Landsat-Derived Forel–Ule Index in the Three Gorges Reservoir over the Past Decade: Distribution, Trend, and Driver
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. FUI Retrieval Method
2.4. Statistical Analysis for Driving Mechanism of FUI Trend
3. Results
3.1. Spatial Distribution and Temporal Trend of FUI
3.2. Natural and Anthropogenic Drivers of FUI Trend
4. Discussion
4.1. Advantages and Limitations of Landsat-Derived FUI
4.2. Coexistence of Phytoplankton Bloom and Summer Flood
4.3. Implications for Further Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brooks, B.W.; Lazorchak, J.M.; Howard, M.D.A.; Johnson, M.V.V.; Morton, S.L.; Perkins, D.A.K.; Reavie, E.D.; Scott, G.I.; Smith, S.A.; Steevens, J.A. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ. Toxicol. Chem. 2016, 35, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, C.; Butman, D. Declining greenness in Arctic-boreal lakes. Proc. Natl. Acad. Sci. USA 2021, 118, e2021219118. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.R.; Bodirsky, B.L.; Rijneveld, R.; Beier, F.; Bak, M.P.; Batool, M.; Droppers, B.; Popp, A.; Van Vliet Michelle, T.H.; Strokal, M. A triple increase in global river basins with water scarcity due to future pollution. Nat. Commun. 2024, 15, 880. [Google Scholar] [CrossRef] [PubMed]
- Wernand, M.R.; Van der Woerd, H.J. Spectral analysis of the Forel-Ule ocean colour comparator scale. J. Eur. Opt. Soc. Rapid Publ. 2010, 5, 10014s. [Google Scholar] [CrossRef]
- Hou, X.J.; Feng, L.; Dai, Y.H.; Hu, C.M.; Gibson, L.; Tang, J.; Lee, Z.P.; Wang, Y.; Cai, X.B.; Liu, J.G.; et al. Global mapping reveals increase in lacustrine algal blooms over the past decade. Nat. Geosci. 2022, 15, 130–134. [Google Scholar] [CrossRef]
- Dai, Y.H.; Yang, S.B.; Zhao, D.; Hu, C.M.; Xu, W.; Anderson, D.M.; Li, Y.; Song, X.P.; Boyce, D.G.; Gibson, L.; et al. Coastal phytoplankton blooms expand and intensify in the 21st century. Nature 2023, 615, 280. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Shi, K.; Peng, Y.Y.; Wang, W.J.; Lai, L.; Zhang, Y.B.; Zhou, Y.Q.; Zhang, Y.L.; Qin, B.Q. Widespread decrease in chromophoric dissolved organic matter in Chinese lakes derived from satellite observations. Remote Sens. Environ. 2023, 298, 113848. [Google Scholar] [CrossRef]
- Hou, X.J.; Xie, D.H.; Feng, L.; Shen, F.; Nienhuis, J.H. Sustained increase in suspended sediments near global river deltas over the past two decades. Nat. Commun. 2024, 15, 3319. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Markager, S.; Kaas, H. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuar. Coast. Shelf Sci. 2000, 51, 267–278. [Google Scholar] [CrossRef]
- Hu, C.M.; Lee, Z.P.; Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J Geophys. Res-Oceans 2012, 117, C01011. [Google Scholar] [CrossRef]
- Gernez, P.; Lafon, V.; Lerouxel, A.; Curti, C.; Lubac, B.; Cerisier, S.; Barillé, L. Toward Sentinel-2 high resolution remote sensing of suspended particulate matter in very turbid waters: SPOT4 (take5) experiment in the Loire and Gironde estuaries. Remote Sens. 2015, 7, 9507–9528. [Google Scholar] [CrossRef]
- Gallie, E.A.; Murtha, P.A. A modification of chromaticity analysis to separate the effects of water quality variables. Remote Sens. Environ. 1993, 44, 47–65. [Google Scholar] [CrossRef]
- Coble, P.G.; Del Castillo, C.E.; Avril, B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Res. Pt. II 1998, 45, 2195–2223. [Google Scholar] [CrossRef]
- Morel, A.Y.; Gentili, B.; Claustre, H.; Babin, M.; Bricaud, A.; Ras, J.; Tièche, F. Optical properties of the ‘clearest’ natural waters. Limnol. Oceanogr. 2007, 52, 217–229. [Google Scholar] [CrossRef]
- Smith, T.; Guild, J. The C.I.E. colorimetric standards and their use. Trans. Opt. Soc. 1931, 33, 73. [Google Scholar] [CrossRef]
