Moisture Distribution and Ice Front Identification in Freezing Soil Using an Optimized Circular Capacitance Sensor
Abstract
:1. Introduction
2. ECT Principle
3. Material and Methods
3.1. Fuzzy Satisfaction Evaluation Method
3.2. Specimen Preparation and Test Method
3.2.1. Material and Sample Preparation
3.2.2. Testing Methods
3.2.3. Characterization Parameters Based on Capacitance Data
3.3. Finite Element Method
4. Results and Discussion
4.1. Optimization Results of MCCS
4.2. Characterization of Moisture Distribution
4.3. Three-Dimensional Imaging of Ice Fronts
4.4. Finite Element Simulation Verification
5. Conclusions
- The fuzzy optimization design method was employed to optimize the structural parameters. Comparing the results with and , using FSI to evaluate the structural parameters of MCCS can simultaneously obtain a low-capacitance dynamic range and a uniformly sensitive field distribution.
- The sum of the capacitance values () and the average dielectric constant distribution () were introduced to evaluate moisture migration. The point with the minimum slope in the curve can be considered as the ice front, which was consistent with the moisture content.
- The trilinear interpolation algorithm was used to reconstruct a 3D image of the ice front. The precise location of the ice front could be identified.
- The temperature field and unfrozen moisture distribution were obtained via finite element simulation. The index proposed in this paper aligns well with the simulation results, with minimal deviation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhan, Y.; Lu, Z.; Yao, H.; Xian, S. A Coupled Thermo-Hydromechanical Model of Soil Slope in Seasonally Frozen Regions under Freeze-Thaw Action. Adv. Civ. Eng. 2018, 2018, 7219826. [Google Scholar] [CrossRef]
- Xinchun, L.; Yongde, K.; Hongna, C.; Hui, L. Hydrothermal Effects of Freeze-Thaw in the Taklimakan Desert. Sustainability 2021, 13, 1292. [Google Scholar] [CrossRef]
- Tai, B.; Yue, Z.; Sun, T.; Qi, S.; Li, L.; Yang, Z. Novel anti-frost subgrade bed structures a high speed railways in deep seasonally frozen ground regions: Experimental and numerical studies. Constr. Build. Mater. 2021, 269, 121266. [Google Scholar] [CrossRef]
- Li, N.; Xu, B. A new type of pile used in frozen soil foundation. Cold Reg. Sci. Technol. 2008, 53, 355–368. [Google Scholar] [CrossRef]
- Lei, S. Research on Ground Penetrating Radar (GPR) Exploration on Artificial Frozen Wall Development. J. China Univ. Min. Technol. 2005, 34, 143–147. [Google Scholar]
- Zhu, Z.; Jia, J.; Zhang, F. A damage and elastic-viscoplastic constitutive model of frozen soil under uniaxial impact loading and its numerical implementation. Cold Reg. Sci. Technol. 2020, 175, 103081. [Google Scholar] [CrossRef]
- Zhang, L.; Pu, Y.; Liao, Q.; Gu, T. Dynamic investigation on the coupled changing process of moisture and density fields in freezing soil. Sci. China Ser. D Earth Sci. 1999, 42, 141–145. [Google Scholar] [CrossRef]
- Shan, W.; Liu, Y.; Hu, Z.; Xiao, J. A Model for the Electrical Resistivity of Frozen Soils and an Experimental Verification of the Model. Cold Reg. Sci. Technol. 2015, 119, 75–83. [Google Scholar] [CrossRef]
- Mercier, O.R.; Hunter, M.W.; Callaghan, P.T. Brine diffusion in first-year sea ice measured by Earth’s field PGSE-NMR. Cold Reg. Sci. Technol. 2005, 42, 96–105. [Google Scholar] [CrossRef]
- Bittelli, M.; Flury, M.; Roth, K. Use of dielectric spectroscopy to estimate ice content in frozen porous media. Water Resour. Res. 2004, 40, W04212. [Google Scholar] [CrossRef]
