Construction of Electrospun ZnO-NiO Nanofibers for Enhanced Ethanol Gas Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ZnO-NiO Composite NFs
2.2. Characterizations
2.3. Gas Sensing Measurements
3. Results and Discussion
3.1. Morphological and Structural Investigations
3.2. Gas Sensing Investigations
3.3. Proposed Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors: A Review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Schütze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How To? Environments 2017, 4, 20. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Q.; Peng, S.; Xu, L.; Zeng, W. Volatile Organic Compounds Gas Sensors Based on Molybdenum Oxides: A Mini Review. Front. Chem. 2020, 8, 339. [Google Scholar] [CrossRef]
- Nguyen, H.; El-Safty, S.A. Meso-and Macroporous Co3O4 Nanorods for Effective VOC Gas Sensors. J. Phys. Chem. C 2011, 115, 8466–8474. [Google Scholar] [CrossRef]
- Wen, Z.; Tian-Mo, L. Gas-Sensing Properties of SnO2–TiO2-Based Sensor for Volatile Organic Compound Gas and Its Sensing Mechanism. Phys. B Condens. Matter 2010, 405, 1345–1348. [Google Scholar] [CrossRef]
- Hyodo, T.; Shimizu, Y. Adsorption/Combustion-Type Micro Gas Sensors: Typical VOC-Sensing Properties and Material-Design Approach for Highly Sensitive and Selective VOC Detection. Anal. Sci. 2020, 36, 401–411. [Google Scholar] [CrossRef]
- Gai, L.-Y.; Lai, R.-P.; Dong, X.-H.; Wu, X.; Luan, Q.-T.; Wang, J.; Lin, H.-F.; Ding, W.-H.; Wu, G.-L.; Xie, W.-F. Recent Advances in Ethanol Gas Sensors Based on Metal Oxide Semiconductor Heterojunctions. Rare Met. 2022, 41, 1818–1842. [Google Scholar] [CrossRef]
- Mirzaei, A.; Janghorban, K.; Hashemi, B.; Bonyani, M.; Leonardi, S.G.; Neri, G. Highly Stable and Selective Ethanol Sensor Based on α-Fe2O3 Nanoparticles Prepared by Pechini Sol–Gel Method. Ceram. Int. 2016, 42, 6136–6144. [Google Scholar] [CrossRef]
- Dharmalingam, G.; Sivasubramaniam, R.; Parthiban, S. Quantification of Ethanol by Metal-Oxide-Based Resistive Sensors: A Review. J. Electron. Mater. 2020, 49, 3009–3024. [Google Scholar] [CrossRef]
- Doan, T.L.H.; Kim, J.-Y.; Lee, J.-H.; Nguyen, L.H.T.; Dang, Y.T.; Bui, K.-B.T.; Pham, A.T.T.; Mirzaei, A.; Phan, T.B.; Kim, S.S. Preparation of N-ZnO/p-Co3O4 Heterojunctions from Zeolitic Imidazolate Frameworks (ZIF-8/ZIF-67) for Sensing Low Ethanol Concentrations. Sens. Actuators B Chem. 2021, 348, 130684. [Google Scholar] [CrossRef]
- Dhall, S.; Mehta, B.R.; Tyagi, A.K.; Sood, K. A Review on Environmental Gas Sensors: Materials and Technologies. Sens. Int. 2021, 2, 100116. [Google Scholar] [CrossRef]
- Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A.I. Nanostructured Metal Oxide-Based Acetone Gas Sensors: A Review. Sensors 2020, 20, 3096. [Google Scholar] [CrossRef] [PubMed]
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S.; Kim, T.W. Recent Advances in Energy-Saving Chemiresistive Gas Sensors: A Review. Nano Energy 2021, 79, 105369. [Google Scholar] [CrossRef] [PubMed]
