X.; Yu, D.-F.; Zhao, J.-G.; Wu, Y.-L.; Zheng, B. 3D printout models vs. 3D-rendered images: Which is better for preoperative planning? J. Surg. Educ. 2016, 73, 518–523. [Google Scholar] [CrossRef]
- Spottiswoode, B.; Van den Heever, D.; Chang, Y.; Engelhardt, S.; Du Plessis, S.; Nicolls, F.; Hartzenberg, H.; Gretschel, A. Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning. Ster. Funct. Neurosurg. 2013, 91, 162–169. [Google Scholar] [CrossRef]
- Zeng, G.L. Medical Image Reconstruction; Springer: Berlin/Heidelberg, Germany, 2010; Volume 530. [Google Scholar]
- Angelopoulou, A.; Psarrou, A.; Garcia-Rodriguez, J.; Orts-Escolano, S.; Azorin-Lopez, J.; Revett, K. 3D reconstruction of medical images from slices automatically landmarked with growing neural models. Neurocomputing 2015, 150, 16–25. [Google Scholar] [CrossRef]
- Pires, F.; Costa, C.; Dias, P. On the use of virtual reality for medical imaging visualization. J. Digit. Imaging 2021, 34, 1034–1048. [Google Scholar] [CrossRef]
- Khan, U.; Yasin, A.; Abid, M.; Shafi, I.; Khan, S.A. A methodological review of 3D reconstruction techniques in tomographic imaging. J. Med Syst. 2018, 42, 190. [Google Scholar] [CrossRef]
- Dogan, S. 3D reconstruction and evaluation of tissues by using CT, MR slices and digital images. In Proceedings of the 20th International Society for Photogrammetry and Remote Sensing (ISPRS), Istambul, Turkey, 12–23 July 2004; Volume 35, pp. 323–327. [Google Scholar]
- Chang, L.-W.; Chen, H.-W.; Ho, J.-R. Reconstruction of 3D medical images: A nonlinear interpolation technique for reconstruction of 3D medical images. CVGIP Graph. Model. Image Process. 1991, 53, 382–391. [Google Scholar] [CrossRef]
- Rani, S.; Lakhwani, K.; Kumar, S. Knowledge vector representation of three-dimensional convex polyhedrons and reconstruction of medical images using knowledge vector. Multimedia Tools Appl. 2023, 82, 36449–36477. [Google Scholar] [CrossRef]
- Prakash, P.S.; Rao, P.K.; Babu, E.S.; Khan, S.B.; Almusharraf, A.; Quasim, M.T. Decoupled SculptorGAN Framework for 3D Reconstruction and Enhanced Segmentation of Kidney Tumors in CT Images. IEEE Access 2024, 12, 62189–62198. [Google Scholar] [CrossRef]
- Zi, Y.; Wang, Q.; Gao, Z.; Cheng, X.; Mei, T. Research on the application of deep learning in medical image segmentation and 3D reconstruction. Acad. J. Sci. Technol. 2024, 10, 8–12. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Chen, F.; Alley, M.T.; Pauly, J.M.; Vasanawala, S.S. Highly scalable image reconstruction using deep neural networks with bandpass filtering. arXiv 2018, arXiv:1805.03300. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, J.; Yuille, A.; Zhou, Z.; Wang, A. Structure-aware sparse-view X-ray 3D reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–21 June 2024; pp. 11174–11183. [Google Scholar]
- Shen, G.; Dwivedi, K.; Majima, K.; Horikawa, T.; Kamitani, Y. End-to-end deep image reconstruction from human brain activity. Front. Comput. Neurosci. 2019, 13, 432276. [Google Scholar] [CrossRef]
- Hong, L.; Modirrousta, M.H.; Hossein Nasirpour, M.; Mirshekari Chargari, M.; Mohammadi, F.; Moravvej, S.V.; Rezvanishad, L.; Rezvanishad, M.; Bakhshayeshi, I.; Alizadehsani, R. GAN-LSTM-3D: An efficient method for lung tumour 3D reconstruction enhanced by attention-based LSTM. CAAI Trans. Intell. Technol. 2023; early view. [Google Scholar] [CrossRef]
- Perdios, D.; Vonlanthen, M.; Martinez, F.; Arditi, M.; Thiran, J.-P. Deep learning based ultrasound image reconstruction method: A time coherence study. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 448–451. [Google Scholar] [CrossRef]
