Joint Classification of Hyperspectral Images and LiDAR Data Based on Dual-Branch Transformer
Abstract
:1. Introduction
- (1)
- The proposed dual-branch Transformer feature fusion network can capture features from shallow layers and integrate them into deep features, thereby achieving complementary information between different modalities.
- (2)
- In response to the relatively weak spatial information of hyperspectral images, a Group Embedding Module is proposed to enhance the local information aggregation between different neighborhoods. This module addresses the issue of neglecting the correlation between adjacent keys in the multi-head attention module.
- (3)
- Considering the physical feature differences between modalities, we utilize mutual mapping of features between modalities to achieve global interaction and improve the performance of joint classification.
2. Materials and Methods
2.1. Dataset Description
2.2. Methods
2.2.1. Feature Extraction from Hyperspectral Image
2.2.2. Feature Extraction from LiDAR Images
2.2.3. Feature Fusion of Two Modalities
Algorithm 1 |
Input: The raw HSI data XH, LiDAR data XL, and ground truth XR Output: Classification result of each pixel is compared with the overall classification map. 1: Conduct shallow feature extraction on HSI to reduce dimensionality. LiDAR is then mapped to the same dimension as HSI through two-dimensional convolution. 2: Trim datasets for two modalities, dividing them into training sample pairs, validation sample pairs, and test sample pairs. 3: Perform GEM module on hyperspectral data to highlight its spectral information. 4: Perform Spatial Attention to LiDAR data to emphasize spatial information. 5: The cross-attention effectively integrates or aggregates information from two modalities 6: Fusing features using adaptive weight allocation coefficients. 7: Classify the fused features using fully connected layers. 8: Utilizing the trained model to classify the test set and subsequently generate a classification map. |
3. Experimental Results and Analyses
3.1. Experimental Setup and Evaluation Metrics
3.2. Experimental
3.2.1. Setting the Size of Image Patches
3.2.2. Experimental Analysis of the Houston2013 Dataset
3.2.3. Experimental Analysis of the MUUFL Dataset
3.2.4. Experimental Analysis of the Trento Dataset
4. Discussion
4.1. Impact of Multimodal Data and GEM Modules
4.2. Impact of Fusion Weight Coefficients
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, X. A deep hashing technique for remote sensing image-sound retrieval. Remote Sens. 2019, 12, 84. [Google Scholar] [CrossRef]
- Ghamisi, P.; Yokoya, N.; Li, J.; Liao, W.; Liu, S.; Plaza, J.; Rasti, B.; Plaza, A. Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 2017, 5, 37–78. [Google Scholar] [CrossRef]
- Hong, D.; He, W.; Yokoya, N.; Yao, J. Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing. IEEE Geosci. Remote Sens. Mag. 2021, 9, 52–87. [Google Scholar] [CrossRef]
- Wang, Z.; Menenti, M. Challenges and opportunities in Lidar remote sensing. Front. Remote Sens. 2021, 2, 641723. [Google Scholar] [CrossRef]
- Dalponte, M.; Ørka, H.O.; Gobakken, T.; Gianelle, D.; Næsset, E. Tree species classification in boreal forests with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2012, 51, 2632–2645. [Google Scholar] [CrossRef]