- Bonyani, M.; Zebarjad, S.M.; Janghorban, K.; Kim, J.-Y.; Kim, H.W.; Kim, S.S. Au Sputter-Deposited ZnO Nanofibers with Enhanced NO2 Gas Response. Sens. Actuators B Chem. 2022, 372, 132636. [Google Scholar] [CrossRef]
- Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y. Review of ZnO-Based Nanomaterials in Gas Sensors. Solid State Ion. 2021, 360, 115544. [Google Scholar] [CrossRef]
- Wan, Q.; Li, Q.; Chen, Y.; Wang, T.-H.; He, X.; Li, J.; Lin, C. Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors. Appl. Phys. Lett. 2004, 84, 3654–3656. [Google Scholar] [CrossRef]
- Miller, D.R.; Akbar, S.A.; Morris, P.A. Nanoscale Metal Oxide-Based Heterojunctions for Gas Sensing: A Review. Sens. Actuators B Chem. 2014, 204, 250–272. [Google Scholar] [CrossRef]
- Liu, B.; Yang, H.; Zhao, H.; An, L.; Zhang, L.; Shi, R.; Wang, L.; Bao, L.; Chen, Y. Synthesis and Enhanced Gas-Sensing Properties of Ultralong NiO Nanowires Assembled with NiO Nanocrystals. Sens. Actuators B Chem. 2011, 156, 251–262. [Google Scholar] [CrossRef]
- Luyo, C.; Ionescu, R.; Reyes, L.F.; Topalian, Z.; Estrada, W.; Llobet, E.; Granqvist, C.G.; Heszler, P. Gas Sensing Response of NiO Nanoparticle Films Made by Reactive Gas Deposition. Sens. Actuators B Chem. 2009, 138, 14–20. [Google Scholar] [CrossRef]
- Dirksen, J.A.; Duval, K.; Ring, T.A. NiO Thin-Film Formaldehyde Gas Sensor. Sens. Actuators B Chem. 2001, 80, 106–115. [Google Scholar] [CrossRef]
- Steinebach, H.; Kannan, S.; Rieth, L.; Solzbacher, F. H2 Gas Sensor Performance of NiO at High Temperatures in Gas Mixtures. Sens. Actuators B Chem. 2010, 151, 162–168. [Google Scholar] [CrossRef]
- Kavitha, G.; Arul, K.T.; Babu, P. Enhanced Acetone Gas Sensing Behavior of N-ZnO/p-NiO Nanostructures. J. Mater. Sci. Mater. Electron. 2018, 29, 6666–6671. [Google Scholar] [CrossRef]
- Liu, C.; Wang, B.; Liu, T.; Sun, P.; Gao, Y.; Liu, F.; Lu, G. Facile Synthesis and Gas Sensing Properties of the Flower-like NiO-Decorated ZnO Microstructures. Sens. Actuators B Chem. 2016, 235, 294–301. [Google Scholar] [CrossRef]
- Zhang, L.; Kang, Y.; Tang, Y.; Yu, F. UV-Activated ZnO–NiO Heterojunction Sensor for Ethanol Gas Detection at Low Working Temperature. Mater. Sci. Semicond. Process. 2024, 169, 107925. [Google Scholar] [CrossRef]
- Hezarjaribi, S.T.; Nasirian, S. An Enhanced Fast Ethanol Sensor Based on Zinc Oxide/Nickel Oxide Nanocomposite in Dynamic Situations. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4072–4081. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Y.; Liu, D.; Yao, S.; Liu, F.; Wang, B.; Sun, P.; Gao, Y.; Chuai, X.; Lu, G. Hierarchical Core/Shell ZnO/NiO Nanoheterojunctions Synthesized by Ultrasonic Spray Pyrolysis and Their Gas-Sensing Performance. CrystEngComm 2016, 18, 8101–8107. [Google Scholar] [CrossRef]
- Chen, L.; Yu, Q.; Pan, C.; Song, Y.; Dong, H.; Xie, X.; Li, Y.; Liu, J.; Wang, D.; Chen, X. Chemiresistive Gas Sensors Based on Electrospun Semiconductor Metal Oxides: A Review. Talanta 2022, 246, 123527. [Google Scholar] [CrossRef]