- Ziabari, A.; Ye, D.H.; Srivastava, S.; Sauer, K.D.; Thibault, J.-B.; Bouman, C.A. 2.5 D deep learning for CT image reconstruction using a multi-GPU implementation. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 2044–2049. [Google Scholar] [CrossRef]
- Wang, C.-H.; Huang, K.-Y.; Yao, Y.; Chen, J.-C.; Shuai, H.-H.; Cheng, W.-H. Lightweight deep learning: An overview. IEEE Consum. Electron. Mag. 2022, 13, 51–64. [Google Scholar] [CrossRef]
- Morrison, M.A.; Payabvash, S.; Chen, Y.; Avadiappan, S.; Shah, M.; Zou, X.; Hess, C.P.; Lupo, J.M. A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: Evaluating vascular injury and data labelling for machine learning. NeuroImage Clin. 2018, 20, 498–505. [Google Scholar] [CrossRef]
- Farahani, A.; Voghoei, S.; Rasheed, K.; Arabnia, H.R. A brief review of domain adaptation. In Advances in Data Science and Information Engineering; Springer: Berlin/Heidelberg, Germany, 2021; pp. 877–894. [Google Scholar] [CrossRef]
- Spiegel, E.; Wycis, H.; Szekely, E.; Adams, J.; Flanagan, M.; Baird, H.J. Campotomy in various extrapyramidal disorders. JAMA 1963, 20, 871–884. [Google Scholar] [CrossRef]
- Tang, R.; Ma, L.-F.; Rong, Z.-X.; Li, M.-D.; Zeng, J.-P.; Wang, X.-D.; Liao, H.-E.; Dong, J.-H. Augmented reality technology for preoperative planning and intraoperative navigation during hepatobiliary surgery: A review of current methods. Hepatobiliary Pancreat. Dis. Int. 2018, 17, 101–112. [Google Scholar] [CrossRef]
- Okamoto, T.; Onda, S.; Yanaga, K.; Suzuki, N.; Hattori, A. Clinical application of navigation surgery using augmented reality in the abdominal field. Surg. Today 2015, 45, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Marmulla, R.; Hoppe, H.; Mühling, J.; Eggers, G. An augmented reality system for image-guided surgery. Int. J. Oral Maxillofac. Surg. 2005, 34, 594–596. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, R.; Dandekar, O.; Bhat, V.; Philip, M.; Lei, P.; Godinez, C.; Sutton, E.; George, I.; Kavic, S.; Mezrich, R.; et al. Live augmented reality: A new visualization method for laparoscopic surgery using continuous volumetric computed tomography. Surg. Endosc. 2010, 24, 1976–1985. [Google Scholar] [CrossRef] [PubMed]
- Andrews, C.M.; Henry, A.B.; Soriano, I.M.; Southworth, M.K.; Silva, J.R. Registration techniques for clinical applications of three-dimensional augmented reality devices. IEEE J. Transl. Eng. Health Med. 2020, 9, 4900214. [Google Scholar] [CrossRef]
- Schneider, C.; Thompson, S.; Totz, J.; Song, Y.; Allam, M.; Sodergren, M.; Desjardins, A.; Barratt, D.; Ourselin, S.; Gurusamy, K. Comparison of manual and semi-automatic registration in augmented reality image-guided liver surgery: A clinical feasibility study. Surg. Endosc. 2020, 34, 4702–4711. [Google Scholar] [CrossRef]
- Gregory, T.M.; Gregory, J.; Sledge, J.; Allard, R.; Mir, O. Surgery guided by mixed reality: Presentation of a proof of concept. Acta Orthop. 2018, 89, 480–483. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Wang, N.; Zhang, W.; Li, D.; Zhang, L.; Qu, X.; Cheng, W.; Xu, Y.; Chen, W.J.; et al. A wearable mixed-reality holographic computer for guiding external ventricular drain insertion at the bedside. J. Neurosurg. 2018, 131, 1599–1606. [Google Scholar] [CrossRef]
- Azimi, E.; Qian, L.; Navab, N.; Kazanzides, P. Alignment of the virtual scene to the tracking space of a mixed reality head-mounted display. arXiv 2017, arXiv:1703.05834. [Google Scholar]
- Liang, H.; Yang, Z.; Jiang, S.; Liu, S.; Wang, W. An improved registration method based on ICP for image guided prostate seed implanting surgery. Biomed. Phys. Eng. Express 2016, 2, 055019. [Google Scholar] [CrossRef]