- Matsuki, T.; Yokoya, N.; Iwasaki, A. Hyperspectral tree species classification of Japanese complex mixed forest with the aid of LiDAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2177–2187. [Google Scholar] [CrossRef]
- Li, W.; Gao, Y.; Zhang, M.; Tao, R.; Du, Q. Asymmetric feature fusion network for hyperspectral and SAR image classification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 8057–8070. [Google Scholar] [CrossRef]
- Heiden, U.; Heldens, W.; Roessner, S.; Segl, K.; Esch, T.; Mueller, A. Urban structure type characterization using hyperspectral remote sensing and height information. Landsc. Urban Plan. 2012, 105, 361–375. [Google Scholar] [CrossRef]
- Ghamisi, P.; Höfle, B.; Zhu, X.X. Hyperspectral and LiDAR data fusion using extinction profiles and deep convolutional neural network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 3011–3024. [Google Scholar] [CrossRef]
- Cao, Q.; Zhong, Y.; Ma, A.; Zhang, L. Urban land use/land cover classification based on feature fusion fusing hyperspectral image and LiDAR data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: New York, NY, USA, 2018; pp. 8869–8872. [Google Scholar]
- Pedergnana, M.; Marpu, P.R.; Dalla Mura, M.; Benediktsson, J.A.; Bruzzone, L. Classification of remote sensing optical and LiDAR data using extended attribute profiles. IEEE J. Sel. Top. Signal Process. 2012, 6, 856–865. [Google Scholar] [CrossRef]
- Ghamisi, P.; Souza, R.; Benediktsson, J.A.; Zhu, X.X.; Rittner, L.; Lotufo, R.A. Extinction profiles for the classification of remote sensing data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5631–5645. [Google Scholar] [CrossRef]
- Liao, W.; Pižurica, A.; Bellens, R.; Gautama, S.; Philips, W. Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features. IEEE Geosci. Remote Sens. Lett. 2014, 12, 552–556. [Google Scholar] [CrossRef]
- Rasti, B.; Ghamisi, P.; Gloaguen, R. Hyperspectral and LiDAR fusion using extinction profiles and total variation component analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3997–4007. [Google Scholar] [CrossRef]
- Jia, S.; Zhan, Z.; Zhang, M.; Xu, M.; Huang, Q.; Zhou, J.; Jia, X. Multiple feature-based superpixel-level decision fusion for hyperspectral and LiDAR data classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1437–1452. [Google Scholar] [CrossRef]
- Deng, X.; Dragotti, P.L. Deep convolutional neural network for multi-modal image restoration and fusion. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3333–3348. [Google Scholar] [CrossRef]
- Gómez-Chova, L.; Tuia, D.; Moser, G.; Camps-Valls, G. Multimodal classification of remote sensing images: A review and future directions. Proc. IEEE 2015, 103, 1560–1584. [Google Scholar] [CrossRef]
- Rao, D.; De Deuge, M.; Nourani-Vatani, N.; Williams, S.B.; Pizarro, O. Multimodal learning and inference from visual and remotely sensed data. Int. J. Robot. Res. 2017, 36, 24–43. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Ghamisi, P.; Jia, X.; Gu, Y. Deep fusion of remote sensing data for accurate classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1253–1257. [Google Scholar] [CrossRef]
- Xu, X.; Li, W.; Ran, Q.; Du, Q.; Gao, L.; Zhang, B. Multisource remote sensing data classification based on convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2017, 56, 937–949. [Google Scholar] [CrossRef]
