Enhancing Railway Earthquake Early Warning Systems with a Low Computational Cost STA/LTA-Based S-Wave Detection Method
Abstract
:1. Introduction
2. Data and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakamura, Y. On the Urgent Earthquake Detection and Alarm System (UrEDAS). In Proceedings of the 9th World Conference Earthquake Engineering, Tokyo-Kyoto, Japan, 2–9 August 1988; Volume VII, pp. 673–678. [Google Scholar]
- Allen, R.M.; Kanamori, H. The potential for earthquake early warning in southern California. Science 2003, 300, 786–789. [Google Scholar] [CrossRef]
- Wu, Y.-M.; Kanamori, H. Experiment on an onsite early warning method for the Taiwan early warning system. Bull. Seismol. Soc. Am. 2005, 95, 347–353. [Google Scholar] [CrossRef]
- Odaka, T.; Ashiya, K.; Tsukada, S.; Sato, S.; Ohtake, K.; Nozaka, D. A new method of quickly estimating epicentral distance and magnitude from a single seismic record. Bull. Seismol. Soc. Am. 2003, 93, 526–532. [Google Scholar] [CrossRef]
- Horiuchi, S.; Negishi, H.; Abe, K.; Kaminuma, A.; Fujinawa, Y. An automatic processing system for broadcasting earthquake alarms. Bull. Seismol. Soc. Am. 2005, 95, 708–718. [Google Scholar] [CrossRef]
- Noda, S.; Yamamoto, S.; Sato, S.; Iwata, N.; Korenaga, M.; Ashiya, K. Improvement of back-azimuth estimation in real-time by using a single station record. Earth Planets Space 2012, 64, 305–308. [Google Scholar] [CrossRef]
- Noda, S.; Yamamoto, S.; Ellsworth, W.L. Rapid estimation of earthquake magnitude from the arrival time of the peak high-frequency amplitude. Bull. Seismol. Soc. Am. 2016, 106, 232–241. [Google Scholar] [CrossRef]
- Iwata, N.; Korenara, M.; Noda, S.; Yamamoto, S. Improvement and performance evaluation of the earthquake early warning algorithm for railways in Japan. In Proceedings of the 17th World Conference on Earthquake Engineering, Sendai, Japan, 13–18 September 2020; p. 1e-0005. [Google Scholar]
- Nakamura, Y. Research and development of intelligent earthquake disaster prevention systems UrEDAS and HERAS. J. Struct. Mech. Earthq. Eng. 1996, 531, 1–33. (In Japanese) [Google Scholar] [CrossRef]
- Allen, R.V. Automatic earthquake recognition and timing from single traces. Bull. Seism. Soc. Am. 1978, 68, 1521–1532. [Google Scholar] [CrossRef]
- Allen, J.R.L. Sedimentary Structures: Their Character and Physical Basis; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1982; Volume 1. [Google Scholar]
- Baillard, C.; Crawford, W.C.; Ballu, V.; Hibert, C.; Mangeney, A. An automatic kurtosis-based P- and S-phase picker designed for local seismic networks. Bull. Seismol. Soc. Am. 2014, 104, 394–409. [Google Scholar] [CrossRef]
- Baer, M.; Kradolfer, U. An automatic phase picker for local and teleseismic events. Bull. Seismol. Soc. Am. 1987, 77, 1437–1445. [Google Scholar] [CrossRef]
