Skin Phototype Classification with Machine Learning Based on Broadband Optical Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Overview
2.3. Sensor Design
2.4. Data Processing
K-Means Classification and Custom Seeding
2.5. Statistical Analysis
3. Results and Discussion
3.1. Clustering Results
3.2. Group-Level Analysis
3.3. Intra-Group Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Shope, C.N.; Andrews, L.A.; Neimy, H.; Linkous, C.L.; Khamdan, F.; Lee, L.W. Characterizing Skin Cancer in Transplant Recipients by Fitzpatrick Skin Phototype. Dermatol. Ther. 2023, 13, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, N.G. The Evolution of Human Skin Pigmentation Involved the Interactions of Genetic, Environmental, and Cultural Variables. Pigment Cell Melanoma Res. 2021, 34, 707–729. [Google Scholar] [CrossRef] [PubMed]
- Sonenblum, S.E.; Patel, R.; Phrasavath, S.; Xu, S.; Bates-Jensen, B.M. Using Technology to Detect Erythema Across Skin Tones. Adv. Ski. Wound Care 2023, 36, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Monk, E.P. The Unceasing Significance of Colorism: Skin Tone Stratification in the United States. Daedalus 2021, 150, 76–90. [Google Scholar] [CrossRef]
- Mitchell, M.; Wu, S.; Zaldivar, A.; Barnes, P.; Vasserman, L.; Hutchinson, B.; Spitzer, E.; Raji, I.D.; Gebru, T. Model Cards for Model Reporting. In Proceedings of the Conference on Fairness, Accountability, and Transparency, Atlanta, GA, USA, 29–31 January 2019; pp. 220–229. [Google Scholar]
- Oliveira, R.; Ferreira, J.; Azevedo, L.F.; Almeida, I.F. An Overview of Methods to Characterize Skin Type: Focus on Visual Rating Scales and Self-Report Instruments. Cosmetics 2023, 10, 14. [Google Scholar] [CrossRef]
- Fitzpatrick, T.B. The Validity and Practicality of Sun-Reactive Skin Types I through VI. JMMA Dermatol. 1988, 124, 869–871. [Google Scholar] [CrossRef]
- Lim, S.S.; Mohammad, T.F.; Kohli, I.; Hamzavi, I.; Rodrigues, M. Optimisation of Skin Phototype Classification. Pigment Cell Melanoma Res. 2023, 36, 468–471. [Google Scholar] [CrossRef]
- Tsai, S.-R.; Hamblin, M.R. Biological Effects and Medical Applications of Infrared Radiation. J. Photochem. Photobiol. B Biol. 2017, 170, 197–207. [Google Scholar] [CrossRef]
- Ware, O.R.; Dawson, J.E.; Shinohara, M.M.; Taylor, S.C. Racial Limitations of Fitzpatrick Skin Type. Cutis 2020, 105, 77–80. [Google Scholar]
- Clement, M.; Daniel, G.; Trelles, M. Optimising the Design of a Broad-band Light Source for the Treatment of Skin. J. Cosmet. Laser Ther. 2005, 7, 177–189. [Google Scholar] [CrossRef]
- Shi, C.; Goodall, M.; Dumville, J.; Hill, J.; Norman, G.; Hamer, O.; Clegg, A.; Watkins, C.L.; Georgiou, G.; Hodkinson, A.; et al. The Accuracy of Pulse Oximetry in Measuring Oxygen Saturation by Levels of Skin Pigmentation: A Systematic Review and Meta-Analysis. BMC Med. 2022, 20, 267. [Google Scholar] [CrossRef] [PubMed]
- Jamali, H.; Castillo, L.T.; Morgan, C.C.; Coult, J.; Muhammad, J.L.; Osobamiro, O.O.; Parsons, E.C.; Adamson, R. Racial Disparity in Oxygen Saturation Measurements by Pulse Oximetry: Evidence and Implications. Ann. ATS 2022, 19, 1951–1964. [Google Scholar] [CrossRef] [PubMed]
