Sol-Gel Synthesized Amorphous (InxGa1−x)2O3 for UV Photodetection with High Responsivity
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef]
- Wu, C.; Wu, F.; Ma, C.; Li, S.; Liu, A.; Yang, X.; Chen, Y.; Wang, J.; Guo, D. A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors. Mater. Today Phys. 2022, 23, 100643. [Google Scholar] [CrossRef]
- Yu, J.; Tian, N.; Deng, Y.F.; Zhang, H.H. Ultraviolet photodetector based on sol-gel synthesized MgZnO nanoparticle with photoconductive gain. J. Alloys Compd. 2016, 667, 359–362. [Google Scholar] [CrossRef]
- Yu, R.X.; Liu, G.X.; Wang, G.D.; Chen, C.M.; Xu, M.S.; Zhou, H.; Wang, T.L.; Yu, J.X.; Zhao, G.; Zhang, L. Ultrawide-bandgap semiconductor AlN crystals: Growth and applications. J. Mater. Chem. C 2021, 9, 1852–1873. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, X.; Zhou, D.; Ren, F.; Zhou, J.; Bai, S.; Lu, H.; Gu, S.; Zhang, R.; Zheng, Y.; et al. Carrier Transport and Gain Mechanisms in beta-Ga2O3-Based Metal-Semiconductor-Metal Solar-Blind Schottky Photodetectors. IEEE Trans. Electron Devices 2019, 66, 2276–2281. [Google Scholar] [CrossRef]
- Shen, H.; Yin, Y.; Tian, K.; Baskaran, K.; Duan, L.; Zhao, X.; Tiwari, A. Growth and characterization of β-Ga2O3 thin films by sol-gel method for fast-response solar-blind ultraviolet photodetectors. J. Alloys Compd. 2018, 766, 601–608. [Google Scholar] [CrossRef]
- Guo, D.Y.; Qin, X.Y.; Lv, M.; Shi, H.Z.; Su, Y.L.; Yao, G.S.; Wang, S.L.; Li, C.R.; Li, P.G.; Tang, W.H. Decrease of oxygen vacancy by Zn-doped for improving solar-blind photoelectric performance in beta-Ga2O3 thin films. Electron. Mater. Lett. 2017, 13, 483–488. [Google Scholar] [CrossRef]
- Liang, H.L.; Cui, S.J.; Su, R.; Guan, P.F.; He, Y.H.; Yang, L.H.; Chen, L.M.; Zhang, Y.H.; Mei, Z.X.; Du, X.L. Flexible X-ray Detectors Based on Amorphous Ga2O3 Thin Films. ACS Photonics 2019, 6, 351–359. [Google Scholar] [CrossRef]
- Ouyang, W.X.; Teng, F.; Jiang, M.M.; Fang, X.S. ZnO Film UV Photodetector with Enhanced Performance: Heterojunction with CdMoO4 Microplates and the Hot Electron Injection Effect of Au Nanoparticles. Small 2017, 13, 1702177. [Google Scholar] [CrossRef]
- Teng, F.; Ouyang, W.X.; Li, Y.M.; Zheng, L.X.; Fang, X.S. Novel Structure for High Performance UV Photodetector Based on BiOCl/ZnO Hybrid Film. Small 2017, 13, 1700156. [Google Scholar] [CrossRef]
- Wang, F.X.; Wang, Z.; Fan, S.Y.; Li, M. The effect of structural parameters on AlGaN solar-blind metal-semiconductor-metal (MSM) photodetectors. Opt. Quantum Electron. 2021, 53, 671. [Google Scholar] [CrossRef]
- Kim, K.P.; Chang, D.; Lim, S.K.; Lee, S.K.; Lyu, H.K.; Hwang, D.K. Thermal annealing effects on the dynamic photoresponse properties of Al-doped ZnO nanowires network. Curr. Appl. Phys. 2011, 11, 1311–1314. [Google Scholar] [CrossRef]
- Shabannia, R. High-sensitivity UV photodetector based on oblique and vertical Co-doped ZnO nanorods. Mater. Lett. 2018, 214, 254–256. [Google Scholar] [CrossRef]
- Shabannia, R.; Naderi, N. High UV-to-Visible Rejection Ratio and Low Cost UV Photodetector Based on Co-Doped ZnO Nanorods Grown on Polyethylene Terephthalate Substrate. J. Nanoelectron. Optoelectron. 2019, 14, 1368–1373. [Google Scholar] [CrossRef]