- Küperkoch, L.; Meier, T.; Brüstle, A.; Lee, J.; Friederich, W. EGELADOS Working Group Automated determination of S-phase arrival times using autoregressive prediction: Application to local and regional distances. Geophys. J. Int. 2012, 188, 687–702. [Google Scholar] [CrossRef]
- Rawles, C.; Thurber, C. A non-parametric method for automatic determination of P-wave and S-wave arrival times: Application to local micro earthquakes. Geophys. J. Int. 2015, 202, 1164–1179. [Google Scholar] [CrossRef]
- Kurzon, I.; Vernon, L.F.; Rosenberger, A.; Ben-Zion, Y. Real-time automatic detectors of P and S waves using singular value decomposition. Bull. Seismol. Soc. Am. 2014, 104, 1696–1708. [Google Scholar] [CrossRef]
- Hildyard, M.W.; Nippress, S.E.; Rietbrock, A. Event detection and phase picking using a time-domain estimate of predominate period Tpd. Bull. Seismol. Soc. Am. 2008, 98, 3025–3032. [Google Scholar] [CrossRef]
- Takanami, T.; Kitagawa, G. A new efficient procedure forthe estimation of onset times of seismic waves. J. Phys. Earth 1988, 36, 267–290. [Google Scholar] [CrossRef]
- Takanami, T.; Kitagawa, G. Estimation of the arrival times of seismic waves by multivariate time series model. Ann. Inst. Stat. Math. 1991, 43, 407–433. [Google Scholar] [CrossRef]
- Ross, Z.E.; Ben-Zion, Y. Automatic picking of direct P, S seismic phases and fault zone head waves. Geophys. J. Int. 2014, 199, 368–381. [Google Scholar] [CrossRef]
- Zhu, L.; Peng, Z.; McClellan, J.; Li, C.; Yao, D.; Li, Z.; Fang, L. Deep learning for seismic phase detection and picking in the aftershock zone of 2008 Mw7.9 Wenchuan Earthquake. Phys. Earth Planet. Inter. 2019, 293, 106261. [Google Scholar] [CrossRef]
- Cai, J.; Duan, Z.; Yan, F.; Zhang, Y.; Mu, R.; Cai, H.; Ding, Z. Automatic arrival-time picking of P- and S-waves of micro-seismic events based on relative standard generative adversarial network and GHRA. J. Pet. Explor. Prod. Technol. 2024, 14, 2199–2218. [Google Scholar] [CrossRef]
- Kinoshita, S. Kyoshin net (k-net). Seism. Res. Lett. 1998, 69, 309–332. [Google Scholar] [CrossRef]
- Longbottom, J.; Walden, T.A.; White, E.R. Principles and applications of maximum Kurtosis phase estimation. Geophys. Prospect. 1988, 36, 115–138. [Google Scholar] [CrossRef]
- Saragiotis, C.; Hadjileontiadis, L.; Panas, S. PAI-S/K: A robust automatic seismic P phase arrival identification scheme. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1395–1404. [Google Scholar] [CrossRef]
- Kuncheva, L.; Whitaker, C. Measures of diversity in classifier ensembles. Mach. Learn 2003, 51, 181–207. [Google Scholar] [CrossRef]
- Diehl, T.; Deichmann, N.; Kissling, E.; Husen, S. Automatic S-wave picker for local earthquake tomography. Bull. Seismol. Soc. Am. 2009, 99, 1906–1920. [Google Scholar] [CrossRef]
- National Research Institute for Earth Science and Disaster Resilience. NIED K-NET, KiK-net. Natl. Res. Inst. Earth Sci. Disaster Resil. 2019. [CrossRef]