- Bukata, R.P.; Bruton, J.E.; Jerome, J.H. Use of chromaticity in remote measurements of water quality. Remote Sens. Environ. 1983, 13, 161–177. [Google Scholar] [CrossRef]
- Yoshimi, H. Simultaneous construction of single-parameter and multiparameter trophic state indices. Water Res. 1987, 21, 1505–1511. [Google Scholar] [CrossRef]
- Novoa, S.; Wernand, M.R.; Van der Woerd, H.J. The Forel-Ule scale revisited spectrally: Preparation protocol, transmission measurements and chromaticity. J. Eur. Opt. Soc. Rapid 2013, 8, 13057. [Google Scholar] [CrossRef]
- Van der Woerd, H.J.; Wernand, M.R. True colour classification of natural waters with medium-spectral resolution satellites: SeaWiFS, MODIS, MERIS and OLCI. Sensors 2015, 15, 25663–25680. [Google Scholar] [CrossRef]
- Xu, Y.; Feng, L.; Hou, X.J.; Wang, J.J.; Tang, J. Four-decade dynamics of the water color in 61 large lakes on the Yangtze Plain and the impacts of reclaimed aquaculture zones. Sci. Total Environ. 2021, 781, 146688. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.G.; Melack, J.M.; Liu, M.; Kutser, T.; Duan, H.T.; Ma, R.H. Shifts, trends, and drivers of lake Color across China since the 1980s. Geophys. Res. Lett. 2023, 50, e2023GL103225. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, M.T.; Tang, X.D. Eutrophication assessment of seasonal urban lakes in China Yangtze River basin using Landsat 8-derived Forel-Ule index: A six-year (2013–2018) observation. Sci. Total Environ. 2020, 745, 135392. [Google Scholar] [CrossRef]
- Wang, S.L.; Li, J.S.; Zhang, B.; Lee, Z.P.; Spyrakos, E.; Feng, L.; Liu, C.; Zhao, H.L.; Wu, Y.H.; Zhu, L.P.; et al. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS. Remote Sens. Environ. 2020, 247, 111949. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Hou, X.J. Algal blooms in lakes in China over the past two decades: Patterns, trends, and drivers. Water Resour. Res. 2023, 59, e2022WR033340. [Google Scholar] [CrossRef]
- Xiang, R.; Wang, L.J.; Li, H.; Tian, Z.B.; Zheng, B.H. Water quality variation in tributaries of the Three Gorges Reservoir from 2000 to 2015. Water Res. 2021, 195, 116993. [Google Scholar] [CrossRef]
- Xiong, L.H.; Jiang, C.; Guo, S.L.; Li, S.; Li, R.R.; Li, W.B. Multivariate dam-site flood frequency analysis of the Three Gorges Reservoir considering future reservoir regulation and precipitation. Water 2022, 14, 138. [Google Scholar] [CrossRef]
- Yang, Z.J.; Wei, C.Y.; Liu, D.F.; Lin, Q.C.; Huang, Y.L.; Wang, C.F.; Ji, D.B.; Ma, J.; Yang, H. The influence of hydraulic characteristics on algal bloom in three gorges reservoir, China: A combination of cultural experiments and field monitoring. Water Res. 2022, 211, 118030. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.Q.; Zhang, J.; Li, W.W.; Song, Y.Y. Water quality monitoring of large reservoirs in China based on water color change from 1999 to 2021. J. Hydrol. 2024, 633, 130988. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, Z.; Guo, J.S.; Fang, F.; Smith, V.H. Succession of phytoplankton assemblages in response to large-scale reservoir operation: A case study in a tributary of the Three Gorges Reservoir, China. Environ. Monit. Assess. 2016, 188, 153. [Google Scholar] [CrossRef]
- Huang, Z.L.; Li, Y.L. Water quality prediction and environmental capacity calculation in the Three Gorges Reservoir. China Water Resour. Hydropower Press 2006, 14, 1307. [Google Scholar]
- Gao, M.Y.; Zhu, K.X.; Bi, Y.H.; Hu, Z.Y. Spatiotemporal patterns of surface-suspended particulate matter in the Three Gorges Reservoir. Environ. Sci. Pollut. Res. 2016, 23, 3569–3577. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.T.; Shi, K.; Wang, W.J.; Zhang, D.; Qin, B.Q.; Zhang, Y.L.; Dong, B.L.; Shang, M.S. Phytoplankton succession phenology trends in the backwaters of the three gorges reservoir in China and their drivers: Results from satellite observations. Ecol. Indic. 2022, 143, 109435. [Google Scholar] [CrossRef]