- Young, S.J.; Liu, Y.H. Low-frequency noise properties of MgZnO nanorod ultraviolet photodetectors with and without UV illumination. Sens. Actuators A Phys. 2018, 269, 363–368. [Google Scholar] [CrossRef]
- Dai, W.; Pan, X.H.; Chen, S.S.; Chen, C.; Chen, W.; Zhang, H.H.; Ye, Z.Z. ZnO homojunction UV photodetector based on solution-grown Sb-doped p-type ZnO nanorods and pure n-type ZnO nanorods. RSC Adv. 2014, 5, 6311–6314. [Google Scholar] [CrossRef]
- Raj, I.L.P.; Valanarasu, S.; Vinoth, S.; Chidhambaram, N.; Isaac, R.S.R.; Ubaidullah, M.; Shaikh, S.F.; Pandit, B. Highly sensitive ultraviolet photodetectors fabricated from rare earth metal ions doped NiO thin films via nebulizer spray pyrolysis method. Sens. Actuators A Phys. 2021, 333, 113242. [Google Scholar] [CrossRef]
- Rajamanickam, S.; Mohammad, S.M.; Razak, I.A.; Muhammad, A.; Abed, S.M. Enhanced sensitivity from Ag micro-flakes encapsulated Ag-doped ZnO nanorods-based UV photodetector. Mater. Res. Bull. 2023, 161, 112148. [Google Scholar] [CrossRef]
- Yadav, P.V.K.; Ajitha, B.; Ahmed, C.M.A.; Reddy, Y.A.K.; Reddy, V.R.M. Superior UV photodetector performance of TiO2 films using Nb doping. J. Phys. Chem. Solids 2021, 160, 110350. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Liu, X.Y.; Yan, L.M.; Xu, R.L.; Chen, Y.; Zhou, J.R.; Ruan, S.P. Ytterbium doping reduces the dark current of UV photoelectric detector based on TiO2. Mater. Chem. Phys. 2023, 293, 126966. [Google Scholar] [CrossRef]
- Swallow, J.E.N.; Palgrave, R.G.; Murgatroyd, P.A.E.; Regoutz, A.; Lorenz, M.; Hassa, A.; Grundmann, M.; von Wenckstern, H.; Varley, J.B.; Veal, T.D. Indium Gallium Oxide Alloys: Electronic Structure, Optical Gap, Surface Space Charge, and Chemical Trends within Common-Cation Semiconductors. ACS Appl. Mater. Interfaces 2021, 13, 2807–2819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Shi, J.L.; Qi, D.C.; Chen, L.; Zhang, K.H.L. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater. 2020, 8, 020906. [Google Scholar] [CrossRef]
- Chang, S.-P.; Chang, L.-Y.; Li, J.-Y. The Influence of Different Partial Pressure on the Fabrication of InGaO Ultraviolet Photodetectors. Sensors 2016, 16, 2145. [Google Scholar] [CrossRef] [PubMed]
- Kokubun, Y.; Abe, T.; Nakagomi, S. Sol-gel prepared (Ga1−xInx)2O3 thin films for solar-blind ultraviolet photodetectors. Phys. Status Solidi A-Appl. Mater. Sci. 2010, 207, 1741–1745. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Hsu, C.-C.; Yu, H.-C.; Peng, Y.-M.; Yang, C.-C.; Su, Y.-K. The Effect of Oxygen Vacancy Concentration on Indium Gallium Oxide Solar Blind Photodetector. IEEE Trans. Electron Devices 2018, 65, 1817–1822. [Google Scholar] [CrossRef]
- Hatipoglu, I.; Mukhopadhyay, P.; Alema, F.; Sakthivel, T.S.; Seal, S.; Osinsky, A.; Schoenfeld, W.V. Tuning the responsivity of monoclinic (InxGa1−x)2O3 solar-blind photodetectors grown by metal organic chemical vapor deposition. J. Phys. D Appl. Phys. 2020, 53, 454001. [Google Scholar] [CrossRef]
- Nakagomi, S.; Kokubun, Y. Crystal orientation of beta-Ga2O3 thin films formed on c-plane and a-plane sapphire substrate. J. Cryst. Growth 2012, 349, 12–18. [Google Scholar] [CrossRef]