- Sjoding, M.W.; Dickson, R.P.; Iwashyna, T.J.; Gay, S.E.; Valley, T.S. Racial Bias in Pulse Oximetry Measurement. New Engl. J. Med. 2020, 383, 2477–2478. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Johnson, A.R.; Andersen, C.A.; Kelso, M.R.; Oropallo, A.R.; Serena, T.E. Skin Pigmentation Impacts the Clinical Diagnosis of Wound Infection: Imaging of Bacterial Burden to Overcome Diagnostic Limitations. J. Racial Ethn. Health Disparities 2024, 11, 1045–1055. [Google Scholar] [CrossRef]
- Narla, S.; Heath, C.R.; Alexis, A.; Silverberg, J.I. Racial Disparities in Dermatology. Arch. Dermatol. Res. 2022, 315, 1215–1223. [Google Scholar] [CrossRef]
- Linde, K.; Wright, C.Y.; Du Plessis, J.L. Subjective and Objective Skin Colour of a Farmworker Group in the Limpopo Province, South Africa. Ski. Res. Technol. 2020, 26, 923–931. [Google Scholar] [CrossRef]
- Reeder, A.I.; Hammond, V.A.; Gray, A.R. Questionnaire Items to Assess Skin Color and Erythemal Sensitivity: Reliability, Validity, and “the Dark Shift”. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1167–1173. [Google Scholar] [CrossRef]
- Krutmann, J.; Piquero-Casals, J.; Morgado-Carrasco, D.; Granger, C.; Trullàs, C.; Passeron, T.; Lim, H.W. Photoprotection for People with Skin of Colour: Needs and Strategies. Br. J. Dermatol. 2023, 188, 168–175. [Google Scholar] [CrossRef]
- Xiao, K.; Yates, J.M.; Zardawi, F.; Sueeprasan, S.; Liao, N.; Gill, L.; Li, C.; Wuerger, S. Characterising the Variations in Ethnic Skin Colours: A New Calibrated Data Base for Human Skin. Ski. Res. Technol. 2017, 23, 21–29. [Google Scholar] [CrossRef]
- Everett, J.S.; Budescu, M.; Sommers, M.S. Making Sense of Skin Color in Clinical Care. Clin. Nurs. Res. 2012, 21, 495–516. [Google Scholar] [CrossRef]
- He, S.Y.; McCulloch, C.E.; Boscardin, W.J.; Chren, M.-M.; Linos, E.; Arron, S.T. Self-Reported Pigmentary Phenotypes and Race Are Significant but Incomplete Predictors of Fitzpatrick Skin Phototype in an Ethnically Diverse Population. J. Am. Acad. Dermatol. 2014, 71, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Ly, B.C.K.; Dyer, E.B.; Feig, J.L.; Chien, A.L.; Del Bino, S. Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. J. Investig. Dermatol. 2020, 140, 3–12.e1. [Google Scholar] [CrossRef] [PubMed]
- Finlayson, L.; Barnard, I.R.M.; McMillan, L.; Ibbotson, S.H.; Brown, C.T.A.; Eadie, E.; Wood, K. Depth Penetration of Light into Skin as a Function of Wavelength from 200 to 1000 Nm. Photochem Photobiol. 2022, 98, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Ash, C.; Dubec, M.; Donne, K.; Bashford, T. Effect of Wavelength and Beam Width on Penetration in Light-Tissue Interaction Using Computational Methods. Lasers Med. Sci. 2017, 32, 1909–1918. [Google Scholar] [CrossRef]
- Lanzafame, R. Light Dosing and Tissue Penetration: It Is Complicated. Photobiomodulation Photomed. Laser Surg. 2020, 38, 393–394. [Google Scholar] [CrossRef] [PubMed]
- Lister, T.; Wright, P.A.; Chappell, P.H. Optical Properties of Human Skin. J. Biomed. Opt. 2012, 17, 0909011. [Google Scholar] [CrossRef]
- Groh, M.; Badri, O.; Daneshjou, R.; Koochek, A.; Harris, C.; Soenksen, L.R.; Doraiswamy, P.M.; Picard, R. Deep Learning-Aided Decision Support for Diagnosis of Skin Disease across Skin Tones. Nat. Med. 2024, 30, 573–583. [Google Scholar] [CrossRef]