- Souzaki, R.; Ieiri, S.; Uemura, M.; Ohuchida, K.; Tomikawa, M.; Kinoshita, Y.; Koga, Y.; Suminoe, A.; Kohashi, K.; Oda, Y.; et al. An augmented reality navigation system for pediatric oncologic surgery based on preoperative CT and MRI images. J. Pediatr. Surg. 2013, 48, 2479–2483. [Google Scholar] [CrossRef]
- Goerres, J.; Uneri, A.; Jacobson, M.; Ramsay, B.; De Silva, T.; Ketcha, M.; Han, R.; Manbachi, A.; Vogt, S.; Kleinszig, G.; et al. Planning, guidance, and quality assurance of pelvic screw placement using deformable image registration. Phys. Med. Biol. 2017, 62, 9018. [Google Scholar] [CrossRef] [PubMed]
- Joeres, F.; Mielke, T.; Hansen, C. Laparoscopic augmented reality registration for oncological resection site repair. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1577–1586. [Google Scholar] [CrossRef]
- Han, Y.-T.; Lin, W.-C.; Fan, F.-Y.; Chen, C.-L.; Lin, C.-C.; Cheng, H.-C. Comparison of dental surface image registration and fiducial marker registration: An in vivo accuracy study of static computer-assisted implant surgery. J. Clin. Med. 2021, 10, 4183. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; y Baena, F.R.; Cutolo, F. Head-mounted augmented reality platform for markerless orthopaedic navigation. IEEE J. Biomed. Health Inform. 2021, 26, 910–921. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Yang, S.; Fu, T.; Lin, Y.; Geng, H.; Ai, D.; Fan, J.; Song, H.; Zhang, T.; Yang, J. Augmented reality calibration using feature triangulation iteration-based registration for surgical navigation. Comput. Biol. Med. 2022, 148, 105826. [Google Scholar] [CrossRef]
- Yavas, G.; Caliskan, K.E.; Cagli, M.S. Three-dimensional–printed marker–based augmented reality neuronavigation: A new neuronavigation technique. Neurosurg. Focus 2021, 51, E20. [Google Scholar] [CrossRef]
- Figueira, I.; Ibrahim, M.T.; Majumder, A.; Gopi, M. Augmented reality patient-specific registration for medical visualization. In Proceedings of the 28th ACM Symposium on Virtual Reality Software and Technology, Tsukuba, Japan, 29 November–1 December 2022; pp. 1–2. [Google Scholar] [CrossRef]
- Lee, D.; Yi, J.W.; Hong, J.; Chai, Y.J.; Kim, H.C.; Kong, H.-J. Augmented reality to localize individual organ in surgical procedure. Health Inform. Res. 2018, 24, 394–401. [Google Scholar] [CrossRef]
- Syed, T.A.; Siddiqui, M.S.; Abdullah, H.B.; Jan, S.; Namoun, A.; Alzahrani, A.; Nadeem, A.; Alkhodre, A.B. In-depth review of augmented reality: Tracking technologies, development tools, AR displays, collaborative AR, and security concerns. Sensors 2022, 23, 146. [Google Scholar] [CrossRef]
- Nuri, T.; Mitsuno, D.; Iwanaga, H.; Otsuki, Y.; Ueda, K. Application of augmented reality (AR) technology to locate the cutaneous perforator of anterolateral thigh perforator flap: A case report. Microsurgery 2022, 42, 76–79. [Google Scholar] [CrossRef]
- Yang, F.; Fang, Z.; Guan, F. What Do We Actually Need During Self-localization in an Augmented Environment? In Proceedings of the International Symposium on Web and Wireless Geographical Information Systems, Wuhan, China, 13–14 November 2020; pp. 24–32. [Google Scholar] [CrossRef]
- Andersen, D.; Villano, P.; Popescu, V. AR HMD guidance for controlled hand-held 3D acquisition. IEEE Trans. Vis. Comput. Graph. 2019, 25, 3073–3082. [Google Scholar] [CrossRef]