- Zhi, X.S.; Chen, L.; Chen, S.B.; Yu, J.Q.; Jiang, J.; Xu, Y.Z.; Li, L.F.; Meng, X.Y.; Shen, Z.Y. Heterogeneity and influencing factors of algal blooms in the reservoir-impacted tributary: Evidence from remote sensing and physical-based model. J. Hydrol. 2024, 634, 131058. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Guo, J.S.; Fang, F.; Gao, X.; Long, M. Responses of phytoplankton diversity to physical disturbance under manual operation in a large reservoir, China. Hydrobiologia 2012, 684, 45–56. [Google Scholar] [CrossRef]
- Li, Z.; Ma, J.R.; Guo, J.S.; Paerl, H.W.; Brookes, J.D.; Xiao, Y.; Fang, F.; Ouyang, W.J.; Lu, L.H. Water quality trends in the Three Gorges Reservoir region before and after impoundment (1992–2016). Ecohydrol. Hydrobiol. 2019, 19, 317–327. [Google Scholar] [CrossRef]
- Su, Y.M.; Hu, M.M.; Wang, Y.C.; Zhang, H.R.; He, C.; Wang, Y.W.; Wang, D.C.; Wu, X.H.; Zhuang, Y.H.; Hong, S.; et al. Identifying key drivers of harmful algal blooms in a tributary of the Three Gorges Reservoir between different seasons: Causality based on data-driven methods. Environ. Pollut. 2022, 297, 118759. [Google Scholar] [CrossRef]
- Ye, L.; Tan, L.; Wu, X.H.; Cai, Q.H.; Li, B.L. Nonlinear causal analysis reveals an effective water level regulation approach for phytoplankton blooms controlling in reservoirs. Sci. Total Environ. 2022, 806, 150948. [Google Scholar] [CrossRef]
- Chen, X.D.; Liu, L.Y.; Zhang, X.; Li, J.S.; Wang, S.L.; Liu, D.; Duan, H.T.; Song, K.S. An assessment of water color for inland water in China using a Landsat 8-derived Forel-Ule index and the google earth engine platform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5773–5785. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.L.; Qin, B.Q.; Zhou, B.T. Remote sensing of cyanobacterial blooms in inland waters: Present knowledge and future challenges. Sci. Bull. 2019, 64, 1540–1556. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.X.; Woodcock, C.E. Improvement and expansion of the fmask algorithm: Cloud, cloud Shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Li, H.X.; Liu, G.H.; Fu, B.J. Study on the response of vegetation growth to climate change and human activities based on NDVI in the Sanjiangyuan region. Acta Ecol. Sin. 2011, 31, 5495–5504. [Google Scholar]
- Feng, L.; Hou, X.J.; Zheng, Y. Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations. Remote Sens. Environ. 2019, 221, 675–686. [Google Scholar] [CrossRef]
- Van der Woerd, H.; Wernand, M. Hue-angle product for low to medium spatial resolution optical satellite sensors. Remote Sens. 2018, 10, 180. [Google Scholar] [CrossRef]
- Wang, S.L.; Li, J.S.; Shen, Q.; Zhang, B.; Zhang, F.F.; Lu, Z.Y. MODIS-based radiometric color extraction and classification of inland water with the Forel-Ule scale: A case study of Lake Taihu. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 907–918. [Google Scholar] [CrossRef]
- Li, J.S.; Wang, S.L.; Wu, Y.H.; Zhang, B.; Chen, X.L.; Zhang, F.F.; Shen, Q.; Peng, D.L.; Tian, L.Q. MODIS observations of water color of the largest 10 lakes in China between 2000 and 2012. Int. J. Digit. Earth 2016, 9, 788–805. [Google Scholar] [CrossRef]
- Wang, S.L.; Li, J.S.; Zhang, B.; Spyrakos, E.; Tyler, A.N.; Shen, Q.; Zhang, F.F.; Kuster, T.; Lehmann, M.K.; Wu, Y.H.; et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sens. Environ. 2018, 217, 444–460. [Google Scholar] [CrossRef]
- Tao, S.L.; Fang, J.Y.; Ma, S.H.; Cai, Q.; Xiong, X.Y.; Tian, D.; Zhao, X.; Fang, L.Q.; Zhang, H.; Zhu, J.L.; et al. Changes in China’s lakes: Climate and human impacts. Nati. Sci. Rev. 2020, 7, 132–140. [Google Scholar] [CrossRef]