- Gajinov, Z.; Matić, M.; Prćić, S.; Đuran, V. Optical Properties of the Human Skin/Optičke Osobine Ljudske Kože. Serbian J. Dermatol. Venerol. 2010, 2, 131–136. [Google Scholar] [CrossRef]
- Austin, E.; Geisler, A.N.; Nguyen, J.; Kohli, I.; Hamzavi, I.; Lim, H.W.; Jagdeo, J. Visible Light. Part I: Properties and Cutaneous Effects of Visible Light. J. Am. Acad. Dermatol. 2021, 84, 1219–1231. [Google Scholar] [CrossRef]
- Anderson, R.R.; Parrish, J.A. The Optics of Human Skin. J. Investig. Dermatol. 1981, 77, 13–19. [Google Scholar] [CrossRef]
- Moreiras, H.; Seabra, M.C.; Barral, D.C. Melanin Transfer in the Epidermis: The Pursuit of Skin Pigmentation Control Mechanisms. Int. J. Mol. Sci. 2021, 22, 4466. [Google Scholar] [CrossRef] [PubMed]
- Passeron, T.; Lim, H.W.; Goh, C.-L.; Kang, H.Y.; Ly, F.; Morita, A.; Ocampo Candiani, J.; Puig, S.; Schalka, S.; Wei, L.; et al. Photoprotection According to Skin Phototype and Dermatoses: Practical Recommendations from an Expert Panel. Acad. Dermatol. Venereol. 2021, 35, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Wakamatsu, K.; Ozeki, H. Chemical Analysis of Melanins and Its Application to the Study of the Regulation of Melanogenesis. Pigment. Cell Res. 2000, 13, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Brenner, M.; Hearing, V.J. The Protective Role of Melanin Against UV Damage in Human Skin †. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef]
- Setchfield, K.; Gorman, A.; Simpson, A.H.R.W.; Somekh, M.G.; Wright, A.J. Effect of Skin Color on Optical Properties and the Implications for Medical Optical Technologies: A Review. J. Biomed. Opt. 2024, 29, 010901. [Google Scholar] [CrossRef]
- Sinaga, K.P.; Yang, M.-S. Unsupervised K-Means Clustering Algorithm. IEEE Access 2020, 8, 80716–80727. [Google Scholar] [CrossRef]
- Al-Mohair, H.K.; Mohamad Saleh, J.; Suandi, S.A. Hybrid Human Skin Detection Using Neural Network and K-Means Clustering Technique. Appl. Soft Comput. 2015, 33, 337–347. [Google Scholar] [CrossRef]
- Anas, M.; Gupta, R.K.; Ahmad, D.S. Skin Cancer Classification Using K-Means Clustering. Int. J. Tech. Res. Appl. 2017, 5, 62–65. [Google Scholar]
- Starczewski, A.; Krzyżak, A. Performance Evaluation of the Silhouette Index. In Proceedings of the Artificial Intelligence and Soft Computing: 14th International Conference, ICAISC 2015, Zakopane, Poland, 14–18 June 2015; Lecture Notes in Computer Science, Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J., Eds.; Springer: Cham, Switzerland, 2015; Volume 9120. [Google Scholar] [CrossRef]
- Smith, W.J. Modern Optical Engineering: The Design of Optical Systems, 3rd ed.; McGraw Hill: New York, NY, USA, 2000; ISBN 978-0-07-136360-0. [Google Scholar]
- Konatham, S.; Martín-Torres, J.; Zorzano, M.-P. The Impact of the Spectral Radiation Environment on the Maximum Absorption Wavelengths of Human Vision and Other Species. Life 2021, 11, 1337. [Google Scholar] [CrossRef]