- Song, J.; Lin, X.; Ee, L.Y.; Li, S.F.Y.; Huang, M. A Review on Electrospinning as Versatile Supports for Diverse Nanofibers and Their Applications in Environmental Sensing. Adv. Fiber Mater. 2023, 5, 429–460. [Google Scholar] [CrossRef]
- Wang, S.-C.; Wang, X.-H.; Qiao, G.-Q.; Chen, X.-Y.; Wang, X.-Z.; Wu, N.-N.; Tian, J.; Cui, H.-Z. NiO Nanoparticles-Decorated ZnO Hierarchical Structures for Isopropanol Gas Sensing. Rare Met. 2022, 41, 960–971. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, C.; Li, X.; Wang, C.; Zhang, M.; Liu, Y. Electrospun Nanofibers of P-Type NiO/n-Type ZnO Heterojunctions with Enhanced Photocatalytic Activity. ACS Appl. Mater. Interfaces 2010, 2, 2915–2923. [Google Scholar] [CrossRef]
- Hotovy, I.; Huran, J.; Spiess, L.; Hascik, S.; Rehacek, V. Preparation of Nickel Oxide Thin Films for Gas Sensors Applications. Sens. Actuators B Chem. 1999, 57, 147–152. [Google Scholar] [CrossRef]
- Cai, G.; Wang, X.; Cui, M.; Darmawan, P.; Wang, J.; Eh, A.L.-S.; Lee, P.S. Electrochromo-Supercapacitor Based on Direct Growth of NiO Nanoparticles. Nano Energy 2015, 12, 258–267. [Google Scholar] [CrossRef]
- Natile, M.M.; Glisenti, A. Surface Reactivity of NiO: Interaction with Methanol. Chem. Mater. 2002, 14, 4895–4903. [Google Scholar] [CrossRef]
- Tian, H.; Fan, H.; Dong, G.; Ma, L.; Ma, J. NiO/ZnO p–n Heterostructures and Their Gas Sensing Properties for Reduced Operating Temperature. RSC Adv. 2016, 6, 109091–109098. [Google Scholar] [CrossRef]
- Mirzaei, A.; Park, S.; Sun, G.-J.; Kheel, H.; Lee, C. CO Gas Sensing Properties of In4Sn3O12 and TeO2 Composite Nanoparticle Sensors. J. Hazard. Mater. 2016, 305, 130–138. [Google Scholar] [CrossRef]
- Bonyani, M.; Zebarjad, S.M.; Janghorban, K.; Kim, J.-Y.; Kim, H.W.; Kim, S.S. Au-Decorated Polyaniline-ZnO Electrospun Composite Nanofiber Gas Sensors with Enhanced Response to NO2 Gas. Chemosensors 2022, 10, 388. [Google Scholar] [CrossRef]
- Bonyani, M.; Zebarjad, S.M.; Janghorban, K.; Kim, J.-Y.; Kim, H.W.; Kim, S.S. Enhanced NO2 Gas Sensing Properties of ZnO-PANI Composite Nanofibers. Ceram. Int. 2023, 49, 1238–1249. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, J.-Y.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Significant Enhancement of Hydrogen-Sensing Properties of ZnO Nanofibers through NiO Loading. Nanomaterials 2018, 8, 902. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, J.-Y.; Kim, J.-H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Co3O4-Loaded ZnO Nanofibers for Excellent Hydrogen Sensing. Int. J. Hydrog. Energy 2019, 44, 27499–27510. [Google Scholar] [CrossRef]
- Mirzaei, A.; Sun, G.-J.; Lee, J.K.; Lee, C.; Choi, S.; Kim, H.W. Hydrogen Sensing Properties and Mechanism of NiO-Nb2O5 Composite Nanoparticle-Based Electrical Gas Sensors. Ceram. Int. 2017, 43, 5247–5254. [Google Scholar] [CrossRef]
- Das, S.; Mojumder, S.; Saha, D.; Pal, M. Influence of Major Parameters on the Sensing Mechanism of Semiconductor Metal Oxide Based Chemiresistive Gas Sensors: A Review Focused on Personalized Healthcare. Sens. Actuators B Chem. 2022, 352, 131066. [Google Scholar] [CrossRef]