- Katakami, S.; Iwata, N. A Robust Real-Time S-Wave Detection Method with Low Computational Cost Based on Modified STA/LT; Research Square: Durham, NC, USA, 2023; Available online: https://www.researchsquare.com/article/rs-3209398/v1 (accessed on 17 May 2024).
- Wessel, P.; Smith, F.H.W. New, improved version of generic mapping tools released. EOS. Trans. Am. Geophys. Union 1998, 79, 579. [Google Scholar] [CrossRef]
No. | Date | Origin Time | Latitude (deg) | Longitude (deg) | Depth (km) | JMA Magnitude (Mj) |
---|---|---|---|---|---|---|
#1 | 26 May 2003 | 18:24:33.4 | 38.8200 | 141.6500 | 72.0 | 7.1 |
#2 | 26 July 2003 | 07:13:31.5 | 38.4050 | 141.1700 | 12.0 | 6.4 |
#3 | 26 July 2003 | 16:56:44.5 | 38.5000 | 141.1883 | 12.0 | 5.5 |
#4 | 20 September 2003 | 12:54:52.2 | 35.2180 | 140.3000 | 70.0 | 5.8 |
#5 | 26 September 2003 | 06:08:01.8 | 41.7100 | 143.6910 | 21.0 | 7.1 |
#6 | 29 September 2003 | 11:36:55.0 | 42.3600 | 144.5530 | 43.0 | 6.5 |
#7 | 8 October 2003 | 18:06:56.7 | 42.5650 | 144.6690 | 51.0 | 6.4 |
#8 | 31 October 2003 | 10:06:30.6 | 37.8310 | 142.6940 | 33.0 | 6.8 |
#9 | 5 September 2004 | 19:07:08.0 | 33.0310 | 136.7970 | 38.0 | 6.9 |
#10 | 5 September 2004 | 23:57:16.8 | 33.1460 | 137.1390 | 44.0 | 7.4 |
#11 | 7 September 2004 | 08:29:36.2 | 33.3580 | 137.2920 | 41.0 | 6.4 |
#12 | 8 September 2004 | 23:58:23.1 | 33.1000 | 137.3000 | 36.0 | 6.5 |
#13 | 6 October 2004 | 23:40:40.1 | 35.9883 | 140.0883 | 66.0 | 5.7 |
#14 | 23 October 2004 | 17:56:00.3 | 37.2917 | 138.8667 | 13.0 | 6.8 |
#15 | 23 October 2004 | 18:11:56.7 | 37.2530 | 138.8290 | 12.0 | 6.0 |
#16 | 23 October 2004 | 18:34:05.6 | 37.3050 | 138.9300 | 14.0 | 6.5 |
#17 | 29 November 2004 | 03:32:14.5 | 42.9450 | 145.2750 | 48.0 | 7.1 |
#18 | 6 December 2004 | 23:15:12.0 | 42.8000 | 145.3000 | 46.0 | 6.9 |
#19 | 14 December 2004 | 14:56:10.5 | 44.0767 | 141.6983 | 9.0 | 6.1 |
#20 | 18 January 2005 | 23:09:06.6 | 42.9000 | 145.0000 | 50.0 | 6.4 |
#21 | 20 March 2005 | 10:53:40.3 | 33.7383 | 130.1750 | 9.0 | 7.0 |
#22 | 11 April 2005 | 07:22:15.6 | 35.7267 | 140.6200 | 52.0 | 6.1 |
#23 | 20 April 2005 | 06:11:26.8 | 33.7000 | 130.3000 | 14.0 | 5.8 |
#24 | 23 July 2005 | 16:34:56.3 | 35.5817 | 140.1383 | 73.0 | 6.0 |
#25 | 16 August 2005 | 11:46:25.7 | 38.1483 | 142.2767 | 42.0 | 7.2 |
#26 | 2 December 2005 | 22:13:07.9 | 38.0720 | 142.3530 | 40.0 | 6.6 |
#27 | 5 December 2005 | 07:20:23.0 | 37.8670 | 142.6550 | 25.0 | 5.5 |
#28 | 13 December 2005 | 06:01:37.5 | 43.2080 | 139.4130 | 29.0 | 5.5 |
#29 | 25 March 2007 | 09:41:57.9 | 37.2200 | 136.6850 | 11.0 | 6.9 |
#30 | 16 July 2007 | 10:13:22.5 | 37.5567 | 138.6083 | 17.0 | 6.8 |
#31 | 16 July 2007 | 15:37:40.4 | 37.5000 | 138.6000 | 23.0 | 5.8 |
#32 | 9 October 2007 | 02:10:35.4 | 43.3520 | 146.7250 | 40.0 | 5.8 |
#33 | 29 April 2008 | 14:26:05.3 | 41.4620 | 142.1080 | 62.0 | 5.7 |
#34 | 14 June 2008 | 08:43:45.3 | 39.0283 | 140.8800 | 8.0 | 7.2 |
#35 | 14 June 2008 | 09:20:11.8 | 38.8800 | 140.6770 | 6.0 | 5.7 |
#36 | 21 July 2008 | 20:30:26.6 | 37.1350 | 142.3400 | 27.0 | 6.1 |