- Delgado-Bonal, A.; Martín-Torres, J. Human Vision Is Determined Based on Information Theory. Sci. Rep. 2016, 6, 36038. [Google Scholar] [CrossRef]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Park, S.W.; Choi, T.H.; Kim, N.G.; Lee, K.S.; Kim, J.R.; Lee, S.-I.; Kang, D.; Han, K.H.; Son, D.G.; et al. The Evaluation of Relevant Factors Influencing Skin Graft Changes in Color Over Time: The Color of Skin Graft. Dermatol. Surg. 2007, 34, 32–39. [Google Scholar] [CrossRef] [PubMed]
FSPC Scale | Numbers of Participants | Age (Years) (Mean ± SD) | Biological Sex | Self-Identify Ethnicity |
---|---|---|---|---|
Type I | 5 | 23.4 ± 5.78 | M: 2 F: 3 | White: 5 |
Type II | 5 | 24.7 ± 6.00 | M: 3 F: 2 | Asian: 2 Hispanic: 1 White: 2 |
Type III | 5 | 23.0 ± 4.41 | M: 2 F: 3 | Asian: 5 |
Type IV | 5 | 22.4 ± 3.65 | M: 3 F: 2 | Asian: 1 Black: 4 |
Type V | 5 | 23.9 ± 4.99 | M: 4 F: 1 | Asian: 1 Black: 4 |
Type VI | 5 | 23.8 ± 5.05 | M: 0 F: 5 | Black: 5 |
Human Evaluation | K-means Classification | |||||
---|---|---|---|---|---|---|
Skin Types | Subject Counts | Clusters | Subject Counts | |||
Broad-Spectrum | Near-UV-A | Visible | Near-IR | |||
Type I | 5 | Group A | 3 | 3 | 7 | 4 |
Type II | 5 | Group B | 9 | 5 | 4 | 11 |
Type III | 5 | Group C | 12 | 6 | 13 | 6 |
Type IV | 5 | Group D | 4 | 10 | 3 | 5 |
Type V | 5 | Group E | 1 | 2 | 1 | 1 |
Type VI | 5 | Group F | 1 | 4 | 2 | 3 |
Silhouette Values | |||
---|---|---|---|
Cluster Type | Cluster Silhouette Value Mean ± SD | Method Silhouette Value Mean ± SD | |
FSPC (Human Evaluation) | Type I | −0.540 ± 0.080 | −0.084 ± 0.387 |
Type II | −0.374 ± 0.180 | ||
Type III | 0.197 ± 0.243 | ||
Type IV | 0.117 ± 0.432 | ||
Type V | −0.090 ± 0.280 | ||
Type VI | 0.189 ± 0.344 | ||
K-means410–940 (Broad spectrum) | Group A | 0.547 ± 0.131 | 0.245 ± 0.358 |
Group B | −0.212 ± 0.162 | ||
Group C | 0.438 ± 0.178 | ||
Group D | 0.488 ± 0.137 | ||
Group E * | — | ||
Group F * | — | ||
K-means410–535 (Near-UV-A) | Group A | 0.561 ± 0.073 | 0.159 ± 0.321 |
Group B | −0.069 ± 0.202 | ||
Group C | −0.135 ± 0.321 | ||
Group D | 0.251 ± 0.190 | ||
Group E | 0.621 ± 0.127 | ||
Group F | 0.119 ± 0.248 | ||
K-means560–705 (Visible) | Group A | 0.179 ± 0.148 | 0.040 ± 0.214 |
Group B | 0.169 ± 0.212 | ||
Group C | −0.039 ± 0.183 | ||
Group D | −0.007 ± 0.298 | ||
Group E * | — | ||
Group F | −0.124 ± 0.306 | ||
K-means730–940 (Near-IR) | Group A | −0.237 ± 0.075 | −0.088 ± 0.263 |
Group B | −0.062 ± 0.212 | ||
Group C | −0.204 ± 0.266 | ||
Group D | −0.100 ± 0.191 | ||
Group E * | — | ||
Group F | 0.264 ± 0.461 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Ong, K.G.; McGeehan, M.A. Skin Phototype Classification with Machine Learning Based on Broadband Optical Measurements. Sensors 2024, 24, 7397. https://doi.org/10.3390/s24227397
Yu X, Ong KG, McGeehan MA. Skin Phototype Classification with Machine Learning Based on Broadband Optical Measurements. Sensors. 2024; 24(22):7397. https://doi.org/10.3390/s24227397
Chicago/Turabian StyleYu, Xun, Keat Ghee Ong, and Michael Aaron McGeehan. 2024. "Skin Phototype Classification with Machine Learning Based on Broadband Optical Measurements" Sensors 24, no. 22: 7397. https://doi.org/10.3390/s24227397
APA StyleYu, X., Ong, K. G., & McGeehan, M. A. (2024). Skin Phototype Classification with Machine Learning Based on Broadband Optical Measurements. Sensors, 24(22), 7397. https://doi.org/10.3390/s24227397