- Budhiraja, R.; Lee, G.A.; Billinghurst, M. Using a HHD with a HMD for mobile AR interaction. In Proceedings of the 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Adelaide, Australia, 1–4 October 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Scherl, C.; Stratemeier, J.; Karle, C.; Rotter, N.; Hesser, J.; Huber, L.; Dias, A.; Hoffmann, O.; Riffel, P.; Schoenberg, S.O. Augmented reality with HoloLens in parotid surgery: How to assess and to improve accuracy. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 2473–2483. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Schlebusch, T.; Fuhl, W.; Kasneci, E. A novel camera-free eye tracking sensor for augmented reality based on laser scanning. IEEE Sens. J. 2020, 20, 15204–15212. [Google Scholar] [CrossRef]
- Santoni, F.; De Angelis, A.; Moschitta, A.; Carbone, P. MagIK: A hand-tracking magnetic positioning system based on a kinematic model of the hand. IEEE Trans. Instrum. Meas. 2021, 70, 9507313. [Google Scholar] [CrossRef]
- Fischer, J.; Eichler, M.; Bartz, D.; Straßer, W. Model-based Hybrid Tracking for Medical Augmented Reality. In Proceedings of the Eurographics Symposium on Virtual Environments (EGVE), Lisbon, Portugal, 8 May 2006; pp. 71–80. [Google Scholar]
- Schwald, B.; Seibert, H. Registration tasks for a hybrid tracking system for medical augmented reality. J. WSCG. 2004, 12, 411–418. [Google Scholar]
- Racadio, J.M.; Nachabe, R.; Homan, R.; Schierling, R.; Racadio, J.M.; Babić, D. Augmented reality on a C-arm system: A preclinical assessment for percutaneous needle localization. Radiology 2016, 281, 249–255. [Google Scholar] [CrossRef]
- Bernhardt, S.; Nicolau, S.A.; Agnus, V.; Soler, L.; Doignon, C.; Marescaux, J. Automatic localization of endoscope in intraoperative CT image: A simple approach to augmented reality guidance in laparoscopic surgery. Med Image Anal. 2016, 30, 130–143. [Google Scholar] [CrossRef]
- Zhao, H.-L.; Liu, S.-Q.; Zhou, X.-H.; Xie, X.-L.; Hou, Z.-G.; Zhou, Y.-J.; Zhang, L.-S.; Gui, M.-J.; Wang, J.-L. Design and performance evaluation of a novel vascular robotic system for complex percutaneous coronary interventions. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 31 October–4 November 2021; pp. 4679–4682. [Google Scholar] [CrossRef]
- Fu, Y.; Lei, Y.; Wang, T.; Patel, P.; Jani, A.B.; Mao, H.; Curran, W.J.; Liu, T.; Yang, X. Biomechanically constrained non-rigid MR-TRUS prostate registration using deep learning based 3D point cloud matching. Med Image Anal. 2021, 67, 101845. [Google Scholar] [CrossRef]
- Elgarba, B.M.; Meeus, J.; Fontenele, R.C.; Jacobs, R. AI-Based Registration of IOS and CBCT with High Artifact Expression. J. Dent. 2024, 147, 105166. [Google Scholar] [CrossRef]
- Smith, R.; Schwiegerling, J. Head mounted display based augmented reality device for medical applications. In Proceedings of the ODS 2023: Industrial Optical Devices and Systems, San Diego, CA, USA, 20–25 August 2023; pp. 102–106. [Google Scholar] [CrossRef]
- Doughty, M.; Ghugre, N.R.; Wright, G.A. Augmenting performance: A systematic review of optical see-through head-mounted displays in surgery. J. Imaging 2022, 8, 203. [Google Scholar] [CrossRef]
- Kawakami, H.; Suenaga, H.; Sakakibara, A.; Hoshi, K. Computer-assisted surgery with markerless augmented reality for the surgical removal of mandibular odontogenic cysts: Report of two clinical cases. Int. J. Oral Maxillofac. Surg. 2024, 53, 347–350. [Google Scholar] [CrossRef]