- Pakhare, K.S.; Sargar, B.M.; Potdar, S.S.; Patil, U.M.; Mane, R.D. SILAR Synthesis of SnO2–ZnO Nanocomposite Sensor for Selective Ethanol Gas. Bull. Mater. Sci. 2022, 45, 68. [Google Scholar] [CrossRef]
- Madvar, H.R.; Kordrostami, Z.; Mirzaei, A. Sensitivity Enhancement of Resistive Ethanol Gas Sensor by Optimized Sputtered-Assisted CuO Decoration of ZnO Nanorods. Sensors 2022, 23, 365. [Google Scholar] [CrossRef] [PubMed]
- Roshan, H.; Kuchi, P.S.; Sheikhi, M.H.; Mirzaei, A. Enhancement of Room Temperature Ethanol Sensing Behavior of PbS–SnS2 Nanocomposite by Au Decoration. Mater. Sci. Semicond. Process. 2021, 127, 105742. [Google Scholar] [CrossRef]
- Mirzaei, A.; Park, S.; Sun, G.-J.; Kheel, H.; Lee, C.; Lee, S. Fe2O3/Co3O4 Composite Nanoparticle Ethanol Sensor. J. Korean Phys. Soc. 2016, 69, 373–380. [Google Scholar] [CrossRef]
- Van Hieu, N.; Kim, H.-R.; Ju, B.-K.; Lee, J.-H. Enhanced Performance of SnO2 Nanowires Ethanol Sensor by Functionalizing with La2O3. Sens. Actuators B Chem. 2008, 133, 228–234. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, S.-Z.; Xie, W.-F.; Gai, L.-Y.; Yuan, H.-M.; Zhang, D.; Zhang, H.; Liu, X.; Yang, W.; Chi, Z.-T. Chemiresistive Ethanol Sensors Based on In2O3/ZnSnO3 Nanocubes. Sens. Actuators Rep. 2022, 4, 100099. [Google Scholar] [CrossRef]
- Song, X.; Wang, Z.; Liu, Y.; Wang, C.; Li, L. A Highly Sensitive Ethanol Sensor Based on Mesoporous ZnO–SnO2 Nanofibers. Nanotechnology 2009, 20, 075501. [Google Scholar] [CrossRef]
Composition | Zinc Acetate (g) | Nickel Nitrate (g) |
---|---|---|
ZnO | 0.63 | 0 |
80ZnO-20NiO | 0.5 | 0.18 |
60ZnO-40NiO | 0.37 | 0.36 |
40ZnO-60NiO | 0.25 | 0.54 |
20ZnO-80NiO | 0.13 | 0.72 |
Sensing Materials | T (°C) | Conc. (ppm) | Response (Ra/Rg) or (Rg/Ra) | Ref. |
---|---|---|---|---|
CuO-ZnO nanorods | 350 | 25 | 19.4 | [43] |
Au-decorated PbS-SnS2 nanocomposite | RT | 400 | 87 | [44] |
Fe2O3/Co3O4 nanocomposite | 300 | 100 | 10.86 | [45] |
La2O3-doped SnO2 nanowires | 400 | 100 | 57.3 | [46] |
In2O3/ZnSnO3 nanocubes | 250 | 100 | 14.9 | [47] |
ZnO-SnO2 NFs | 300 | 5 | 4 | [48] |
ZnO-NiO composite NFs | 300 | 10 | 3.6 | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonyani, M.; Zebarjad, S.M.; Kim, T.-U.; Kim, H.W.; Kim, S.S. Construction of Electrospun ZnO-NiO Nanofibers for Enhanced Ethanol Gas Sensing. Sensors 2024, 24, 7450. https://doi.org/10.3390/s24237450
Bonyani M, Zebarjad SM, Kim T-U, Kim HW, Kim SS. Construction of Electrospun ZnO-NiO Nanofibers for Enhanced Ethanol Gas Sensing. Sensors. 2024; 24(23):7450. https://doi.org/10.3390/s24237450
Chicago/Turabian StyleBonyani, Maryam, Seyed Mojtaba Zebarjad, Tae-Un Kim, Hyoun Woo Kim, and Sang Sub Kim. 2024. "Construction of Electrospun ZnO-NiO Nanofibers for Enhanced Ethanol Gas Sensing" Sensors 24, no. 23: 7450. https://doi.org/10.3390/s24237450
APA StyleBonyani, M., Zebarjad, S. M., Kim, T. -U., Kim, H. W., & Kim, S. S. (2024). Construction of Electrospun ZnO-NiO Nanofibers for Enhanced Ethanol Gas Sensing. Sensors, 24(23), 7450. https://doi.org/10.3390/s24237450