- Watanabe, K.; Wake, T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR. Cold Reg. Sci. Technol. 2009, 59, 34–41. [Google Scholar] [CrossRef]
- Wen, Z.; Ma, W.; Feng, W.; Deng, Y.; Wang, D.; Fan, Z.; Zhou, C. Experimental study on unfrozen water content and soil matric potential of Qinghai-Tibetan silty clay. Environ. Earth Sci. 2012, 66, 1467–1476. [Google Scholar] [CrossRef]
- Mühlbacher-Karrer, S.; Zangl, H. Object detection based on electrical capacitance tomography. In Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, 13–15 April 2015; pp. 1–5. [Google Scholar]
- Hosani, E.A.; Zhang, M.; Soleimani, M. A Limited Region Electrical Capacitance Tomography for Detection of Deposits in Pipelines. IEEE Sens. J. 2015, 15, 6089–6099. [Google Scholar] [CrossRef]
- Voss, A.; Pour-Ghaz, M.; Vauhkonen, M.; Seppänen, A. Electrical capacitance tomography to monitor unsaturated moisture ingress in cement-based materials. Cem. Concr. Res. 2016, 89, 158–167. [Google Scholar] [CrossRef]
- Voss, A.; Pour-Ghaz, M.; Vauhkonen, M.; Seppänen, A. Difference reconstruction methods for electrical capacitance tomography imaging of two-dimensional moisture flow in concrete. In Proceedings of the 9th International Conference on Inverse Problems in Engineering (ICIPE), Waterloo, ON, Canada, 23–26 May 2017. [Google Scholar]
- Wang, W.; Zhao, K.; Zhang, P.; Bao, J.; Xue, S. Application of three self-developed ECT sensors for monitoring the moisture content in sand and mortar. Constr. Build. Mater. 2020, 267, 121008. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Li, Y. Level measurement of separator by using electrical tomography sensor. In Proceedings of the 2018 IEEE International Conference on Imaging Systems and Techniques (IST), Krakow, Poland, 16–18 October 2018; pp. 1–6. [Google Scholar]
- Krupa, A.; Lackowski, M.; Jaworek, A. Capacitance sensor for measuring void fraction in small channels. Measurement 2021, 175, 109046. [Google Scholar] [CrossRef]
- Rimpiläinen, V.; Heikkinen, L.M.; Vauhkonen, M. Moisture distribution and hydrodynamics of wet granules during fluidized-bed drying characterized with volumetric electrical capacitance tomography. Chem. Eng. Sci. 2012, 75, 220–234. [Google Scholar] [CrossRef]
- Qing-bo, B.A.I.; Xu, L.I.; Ya-hu, T.; Jian-hong, F. Equations and numerical simulation for coupled water and heat transfer in frozen soil. Chin. J. Geotech. Eng. 2015, 37, 131–136. [Google Scholar] [CrossRef]
- Nandi, R.; Shrestha, D. Assessment of Low-Cost and Higher-End Soil Moisture Sensors across Various Moisture Ranges and Soil Textures. Sensors 2024, 24, 5886. [Google Scholar] [CrossRef]
- Eren, H.; Sandor, L.D. Fringe-Effect Capacitive Proximity Sensors for Tamper Proof Enclosures. In Proceedings of the 2005 Sensors for Industry Conference, Houston, TX, USA, 8–10 February 2005; pp. 22–26. [Google Scholar]
- Li, N.; Guo, B.l.; Huang, C. Characterisation of Liquid Properties by Electrical Capacitance Tomography Sensor for Security Applications. In Proceedings of the 2009 Second International Symposium on Electronic Commerce and Security, Nanchang, China, 22–24 May 2009; pp. 305–308. [Google Scholar]
- Lei, J.; Liu, S.; Wang, X.; Liu, Q. An Image Reconstruction Algorithm for Electrical Capacitance Tomography Based on Robust Principle Component Analysis. Sensors 2013, 13, 2076–2092. [Google Scholar] [CrossRef]
- Ji, Z.; Liu, J.; Tian, H.; Zhang, W. ECT Sensor Simulation and Fuzzy Optimization Design Based on Multi Index Orthogonal Experiment. IEEE Access 2020, 8, 190039–190048. [Google Scholar] [CrossRef]
- D1557-12; Laboratory Compaction Characteristics of Soil Using Modified Effort. ASTM: West Conshohocken, PA, USA, 2012.