- Huang, K.; Liao, J.; He, J.; Lai, S.; Peng, Y.; Deng, Q.; Wang, H.; Liu, Y.; Peng, L.; Bai, Z.; et al. A real-time augmented reality system integrated with artificial intelligence for skin tumor surgery: Experimental study and case series. Int. J. Surg. 2024, 110, 3294–3306. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.D.; Karanth, H.; Yang, H.; Slesnick, T.C.; Shaw, F.; Chau, D.H. ARCollab: Towards Multi-User Interactive Cardiovascular Surgical Planning in Mobile Augmented Reality. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 11–16 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Dogan, I.; Eray, H.A.; Ozgural, O.; Tekneci, O.; Hasimoglu, S.; Terzi, M.; Mete, E.B.; Kuzukiran, Y.C.; Elmas, H.; Orhan, O. Navigating the calvaria with mobile mixed reality–based neurosurgical planning: How feasible are smartphone applications as a craniotomy guide? Neurosurg. Focus 2024, 56, E4. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.-H.; Han, W.; Min, K.; Min, D.; Han, G.; Shin, K.-S.; Kim, M.; Park, J.-H. Recent Applications of Optical Elements in Augmented and Virtual Reality Displays: A Review. ACS Appl. Opt. Mater. 2024, 2, 1247–1268. [Google Scholar] [CrossRef]
- Judy, B.F.; Menta, A.; Pak, H.L.; Azad, T.D.; Witham, T.F. Augmented Reality and Virtual Reality in Spine Surgery: A Comprehensive Review. Neurosurg. Clin. 2024, 35, 207–216. [Google Scholar] [CrossRef]
- Verhellen, A.; Elprama, S.A.; Scheerlinck, T.; Van Aerschot, F.; Duerinck, J.; Van Gestel, F.; Frantz, T.; Jansen, B.; Vandemeulebroucke, J.; Jacobs, A.; et al. Exploring technology acceptance of head-mounted device-based augmented reality surgical navigation in orthopaedic surgery. Int. J. Med Robot. Comput. Assist. Surg. 2024, 20, e2585. [Google Scholar] [CrossRef]
- Kann, M.; Ruiz-Cardozo, M.A.; Brehm, S.; Carey-Ewend, A.; Singh, S.; Barot, K.; Verastegui, G.T.; De La Paz, M.; Hanafy, A.; Bui, T.; et al. 1071 Initial Experience Using an Augmented Reality Head-Mounted Display System During Surgical Management of Thoracolumbar Spinal Trauma. Neurosurgery 2024, 70, 181. [Google Scholar] [CrossRef]
- Ibrahim, M.T.; Majumder, A.; Gopi, M.; Sayadi, L.R.; Vyas, R.M. Illuminating precise stencils on surgical sites using projection-based augmented reality. Smart Health 2024, 32, 100476. [Google Scholar] [CrossRef]
- Mamone, V.; Ferrari, V.; Condino, S.; Cutolo, F. Projected augmented reality to drive osteotomy surgery: Implementation and comparison with video see-through technology. IEEE Access 2020, 8, 169024–169035. [Google Scholar] [CrossRef]
- Benila, S.; Naveen, N.; Kumar, R.P. Augmented Reality Based Doctor's Assistive System. I-Manag. J. Digit. Signal Process. 2021, 9, 30. [Google Scholar] [CrossRef]
- Ito, K.; Tada, M.; Ujike, H.; Hyodo, K. Effects of the weight and balance of head-mounted displays on physical load. Appl. Sci. 2021, 11, 6802. [Google Scholar] [CrossRef]
- Thompson, M.B.; Tear, M.J.; Sanderson, P.M. Multisensory integration with a head-mounted display: Role of mental and manual load. J. Hum. Factors Ergon. Soc. 2010, 52, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Wang, Y.; Wang, H.; Lee, S.; Yokota, T.; Someya, T. Skin electronics: Next-generation device platform for virtual and augmented reality. Adv. Funct. Mater. 2021, 31, 2009602. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, J.; Kim, J.; Li, S.; Zhao, Y.; Bahari, J.; Eliahoo, P.; Li, G.; Kawakita, S.; Haghniaz, R. Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare. Biomaterials 2023, 296, 122075. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.H.; Kim, J.H.; Rogers, J.A. Skin-integrated vibrohaptic interfaces for virtual and augmented reality. Adv. Funct. Mater. 2021, 31, 2008805. [Google Scholar] [CrossRef]
- Yu, X.; Xie, Z.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473–479. [Google Scholar] [CrossRef]
Reference | Year | Technical Solution | Fields of Use | Achieved Precision | Are Clinical Tests Included? |
---|---|---|---|---|---|