- Zhang, M.X.; Yu, H.; Li, H.; Jiang, Y.; Qu, L.H.; Wang, Y.X.; Gao, F.; Feng, W. Ultrathin In2O3 Nanosheets toward High Responsivity and Rejection Ratio Visible-Blind UV Photodetection. Small 2023, 19, 2205623. [Google Scholar] [CrossRef]
- Wouters, C.; Sutton, C.; Ghiringhelli, L.M.; Markurt, T.; Schewski, R.; Hassa, A.; von Wenckstern, H.; Grundmann, M.; Scheffler, M.; Albrecht, M. Investigating the ranges of (meta)stable phase formation in (InxGa1−x)2O3: Impact of the cation coordination. Phys. Rev. Mater. 2020, 4, 125001. [Google Scholar] [CrossRef]
- Lee, C.T.; Liu, Y.H.; Lee, H.Y. Stacked Triple Ultraviolet-Band Metal-Semiconductor-Metal Photodetectors. IEEE Photonics Technol. Lett. 2019, 31, 15–18. [Google Scholar] [CrossRef]
- Peelaers, H.; Steiauf, D.; Varley, J.B.; Janotti, A.; Van de Walle, C.G. (InxGa1−x)2O3 alloys for transparent electronics. Phys. Rev. B 2015, 92, 085206. [Google Scholar] [CrossRef]
- Remashan, K.; Hwang, D.K.; Park, S.D.; Bae, J.W.; Yeom, G.Y.; Park, S.J.; Jang, J.H. Effect of N2O plasma treatment on the performance of ZnO TFTs. Electrochem. Solid-State Lett. 2008, 11, H55–H59. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.X.; Yin, L.; Cheng, R.Q.; Wang, J.J.; Wen, Y.; Shifa, T.A.; Wang, F.M.; Zhang, Y.; Zhan, X.Y.; et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev. 2018, 47, 6296–6341. [Google Scholar] [CrossRef]
- Kneiss, M.; Hassa, A.; Splith, D.; Sturm, C.; von Wenckstern, H.; Lorenz, M.; Grundmann, M. Epitaxial stabilization of single phase κ-(InxGa1−x)2O3 thin films up to x = 0.28 on c-sapphire and κ-Ga2O3(001) templates by tin-assisted VCCS-PLD. APL Mater. 2019, 7, 101102. [Google Scholar] [CrossRef]
- von Wenckstern, H.; Splith, D.; Werner, A.; Müller, S.; Lorenz, M.; Grundmann, M. Properties of Schottky Barrier Diodes on (InxGa1−x)2O3 for 0.01 ≤ x ≤ 0.85 Determined by a Combinatorial Approach. ACS Comb. Sci. 2015, 17, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Bi, Z.; Zhang, Y.; Zhang, Y.; Liu, X.; Ma, Y.; Li, X.; Liu, C.; Chen, Y.; Zhou, J.; Ruan, S. MSM UV photodetector with low dark current based on GaInO/SrTiO3 heterojunction. Mater. Sci. Semicond. Process. 2024, 170, 107973. [Google Scholar] [CrossRef]
- Mohamed, M.; Irmscher, K.; Janowitz, C.; Galazka, Z.; Manzke, R.; Fornari, R. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl. Phys. Lett. 2012, 101, 132106. [Google Scholar] [CrossRef]
- Ryu, B.; Noh, H.-K.; Choi, E.-A.; Chang, K.J. O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors. Appl. Phys. Lett. 2010, 97, 022108. [Google Scholar] [CrossRef]
- Guo, D.Y.; Wu, Z.P.; An, Y.H.; Guo, X.C.; Chu, X.L.; Sun, C.L.; Li, L.H.; Li, P.G.; Tang, W.H. Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors. Appl. Phys. Lett. 2014, 105, 023507. [Google Scholar] [CrossRef]
- Feng, P.; Monch, I.; Harazim, S.; Huang, G.S.; Mei, Y.F.; Schmidt, O.G. Giant Persistent Photoconductivity in Rough Silicon Nanomembranes. Nano Lett. 2009, 9, 3453–3459. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.D.; Kung, S.C.; van der Veer, W.E.; Yan, W.B.; Ayvazian, T.; Kim, J.Y.; Penner, R.M. High-Throughput Fabrication of Photoconductors with High Detectivity, Photosensitivity, and Bandwidth. ACS Nano 2012, 6, 5627–5634. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Bando, Y.; Liao, M.; Koide, Y.; Golberg, D. Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. Appl. Phys. Lett. 2010, 97, 161102. [Google Scholar] [CrossRef]