- Wang, Q.; Song, K.S.; Xiao, X.M.; Jacinthe, P.A.; Wen, Z.D.; Zhao, F.R.; Tao, H.; Li, S.J.; Shang, Y.X.; Wang, Y.; et al. Mapping water clarity in North American lakes and reservoirs using Landsat images on the GEE platform with the RGB model. ISPRS J. Photogramm. 2022, 194, 39–57. [Google Scholar] [CrossRef]
- Cao, Z.G.; Duan, H.T.; Ma, R.H.; Shen, M.; Yang, H. Remarkable effects of greening watershed on reducing suspended sediment flux in China’s major rivers. Sci. Bull. 2023, 68, 2285–2288. [Google Scholar] [CrossRef]
- Xia, K.; Wu, T.X.; Li, X.T.; Wang, S.D.; Shen, Q. A new method for accurate inversion of Forel-Ule index using MODIS images-Revealing the water color evolution in China’s large lakes and reservoirs over the past two decades. Water Res. 2024, 255, 121560. [Google Scholar] [CrossRef]
- Stockman, A. CIE physiologically based color matching functions and chromaticity diagrams. In Encyclopedia of Color Science and Technology; Springer: Berlin/Heidelberg, Germany, 2023; pp. 209–217. [Google Scholar]
- Burket, M.O.; Olmanson, L.G.; Brezonik, P.L. Comparison of two water color algorithms: Implications for the remote sensing of water bodies with moderate to high CDOM or chlorophyll levels. Sensors 2023, 23, 1071. [Google Scholar] [CrossRef]
- Ye, M.; Sun, Y.H. Review of the Forel-Ule index based on in situ and remote sensing methods and application in water quality assessment. Environ. Sci. Pollut. Res. 2022, 29, 13024–13041. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.T.; Shang, M.S.; Feng, L.; Shan, K.; Feng, L.; Ma, J.R.; Liu, X.N.; Wu, L. Long-term remote tracking the dynamics of surface water turbidity using a density peaks-based classification: A case study in the Three Gorges Reservoir. China. Ecol. Indic. 2020, 116, 106539. [Google Scholar] [CrossRef]
- Feng, L.; Wang, Y.; Hou, X.J.; Qin, B.Q.; Kuster, T.; Qu, F.; Chen, N.W.; Paerl, H.W.; Zheng, C.M. Harmful algal blooms in inland waters. Nat. Rev. Earth Environ. 2024, 5, 631–644. [Google Scholar] [CrossRef]
- He, S.W.; Zhang, Y.L.; Li, N.; Shi, K.; Zhang, Y.B.; Qin, B.Q.; Zhu, G.W.; Liu, M.L.; Shao, K.Q. Summer heatwaves promote harmful algal blooms in the Fuchunjiang Reservoir, an Important drinking water source. J. Environ. Manag. 2024, 359, 121056. [Google Scholar] [CrossRef]
- Cao, Z.; Jing, Y.; Zhang, Y.; Lai, L.; Liu, Z.; Yang, Q. Innovative remote sensing identification of cyanobacterial blooms inspired from pseudo water color. Remote Sens. 2023, 15, 215. [Google Scholar] [CrossRef]
FUI range | Color Scheme | Water Quality Characterization |
---|---|---|
1 ≤ FUI < 6 | Blueish | Low levels of suspended sediment and algae density |
6 ≤ FUI < 9 | Cyanish | Moderate levels of dissolved organic matter and algae density |
9 ≤ FUI < 13 | Greenish | High level of algae density |
FUI ≥ 13 | Yellowish | High levels of suspended sediment and dissolved organic matter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Feng, L.; Shao, J.; Gan, M.; Liu, M.; Wu, L.; Zhou, B. Landsat-Derived Forel–Ule Index in the Three Gorges Reservoir over the Past Decade: Distribution, Trend, and Driver. Sensors 2024, 24, 7449. https://doi.org/10.3390/s24237449
Wang Y, Feng L, Shao J, Gan M, Liu M, Wu L, Zhou B. Landsat-Derived Forel–Ule Index in the Three Gorges Reservoir over the Past Decade: Distribution, Trend, and Driver. Sensors. 2024; 24(23):7449. https://doi.org/10.3390/s24237449
Chicago/Turabian StyleWang, Yao, Lei Feng, Jingan Shao, Menglan Gan, Meiling Liu, Ling Wu, and Botian Zhou. 2024. "Landsat-Derived Forel–Ule Index in the Three Gorges Reservoir over the Past Decade: Distribution, Trend, and Driver" Sensors 24, no. 23: 7449. https://doi.org/10.3390/s24237449
APA StyleWang, Y., Feng, L., Shao, J., Gan, M., Liu, M., Wu, L., & Zhou, B. (2024). Landsat-Derived Forel–Ule Index in the Three Gorges Reservoir over the Past Decade: Distribution, Trend, and Driver. Sensors, 24(23), 7449. https://doi.org/10.3390/s24237449