Lin et al. [17] | 2018 | Optical See-Through Head-Mounted Display (OST-HMD) for image-guided percutaneous spine procedures | Percutaneous Spine Procedures | Comparable to traditional monitor in terms of procedural time and dosimetry | No |
Ackermann et al. [18] | 2021 | AR navigation system with HMD, overlaying Computed Tomography (CT) data using fiducial markers | Lateral Skull Base Surgery | Target Registration Error (TRE) of 10.62 ± 5.90 mm | No |
Chen et al. [19] | 2021 | AR navigation system with 3D display, tissue properties-based deformation method | Minimally Invasive Knee Surgery | Mean error of 0.32 mm for virtual arthroscopic images | No |
Creighton et al. [20] | 2020 | Image-based AR guidance using HMD for Total Shoulder Arthroplasty (TSA) | TSA | Not explicitly provided; depth sensing camera performance identified as a major error source | No |
Deib et al. [21] | 2018 | Performing image-guided spinal interventional surgeries using OST-HMD | Needle Placement Procedures | Significantly reduced placement errors with shape display compared to rigid needle assumption | No |
Gu et al. [22] | 2021 | Head-up display-assisted endoscopic lumbar discectomy | Lumbar Discectomy | - | No |
Liounakos et al. [23] | 2020 | Endoscopic Lumbar discectomy assisted by HMD | Ganz Periacetabular Osteotomy (PAO) | Osteotomy starting points error of 10.8 mm | No |
Usage Scenarios | Reference | Year | Machine Learning Methods | Application Areas | Achievement Accuracy |
---|---|---|---|---|---|
Image segmentation | Prakash et al. [39] | 2024 | Conditional Generative Adversarial Network (cGan) | Correctly distinguishing tumor from non-tumor tissue in CT scans | The diagnostic accuracy has increased to 96.5% |
Zi et al. [40] | 2023 | U-Net Architecture | Brain Tumor Segmentation Challenge (BraTS) | Dice Coefficient = 85.3%, Intersection over Union (IoU) = 78.9% | |
Cheng et al. [41] | 2018 | Deep Neural Network (DNN) | Used for image denoising and super-resolution | - | |
Feature extraction | Cai et al. [42] | 2024 | Line Segment-based Transformer (Lineformer) | Capturing the internal structure of objects by simulating the dependencies within each segment of X-rays | SAX-NeRF achieves 12.56 dB and 2.49 dB improvement over existing NeRF-based methods on new view synthesis and CT reconstruction tasks, respectively |
Shen et al. [43] | 2019 | Recurrent Neural Network (RNN) | Capturing non-linear features from CT images | Average reconstruction accuracy of 62.9% based on Structural Similarity Index (SSIM) | |
Model reconstruction | Hong et al. [44] | 2023 | Combining Generative Adversarial Networks (GAN) and Long Short-Term Memory Networks (LSTM) | Lung tumor reconstruction | The method shows superiority on Hamming and Euclidean distance metrics |
Perdios et al. [45] | 2019 | CNN | For reconstruction, recovery, and enhancement of ultrasound images | CNN-processed images improve the performance of vector flow estimation in some ways | |
Efficiency optimization | Prakash et al. [39] | 2024 | Weight Pruning U-Net (WP-UNet) | Optimizing computational efficiency | - |
Ziabari et al. [46] | 2018 | Deep Learning Model Based Iterative Reconstruction (DL-MBIR) | A strategy for multi-GPU implementation is proposed | - |
Reference | Year | Registration Method | Application Scenario | Achievement Precision | Limitations |
---|---|---|---|---|---|
Liang et al. [60] | 2016 | Point-based Registration | Radioactive seed implantation for prostate cancer | 0.44 ± 0.07 mm | Electromagnetic localizer susceptible to interference |
Souzaki et al. [61] | 2013 | Point-based Registration | Endoscopic surgery for pediatric tumors | Precision has met surgical requirements | Problems of movement and deformation of organs during surgery |