- Chang, T.H.; Chang, S.J.; Weng, W.Y.; Chiu, C.J.; Wei, C.Y. Amorphous Indium-Gallium-Oxide UV Photodetectors. IEEE Photonics Technol. Lett. 2015, 27, 2083–2086. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, D.; Li, Y.; Lin, R.; Zheng, W.; Huang, F. High-Performance Solar Blind Ultraviolet Photodetector Based on Single Crystal Orientation Mg-Alloyed Ga2O3 Film Grown by a Nonequilibrium MOCVD Scheme. ACS Appl. Electron. Mater. 2019, 1, 1653–1659. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, Z.; Guo, D.; Cui, W.; Li, P.; An, Y.; Li, L.; Tang, W. Growth and characterization of alpha-phase Ga2−xSnxO3 thin films for solar-blind ultraviolet applications. Semicond. Sci. Technol. 2016, 31, 065010. [Google Scholar] [CrossRef]
β-Ga2O3 | In0.2Ga1.8O3 | In0.4Ga1.6O3 | In0.6Ga1.4O3 | |
---|---|---|---|---|
Eg (eV) | 4.84 | 4.46 | 4.28 | 4.18 |
Ilight (A) | 2.0 × 10−10 | 5.32 × 10−8 | 2.34 × 10−5 | 7.59 × 10−4 |
Idark (A) | 5.1 × 10−11 | 1.0 × 10−10 | 8.2 × 10−9 | 3.1 × 10−6 |
Ilight to Idark ratio | 4 | 532 | 2853 | 253 |
R (AW−1) | 0.00433@260 nm | 1.86@260 nm | 739.2@260 nm | 20,579@270 nm |
NEP (W Hz−1/2) | 9.23 × 10−13@260 nm | 3.04 × 10−15@260 nm | 6.93 × 10−17@260 nm | 4.76 × 10−17@270 nm |
D* (Jones) | 6.68 × 108@260 nm | 2.03 × 1011@260 nm | 8.89 × 1012@260 nm | 1.29 × 1013@270 nm |
τr (s) | 0.57 | 3.58 | 6.23 | 9.42 |
τd (s) | 0.07 | 0.76 | 4.18 | 18.63 |
Material | Vbias (V) | Il (A) | Il/Id | Responsivity (A/W) | Ref. |
---|---|---|---|---|---|
InGaO | 5 | 1.9 × 10−9 | 82.6 | 6.9 × 10−5@270 nm | [43] |
(InxGa1−x)2O3 | 5 | 3.1 × 10−5 | 1.3 × 103 | 27.7@255 nm | [25] |
(MgxGa1−x)2O3 | 5 | 1.4 × 10−5 | ~105 | 8.9@254 nm | [44] |
Mg0.18Zn0.82O | 13 | 1.2 × 10−6 | 2 | 0.2@322 nm | [3] |
In0.9Ga0.1O | 10 | 5.0 × 10−6 | ~105 | 0.31@300 nm | [23] |
Ga2-xSnxO3 | 50 | 8.7 × 10−7 | 1.4 × 102 | 9.6 × 10−2@254 nm | [45] |
In0.4Ga1.6O3 | 5 | 2.3 × 10−5 | 2.8 × 103 | 739.2@260 nm | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhou, R.; Liu, X.; Bi, Z.; Ruan, S.; Ma, Y.; Li, X.; Liu, C.; Chen, Y.; Zhou, J. Sol-Gel Synthesized Amorphous (InxGa1−x)2O3 for UV Photodetection with High Responsivity. Sensors 2024, 24, 787. https://doi.org/10.3390/s24030787
Zhang Y, Zhou R, Liu X, Bi Z, Ruan S, Ma Y, Li X, Liu C, Chen Y, Zhou J. Sol-Gel Synthesized Amorphous (InxGa1−x)2O3 for UV Photodetection with High Responsivity. Sensors. 2024; 24(3):787. https://doi.org/10.3390/s24030787
Chicago/Turabian StyleZhang, Yupeng, Ruiheng Zhou, Xinyan Liu, Zhengyu Bi, Shengping Ruan, Yan Ma, Xin Li, Caixia Liu, Yu Chen, and Jingran Zhou. 2024. "Sol-Gel Synthesized Amorphous (InxGa1−x)2O3 for UV Photodetection with High Responsivity" Sensors 24, no. 3: 787. https://doi.org/10.3390/s24030787
APA StyleZhang, Y., Zhou, R., Liu, X., Bi, Z., Ruan, S., Ma, Y., Li, X., Liu, C., Chen, Y., & Zhou, J. (2024). Sol-Gel Synthesized Amorphous (InxGa1−x)2O3 for UV Photodetection with High Responsivity. Sensors, 24(3), 787. https://doi.org/10.3390/s24030787