- Deng, Q.; Liu, X.; Zeng, C.; He, X.; Chen, F.; Zhang, S. A Freezing-Thawing Damage Characterization Method for Highway Subgrade in Seasonally Frozen Regions Based on Thermal-Hydraulic-Mechanical Coupling Model. Sensors 2021, 21, 6251. [Google Scholar] [CrossRef] [PubMed]
- Harlan, R.L. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour. Res. 1973, 9, 1314–1323. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, L.; Zhou, S. Comparative study of relating equations in coupled thermal-hydraulic finite element analyses. Cold Reg. Sci. Technol. 2019, 161, 150–158. [Google Scholar] [CrossRef]
- Ranz, J.; Aparicio, S.; Romero, H.; Casati, M.J.; Molero, M.; González, M. Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging. Sensors 2014, 14, 2280–2304. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Sugimoto, M. Pulsed NMR Measurements of Unfrozen Water Content in Partially Frozen Soil. J. Cold Reg. Eng. 2020, 34, 04020013. [Google Scholar] [CrossRef]
Level | A. Electrode Plates Number | B. Electrode Opening Angle Coverage (%) | C. Plate Width (mm) | D. Grounding Shield Radius (mm) |
---|---|---|---|---|
1 | 8 | 60 | 6 | 58 |
2 | 12 | 70 | 8 | 63 |
3 | 16 | 80 | 10 | 68 |
Experiment | Structural Parameters | Optimization Indexes | |||||
---|---|---|---|---|---|---|---|
Group | A. Electrode Plates Number | B. Electrode Opening Angle Coverage (%) | C. Plate Width (mm) | D. Grounding Shield Radius (mm) | |||
1 | 8 | 60 | 0.6 | 58 | 12.453 | 4.645 | 0.886 |
2 | 8 | 70 | 1.0 | 68 | 13.282 | 5.498 | 0.857 |
3 | 8 | 80 | 0.8 | 63 | 16.907 | 5.994 | 0.808 |
4 | 12 | 60 | 1.0 | 68 | 12.758 | 4.542 | 0.886 |
5 | 12 | 70 | 0.8 | 63 | 14.089 | 4.676 | 0.871 |
6 | 12 | 80 | 0.6 | 58 | 15.330 | 4.765 | 0.856 |
7 | 16 | 60 | 0.8 | 63 | 21.668 | 5.335 | 0.774 |
8 | 16 | 70 | 0.6 | 58 | 29.150 | 5.953 | 0.670 |
9 | 16 | 80 | 1.0 | 68 | 18.876 | 4.752 | 0.820 |
Level | A. Electrode Plates Number | B. Electrode Opening Angle Coverage | C. Plate Width | D. Grounding Shield Radius |
---|---|---|---|---|
42.176 | 43.880 | 53.933 | 58.815 | |
39.641 | 56.521 | 52.664 | 50.280 | |
69.694 | 51.112 | 44.916 | 42.418 | |
30.053 | 12.641 | 9.017 | 16.397 | |
16.137 | 15.511 | 15.363 | 14.073 | |
13.983 | 16.127 | 16.005 | 15.598 | |
16.041 | 14.523 | 14.793 | 16.490 | |
2.155 | 1.604 | 1.212 | 2.417 | |
2.264 | 2.568 | 2.435 | 2.599 | |
2.613 | 2.397 | 2.453 | 2.488 | |
2.574 | 2.486 | 2.563 | 2.364 | |
0.348 | 0.171 | 0.128 | 0.235 |
Optimal Combination | A2B1C3D3 | A2B3C3D1 | A2B1C3D1 |
---|---|---|---|
12.758 | 12.812 | 12.741 | |
4.542 | 4.537 | 4.528 |
Initial moisture content | 10% | 15% | 20% |
Measurement deviation | 0.9% | 1.5% | 2.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Dong, Q.; Shi, B.; Yao, K.; Chen, X.; Yuan, X. Moisture Distribution and Ice Front Identification in Freezing Soil Using an Optimized Circular Capacitance Sensor. Sensors 2024, 24, 7392. https://doi.org/10.3390/s24227392
Hu X, Dong Q, Shi B, Yao K, Chen X, Yuan X. Moisture Distribution and Ice Front Identification in Freezing Soil Using an Optimized Circular Capacitance Sensor. Sensors. 2024; 24(22):7392. https://doi.org/10.3390/s24227392
Chicago/Turabian StyleHu, Xing, Qiao Dong, Bin Shi, Kang Yao, Xueqin Chen, and Xin Yuan. 2024. "Moisture Distribution and Ice Front Identification in Freezing Soil Using an Optimized Circular Capacitance Sensor" Sensors 24, no. 22: 7392. https://doi.org/10.3390/s24227392
APA StyleHu, X., Dong, Q., Shi, B., Yao, K., Chen, X., & Yuan, X. (2024). Moisture Distribution and Ice Front Identification in Freezing Soil Using an Optimized Circular Capacitance Sensor. Sensors, 24(22), 7392. https://doi.org/10.3390/s24227392