- Hang, R.; Li, Z.; Ghamisi, P.; Hong, D.; Xia, G.; Liu, Q. Classification of hyperspectral and LiDAR data using coupled CNNs. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4939–4950. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.; Lin, Z. Spatial-spectral Transformer for Hyperspectral Image Classification. Remote Sens. 2021, 13, 498. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Xu, Q.; Liang, Y.; Wang, D.; Luo, J.B. Hyperspectral image classification based on SE-Res2Net and multi-scale spatial-spectral fusion attention mechanism. J. Comput.-Aided Des. Comput. Graph 2021, 33, 1726–1734. [Google Scholar] [CrossRef]
- Roy, S.K.; Manna, S.; Song, T.; Bruzzone, L. Attention-based adaptive spectral–spatial kernel ResNet for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7831–7843. [Google Scholar] [CrossRef]
- Wang, X.; Girshick, R.; Gupta, A.; Kaiming, H. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803. [Google Scholar]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Plaza, A.; Li, J. Visual attention-driven hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8065–8080. [Google Scholar] [CrossRef]
- Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in vision: A survey. ACM Comput. Surv. (CSUR) 2022, 54, 1–41. [Google Scholar] [CrossRef]
- Du, X.; Zheng, X.; Lu, X.; Doudkin, A. Multisource remote sensing data classification with graph fusion network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10062–10072. [Google Scholar] [CrossRef]
- Qing, Y.; Liu, W.; Feng, L.; Gao, W. Improved transformer net for hyperspectral image classification. Remote Sens. 2021, 13, 2216. [Google Scholar] [CrossRef]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5518615. [Google Scholar] [CrossRef]
- Roy, S.K.; Deria, A.; Hong, D.; Rasti, B.; Plaza, A.; Chanussot, J. Multimodal Fusion Transformer for Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1560–1578. [Google Scholar] [CrossRef]
- Zhao, G.; Ye, Q.; Sun, L.; Wu, Z.; Pan, C.; Jeon, B. Joint classification of hyperspectral and lidar data using a hierarchical cnn and transformer. IEEE Trans. Geosci. Remote Sens. 2022, 61, 5500716. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Y.; Tu, B.; Liu, Y. Local Information Interaction Transformer for Hyperspectral and LiDAR Data Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 1130–1143. [Google Scholar] [CrossRef]
- Debes, C.; Merentitis, A.; Heremans, R.; Hahn, J.; Frangiadakis, N.; Kasteren, T.; Liao, W.; Bellens, R.; Pižurica, A.; Gautama, S.; et al. Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2405–2418. [Google Scholar] [CrossRef]
- Gader, P.; Zare, A.; Close, R.; Aitken, J.; Tuell, G. Muufl Gulfport Hyperspectral and Lidar Airborne Data Set; Tech. Report 2013, REP-2013-570; University of Florid: Gainesville, FL, USA, 2013. [Google Scholar]
- Du, X.; Zare, A. Technical Report: Scene Label Ground Truth Map for MUUFL Gulfport Data Set; University of Florida: Gainesville, FL, USA, 2017. [Google Scholar]
- Hong, D.; Gao, L.; Hang, R.; Zhang, B.; Chanussot, J. Deep encoder–decoder networks for classification of hyperspectral and LiDAR data. IEEE Geosci. Remote Sens. Lett. 2020, 19, 5500205. [Google Scholar] [CrossRef]
- Zhang, T.; Xiao, S.; Dong, W.; Qu, J.; Yang, Y. A mutual guidance attention-based multi-level fusion network for hyperspectral and LiDAR classification. IEEE Geosci. Remote Sens. Lett. 2021, 19, 5509105. [Google Scholar] [CrossRef]
No. | Houston2013 | MUUUFL | Trento | ||||||
---|---|---|---|---|---|---|---|---|---|