#37 | 11 September 2008 | 09:20:51.3 | 41.7750 | 144.1500 | 31.0 | 7.1 |
#38 | 1 February 2009 | 06:51:51.8 | 36.7170 | 141.2780 | 47.0 | 5.8 |
#39 | 5 June 2009 | 12:30:33.8 | 41.8120 | 143.6200 | 31.0 | 6.4 |
#40 | 11 August 2009 | 05:07:05.7 | 34.7850 | 138.4983 | 23.0 | 6.5 |
#41 | 13 March 2010 | 21:49:46.8 | 37.6142 | 141.4717 | 77.7 | 5.5 |
#42 | 14 March 2010 | 17:08:04.1 | 37.7233 | 141.8167 | 40.0 | 6.7 |
#43 | 10 August 2010 | 14:50:34.6 | 39.3480 | 143.4930 | 30.0 | 6.3 |
#44 | 9 March 2011 | 11:45:00.0 | 38.3280 | 143.2780 | 8.0 | 7.3 |
#45 | 10 March 2011 | 06:23:59.7 | 38.1720 | 143.0430 | 9.0 | 6.8 |
#46 | 11 March 2011 | 15:06:10.7 | 39.0420 | 142.3970 | 27.0 | 6.4 |
#47 | 11 March 2011 | 15:09:00.0 | 39.8380 | 142.7800 | 32 | 7.4 |
#48 | 11 March 2011 | 15:15:00.0 | 36.1080 | 141.2650 | 43 | 7.7 |
#49 | 12 March 2011 | 04:46:47.6 | 40.4000 | 139.1000 | 10.0 | 6.4 |
#50 | 13 March 2011 | 10:26:02.0 | 35.8000 | 141.9000 | 10.0 | 6.4 |
#51 | 14 March 2011 | 15:12:33.9 | 37.7000 | 142.7000 | 10.0 | 6.3 |
#52 | 15 March 2011 | 22:31:46.3 | 35.3080 | 138.7130 | 14.0 | 6.4 |
#53 | 22 March 2011 | 18:19:05.2 | 37.4000 | 141.9000 | 10.0 | 6.3 |
#54 | 28 March 2011 | 07:23:57.0 | 38.3920 | 142.3150 | 31.0 | 6.5 |
#55 | 7 April 2011 | 23:32:43.4 | 38.2000 | 142.0000 | 40.0 | 7.4 |
#56 | 11 April 2011 | 17:16:12.0 | 36.9000 | 140.7000 | 10.0 | 7.1 |
#57 | 12 April 2011 | 08:08:15.8 | 35.4000 | 141.0000 | 30.0 | 6.3 |
#58 | 12 April 2011 | 14:07:42.2 | 37.0000 | 140.7000 | 10.0 | 6.3 |
#59 | 13 April 2013 | 05:33:00.0 | 34.4000 | 134.8000 | 15.0 | 6.3 |
#60 | 22 November 2014 | 22:08:00.0 | 36.7000 | 137.9000 | 5.0 | 6.7 |
#61 | 14 April 2016 | 21:26:00.0 | 32.7000 | 130.8000 | 11.0 | 6.5 |
#62 | 16 April 2016 | 01:25:00.0 | 32.8000 | 130.8000 | 12.0 | 7.3 |
#63 | 21 October 2016 | 14:07:00.0 | 35.3800 | 133.8550 | 11.0 | 6.6 |
#64 | 9 April 2018 | 01:32:00.0 | 35.2000 | 132.6000 | 12.0 | 6.1 |
#65 | 18 June 2018 | 07:58:00.0 | 34.8000 | 135.6000 | 10.0 | 5.9 |
Our Method | Current Method [1] | |||||
---|---|---|---|---|---|---|
No. | Num. of Data |Ta − Tm|≤ 1.5 Δ ≤ 100 km | Num. of Data Δ ≤ 100 km | Correct Decision (%) Δ ≤ 100 km | Num. of Data |Ta − Tm| ≤ 1.5 Δ ≤ 100 km | Num. of Data Δ ≤ 100 km | Correct Decision (%) Δ ≤ 100 km |
#1 | 15 | 18 | 83.33 | 11 | 18 | 61.11 |
#2 | 9 | 18 | 50.00 | 11 | 18 | 61.11 |
#3 | 20 | 27 | 74.07 | 10 | 27 | 37.04 |
#4 | 34 | 39 | 87.18 | 27 | 39 | 69.23 |
#5 | 0 | 4 | 0.00 | 0 | 4 | 0.00 |
#6 | 5 | 8 | 62.50 | 4 | 8 | 50.00 |
#7 | 3 | 4 | 75.00 | 1 | 4 | 25.00 |
#8 | 0 | 0 | NaN | 0 | 0 | NaN |
#9 | 0 | 0 | NaN | 0 | 0 | NaN |
#10 | 0 | 0 | NaN | 0 | 0 | NaN |
#11 | 0 | 0 | NaN | 0 | 0 | NaN |
#12 | 0 | 0 | NaN | 0 | 0 | NaN |
#13 | 54 | 69 | 78.26 | 46 | 69 | 66.67 |
#14 | 9 | 14 | 64.29 | 5 | 14 | 35.71 |
#15 | 18 | 20 | 90.00 | 12 | 20 | 60.00 |
#16 | 21 | 25 | 84.00 | 15 | 25 | 60.00 |
#17 | 3 | 3 | 100.00 | 0 | 3 | 0.00 |
