Scheimpflug LIDAR for Gas Sensing at Elevated Temperatures
Abstract
:1. Introduction
2. Simulated Boiler Environment
3. Pulsed Raman LIDAR Measurements
4. Scheimpflug LIDAR (S-LIDAR)
4.1. Working Principle
4.2. S-LIDAR Experimental Setup
4.3. Scheimpflug Lidar Measurements
4.3.1. Scheimpflug LIDAR Signals Detection
4.3.2. Scheimpflug LIDAR Measurements at Elevated Temperatures
4.3.3. Spatial Resolution
4.3.4. Peak Shifting with Temperature
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- Deguchi, Y. Industrial Applications of Laser Diagnostics; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Svanberg, S. Chemical sensing with laser spectroscopy. Sens. Actuators B Chem. 1996, 33, 1–4. [Google Scholar] [CrossRef]
- Wandinger, U. Raman lidar. In Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; Springer: New York, NY, USA, 2005; pp. 241–271. [Google Scholar]
- McGill, M.J. Lidar Remote Sensing. In Encyclopedia of Optical Engineering; CRC Press: Boca Raton, FL, USA, 2003; pp. 1103–1113. [Google Scholar]
- Behrendt, A.; Reichardt, J. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator. Appl. Opt. 2000, 39, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, A.; Nakamura, T.; Onishi, M.; Baumgart, R.; Tsuda, T. Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient. Appl. Opt. 2002, 41, 7657–7666. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yi, F. Lidar-measured atmospheric N_2 vibrational-rotational Raman spectra and consequent temperature retrieval. Opt. Express 2014, 22, 27833–27844. [Google Scholar] [CrossRef] [PubMed]
- Hicks, Y.R.; De Groot, W.A.; Locke, R.J.; Anderson, R.C. Combustion Temperature Measurement by Spontaneous Raman Scattering in a Jet-A Fueled Gas Turbine Combustor Sector. (No. NASA/TM-2002-211588). Available online: https://ntrs.nasa.gov/api/citations/20020062693/downloads/20020062693.pdf (accessed on 30 August 2024).
- Kim, D.; Kang, H.; Ryu, J.-Y.; Jun, S.-C.; Yun, S.-T.; Choi, S.; Park, S.; Yoon, M.; Lee, H. Development of Raman Lidar for Remote Sensing of CO2 Leakage at an Artificial Carbon Capture and Storage Site. Remote Sens. 2018, 10, 1439. [Google Scholar] [CrossRef]
- Asahi, I.; Sugimoto, S.; Ninomiya, H.; Fukuchi, T.; Shiina, T. Remote sensing of hydrogen gas concentration distribution by Raman lidar. In Proceedings of the Lidar Remote Sensing for Environmental Monitoring XIII, Kyoto, Japan, 19 November 2012; Volume 8526, pp. 170–177. [Google Scholar]
- Ansmann, A.; Riebesell, M.; Weitkamp, C. Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett. 1990, 15, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Brydegaard, M.; Malmqvist, E.; Jansson, S.; Larsson, J.; Török, S.; Zhao, G. The Scheimpflug lidar method. In Proceedings of the Lidar Remote Sensing for Environmental Monitoring 2017, San Diego, CA, USA, 30 August 2017; Volume 10406, pp. 104–120. [Google Scholar]
- Merklinger, H.M. Focusing The View Camera; Seaboard Printing Limited: Syracuse, NY, USA, 1996. [Google Scholar]
- Mei, L.; Brydegaard, M. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system. Opt. Express 2015, 23, A1613–A1628. [Google Scholar] [CrossRef] [PubMed]
- Brydegaard, M.; Gebru, A.; Svanberg, S. Super resolution laser radar with blinking atmospheric particles—Application to interacting flying insects (invited paper). Prog. Electromagn. Res. 2014, 147, 141–151. [Google Scholar] [CrossRef]
- Mei, L.; Kong, Z.; Ma, T.; Li, L. Applications of the Scheimpflug Lidar Technique in Atmospheric Remote Sensing. In Proceedings of the 2019 PhotonIcs & Electro-magnetics Research Symposium-Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019. [Google Scholar]