Goerres et al. [62] | 2017 | Point-based Registration | Percutaneous screw fixation of pelvic fractures | Within 1.1 mm | Geometric errors introduced by deformation of surgical instruments |
Joeres et al. [63] | 2021 | Surface-based Registration | Laparoscopic tumor resection site repair surgery | Average target registration error (TRE) increased by an average of 2.35 mm | Clinical applicability yet to be demonstrated |
Han et al. [64] | 2021 | Surface-based Registration | Dental surgery | Mean lateral biases in tooth surface registration are clinically acceptable | Not suitable for patients with edentulous jaws or few remaining teeth |
Hu et al. [65] | 2021 | Surface-based Registration | Assisted femoral drilling | 4.90 ± 1.04 mm in video perspective (VST); 4.36 ± 0.80 mm in optical perspective (OST) | Must “anchor” strategy to solve occlusion problems |
Shao et al. [66] | 2022 | Marker-based Registration | Aids in surgical planning, medical training, and surgical procedures | - | Stability and precision issues in different light and environments |
Yavas et al. [67] | 2021 | Marker-based Registration | Neurosurgery | Average positioning error 1.70 ± 1.02 mm | Brain displacement or deformation due to cerebrospinal fluid leakage or surgical location |
Figueira et al. [68] | 2022 | Marker-based Registration | Surgical navigation | Average fusion error 0.70 ± 0.16 mm | Image marker may be obscured during the procedure |
Display Device Classification | Reference | Year | Application Field | Advantages | Disadvantages |
---|---|---|---|---|---|
Fixed video display | Kawakami et al. [87] | 2024 | Dental surgery | High-resolution display | Requires frequent diversions from the doctor |
Huang et al. [88] | 2024 | Dermatological surgery | |||
Mobile video display | Mehta et al. [89] | 2024 | Cardiovascular surgery | Adaptation to complex surgical environments | Screen size limits implementation; screen stabilization issues |
Dogan et al. [90] | 2024 | Craniotomy | |||
Translucent screen | Choi et al. [91] | 2024 | - | Intuitive; in situ magnification | Limited perspective |
HMD | Judy et al. [92] | 2024 | Spinal surgery | Immersive experience | Burden of surgery |
Verhellen et al. [93] | 2024 | Orthopedic surgery | |||
Kann et al. [94] | 2024 | Thoracolumbar spine trauma surgery | |||
Projection display technology | Ibrahim et al. [95] | 2024 | Facial surgery | Large space for surgical operations | Distortion problems; lower image resolution |
Mamone et al. [96] | 2020 | Osteotomy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Wang, S.; Shen, Y.; Hu, J. The Application of Augmented Reality Technology in Perioperative Visual Guidance: Technological Advances and Innovation Challenges. Sensors 2024, 24, 7363. https://doi.org/10.3390/s24227363
Shen Y, Wang S, Shen Y, Hu J. The Application of Augmented Reality Technology in Perioperative Visual Guidance: Technological Advances and Innovation Challenges. Sensors. 2024; 24(22):7363. https://doi.org/10.3390/s24227363
Chicago/Turabian StyleShen, Yichun, Shuyi Wang, Yuhan Shen, and Jingyi Hu. 2024. "The Application of Augmented Reality Technology in Perioperative Visual Guidance: Technological Advances and Innovation Challenges" Sensors 24, no. 22: 7363. https://doi.org/10.3390/s24227363
APA StyleShen, Y., Wang, S., Shen, Y., & Hu, J. (2024). The Application of Augmented Reality Technology in Perioperative Visual Guidance: Technological Advances and Innovation Challenges. Sensors, 24(22), 7363. https://doi.org/10.3390/s24227363