#18 | 14 | 15 | 93.33 | 5 | 15 | 33.33 |
#19 | 10 | 13 | 76.92 | 8 | 13 | 61.54 |
#20 | 19 | 23 | 82.61 | 10 | 23 | 43.48 |
#21 | 14 | 20 | 70.00 | 6 | 20 | 30.00 |
#22 | 24 | 40 | 60.00 | 7 | 40 | 17.50 |
#23 | 35 | 42 | 83.33 | 18 | 42 | 42.86 |
#24 | 51 | 71 | 71.83 | 37 | 71 | 52.11 |
#25 | 0 | 0 | NaN | 0 | 0 | NaN |
#26 | 0 | 0 | NaN | 0 | 0 | NaN |
#27 | 0 | 0 | NaN | 0 | 0 | NaN |
#28 | 8 | 8 | 100.00 | 3 | 8 | 37.50 |
#29 | 7 | 9 | 77.78 | 4 | 9 | 44.44 |
#30 | 12 | 17 | 70.59 | 13 | 17 | 76.47 |
#31 | 28 | 36 | 77.78 | 21 | 36 | 58.33 |
#32 | 3 | 3 | 100.00 | 0 | 3 | 0.00 |
#33 | 11 | 11 | 100.00 | 3 | 11 | 27.27 |
#34 | 5 | 10 | 50.00 | 4 | 10 | 40.00 |
#35 | 24 | 37 | 64.86 | 11 | 37 | 29.73 |
#36 | 0 | 0 | NaN | 0 | 0 | NaN |
#37 | 1 | 2 | 50.00 | 0 | 2 | 0.00 |
#38 | 16 | 16 | 100.00 | 8 | 16 | 50.00 |
#39 | 1 | 2 | 50.00 | 0 | 2 | 0.00 |
#40 | 37 | 43 | 86.05 | 24 | 43 | 55.81 |
#41 | 22 | 22 | 100.00 | 8 | 22 | 36.36 |
#42 | 5 | 7 | 71.43 | 3 | 7 | 42.86 |
#43 | 0 | 0 | NaN | 0 | 0 | NaN |
#44 | 4 | 5 | 80.00 | 2 | 5 | 40.00 |
#45 | 0 | 0 | NaN | 0 | 0 | NaN |
#46 | 15 | 20 | 75.00 | 16 | 20 | 80.00 |
#47 | 4 | 5 | 80.00 | 2 | 5 | 40.00 |
#48 | 15 | 20 | 75.00 | 16 | 20 | 80.00 |
#49 | 3 | 5 | 60.00 | 2 | 5 | 40.00 |
#50 | 1 | 1 | 100.00 | 1 | 1 | 100.00 |
#51 | 0 | 0 | NaN | 0 | 0 | NaN |
#52 | 16 | 20 | 80.00 | 16 | 20 | 80.00 |
#53 | 5 | 5 | 100.00 | 4 | 5 | 80.00 |
#54 | 3 | 3 | 100.00 | 1 | 3 | 33.33 |
#55 | 5 | 5 | 100.00 | 5 | 5 | 100.00 |
#56 | 8 | 12 | 66.67 | 2 | 12 | 16.67 |
#57 | 8 | 10 | 80.00 | 8 | 10 | 80.00 |
#58 | 38 | 44 | 86.36 | 24 | 44 | 54.55 |
#59 | 42 | 57 | 73.68 | 20 | 57 | 35.09 |
#60 | 9 | 21 | 42.86 | 6 | 21 | 28.57 |
#61 | 43 | 58 | 74.14 | 28 | 58 | 48.28 |
#62 | 5 | 11 | 45.45 | 3 | 11 | 27.27 |
#63 | 18 | 23 | 78.26 | 6 | 23 | 26.09 |
#64 | 31 | 36 | 86.11 | 15 | 36 | 41.67 |
#65 | 75 | 80 | 93.75 | 30 | 80 | 37.50 |
AVG, (65 eqarthquakes) | 76.65 | AVG. (65 earthquakes) | 44.80 | |||
AVG. (Mj5.6–6.5) | 81.04 | AVG. (Mj5.6–6.5) | 48.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katakami, S.; Iwata, N. Enhancing Railway Earthquake Early Warning Systems with a Low Computational Cost STA/LTA-Based S-Wave Detection Method. Sensors 2024, 24, 7452. https://doi.org/10.3390/s24237452
Katakami S, Iwata N. Enhancing Railway Earthquake Early Warning Systems with a Low Computational Cost STA/LTA-Based S-Wave Detection Method. Sensors. 2024; 24(23):7452. https://doi.org/10.3390/s24237452
Chicago/Turabian StyleKatakami, Satoshi, and Naoyasu Iwata. 2024. "Enhancing Railway Earthquake Early Warning Systems with a Low Computational Cost STA/LTA-Based S-Wave Detection Method" Sensors 24, no. 23: 7452. https://doi.org/10.3390/s24237452
APA StyleKatakami, S., & Iwata, N. (2024). Enhancing Railway Earthquake Early Warning Systems with a Low Computational Cost STA/LTA-Based S-Wave Detection Method. Sensors, 24(23), 7452. https://doi.org/10.3390/s24237452