- Sun, G.; Qin, L.; Hou, Z.; Jing, X.; He, F.; Tan, F.; Zhang, S. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection. Opt. Express 2018, 26, 7423–7436. [Google Scholar] [CrossRef] [PubMed]
- Malmqvist, E.; Brydegaard, M.; Aldén, M.; Bood, J. Scheimpflug Lidar for combustion diagnostics. Opt. Express 2018, 26, 14842–14858. [Google Scholar] [CrossRef] [PubMed]
- Larsson, J.; Bood, J.; Xu, C.T.; Yang, X.; Lindberg, R.; Laurell, F.; Brydegaard, M. Atmospheric CO2 sensing using Scheimpflug-lidar based on a 1.57-µm fiber source. Opt. Express 2019, 27, 17348–17358. [Google Scholar] [CrossRef]
- Mei, L.; Guan, P.; Kong, Z. Remote sensing of atmospheric NO_2 by employing the continuous-wave differential absorption lidar technique. Opt. Express 2017, 25, A953–A962. [Google Scholar] [CrossRef]
- Mei, L.; Ma, T.; Kong, Z.; Gong, Z.; Li, H. Comparison studies of the Scheimpflug lidar technique and the pulsed lidar technique for atmospheric aerosol sensing. Appl. Opt. 2019, 58, 8981–8992. [Google Scholar] [CrossRef] [PubMed]
- Sathyanarayana, D.N. Vibrational Spectroscopy: Theory and Applications; New Age International: Delhi, India, 2015. [Google Scholar]
- Long, D.A. Raman Spectroscopy; McGraw Hill: New York, NY, USA, 1977; p. 310. [Google Scholar]
- Hoskins, L.C. Pure rotational Raman spectroscopy of diatomic molecules. J. Chem. Educ. 1975, 52, 568. [Google Scholar] [CrossRef]
- Williams, W.D.; Lewis, J.W. (Eds.) Rotational Temperature and Number Density Measurements of N2, O2, CO and CO2 in a Hypersonic Flow Field Using Laser-Raman Spectroscopy; National Technical Information Service in KOMM: Alexandria, VA, USA, 1975. [Google Scholar]
- Walrafen, G.E.; Krishnan, P.N. Model analysis of the Raman spectrum from fused silica optical fibers. Appl. Opt. 1982, 21, 359–360. [Google Scholar] [CrossRef] [PubMed]
- Tuschel, D. Raman thermometry. Spectroscopy 2016, 31, 8–13. [Google Scholar]
- van den Kerkhof, A.M. The System CO2-CH4-N2 in Fluid Inclusions: Theoretical Modelling and Geological Applications; Free University Press: Hong Kong SAR, China, 1988. [Google Scholar]
- Oksengorn, B.; Fabre, D.; Lavorel, B.; Saint-Loup, R.; Berger, H. Study of the density and temperature dependences of the vibrational Raman transition in compressed liquid N2. J. Chem. Phys. 1991, 94, 1774–1784. [Google Scholar] [CrossRef]
- Sublett, D.M.; Sendula, E.; Lamadrid, H.; Steele-MacInnis, M.; Spiekermann, G.; Burruss, R.C.; Bodnar, R.J. Shift in the Raman symmetric stretching band of N2, CO2, and CH4 as a function of temperature, pressure, and density. J. Raman Spectrosc. 2020, 51, 555–568. [Google Scholar] [CrossRef]
Air-N2 Mixtures | CO2-N2 Mixtures | |||
---|---|---|---|---|
Air% | N2% | Actual N2%/O2% | CO2% | N2% |
100 | 0 | 78/21 | 100 | 0 |
75 | 25 | 83.5/15.8 | 75 | 25 |
50 | 50 | 89.0/10.5 | 50 | 50 |
25 | 75 | 94.5/5.2 | 25 | 75 |
0 | 100 | 100/0 | 0 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatt, C.R.; Hartzler, D.A.; McIntyre, D.L. Scheimpflug LIDAR for Gas Sensing at Elevated Temperatures. Sensors 2024, 24, 7418. https://doi.org/10.3390/s24237418
Bhatt CR, Hartzler DA, McIntyre DL. Scheimpflug LIDAR for Gas Sensing at Elevated Temperatures. Sensors. 2024; 24(23):7418. https://doi.org/10.3390/s24237418
Chicago/Turabian StyleBhatt, Chet R., Daniel A. Hartzler, and Dustin L. McIntyre. 2024. "Scheimpflug LIDAR for Gas Sensing at Elevated Temperatures" Sensors 24, no. 23: 7418. https://doi.org/10.3390/s24237418
APA StyleBhatt, C. R., Hartzler, D. A., & McIntyre, D. L. (2024). Scheimpflug LIDAR for Gas Sensing at Elevated Temperatures. Sensors, 24(23), 7418. https://doi.org/10.3390/s24237418