Class Name | Train | Test | Class Name | Train | Test | Class Name | Train | Test | |
1 | Healthy Grass | 50 | 1201 | Trees | 50 | 23,196 | Apple Tree | 50 | 3984 |
2 | Stressed Grass | 50 | 1204 | Mostly Grass | 50 | 4220 | Buildings | 50 | 2853 |
3 | Synthetic Grass | 50 | 647 | Mixed Ground Surface | 50 | 6832 | Ground | 50 | 429 |
4 | Trees | 50 | 1194 | Dirt and Sand | 50 | 1776 | Wood | 50 | 9073 |
5 | Soil | 50 | 1192 | Road | 50 | 6637 | Vineyard | 50 | 10,451 |
6 | Water | 50 | 275 | Water | 50 | 416 | Roads | 50 | 3124 |
7 | Residential | 50 | 1218 | Buildings Shadow | 50 | 2183 | |||
8 | Commercial | 50 | 1194 | Buildings | 50 | 6190 | |||
9 | Road | 50 | 1202 | Sidewalk | 50 | 1335 | |||
10 | Highway | 50 | 1177 | Yellow Curb | 50 | 133 | |||
11 | Railway | 50 | 1185 | Cloth Panels | 50 | 219 | |||
12 | Parking Lot1 | 50 | 1183 | ||||||
13 | Parking Lot2 | 50 | 419 | ||||||
14 | Tennis Court | 50 | 378 | ||||||
15 | Running Track | 50 | 610 | ||||||
Total | 750 | 14,279 | Total | 550 | 53,137 | Total | 300 | 29,914 |
NO. | Class | EndNet | MFT | MGA | CCNN | HCT | Proposed |
---|---|---|---|---|---|---|---|
1 | Healthy Grass | 96.84 | 86.09 | 97.58 | 92.64 | 93.92 | 97.33 |
2 | Stressed Grass | 95.18 | 91.36 | 85.79 | 95.87 | 94.36 | 98.92 |
3 | Synthetic Grass | 99.85 | 99.84 | 100.00 | 99.39 | 98.57 | 99.84 |
4 | Trees | 94.55 | 94.13 | 99.83 | 96.58 | 98.26 | 94.30 |
5 | Soil | 100.00 | 95.97 | 100 | 99.30 | 99.30 | 100 |
6 | Water | 98.91 | 88.36 | 97.81 | 90.36 | 90.25 | 97.09 |
7 | Residential | 95.48 | 94.90 | 90.80 | 94.86 | 95.78 | 96.14 |
8 | Commercial | 97.06 | 91.12 | 87.77 | 92.68 | 94.27 | 97.48 |
9 | Road | 91.84 | 94.09 | 79.28 | 90.45 | 91.76 | 92.67 |
10 | Highway | 76.46 | 85.98 | 91.07 | 95.17 | 94.37 | 95.41 |
11 | Railway | 95.52 | 89.28 | 96.96 | 98.36 | 97.23 | 98.56 |
12 | Parking Lot1 | 81.48 | 95.94 | 88.33 | 92.01 | 92.04 | 91.71 |
13 | Parking Lot2 | 100.00 | 97.61 | 95.70 | 91.86 | 98.67 | 91.40 |
14 | Tennis Court | 100.00 | 100.00 | 100.00 | 99.68 | 99.74 | 100.00 |
15 | Running Track | 100.00 | 99.50 | 100.00 | 98.26 | 99.89 | 100.00 |
OA (%) | - | 93.68 | 92.89 | 92.91 | 95.10 | 95.61 | 96.55 |
AA (%) | - | 94.88 | 93.61 | 94.06 | 95.16 | 95.89 | 96.72 |
K × 100 | - | 93.16 | 92.31 | 92.33 | 95.11 | 95.24 | 96.27 |
NO. | Class | EndNet | MFT | MGA | CCNN | HCT | Proposed |
---|---|---|---|---|---|---|---|
1 | Trees | 91.05 | 87.65 | 93.47 | 87.15 | 89.63 | 93.59 |
2 | Mostly Grass | 89.90 | 72.96 | 74.79 | 86.58 | 87.20 | 79.14 |
3 | Mixed Ground Surface | 63.18 | 68.41 | 77.38 | 78.96 | 79.96 | 83.79 |
4 | Dirt and Sand | 97.35 | 92.00 | 97.07 | 93.41 | 94.71 | 97.74 |
5 | Road | 88.53 | 86.40 | 88.83 | 89.76 | 82.15 | 93.29 |
6 | Water | 100.00 | 100.00 | 100.00 | 99.05 | 99.65 | 98.55 |
7 | Buildings Shadow | 89.69 | 91.43 | 88.68 | 90.28 | 89.12 | 88.13 |
8 | Buildings | 89.70 | 89.11 | 90.90 | 90.21 | 90.35 | 90.64 |
9 | Sidewalk | 76.32 | 76.77 | 70.03 | 78.96 | 80.27 | 82.69 |
10 | Yellow Curb | 96.24 | 83.45 | 93.98 | 94.18 | 94.55 | 95.48 |
11 | Cloth Panels | 99.08 | 99.54 | 99.54 | 98.46 | 97.98 | 99.08 |
OA (%) | - | 86.81 | 84.19 | 88.45 | 87.02 | 87.38 | 90.51 |
AA (%) | - | 89.19 | 86.16 | 88.61 | 89.72 | 89.59 | 91.10 |
K × 100 | - | 82.77 | 79.64 | 84.91 | 84.65 | 85.67 | 87.57 |
NO. | Class | EndNet | MFT | MGA | CCNN | HCT | Proposed |
---|---|---|---|---|---|---|---|
1 | Apple Tree | 88.56 | 91.26 | 97.69 | 99.27 | 98.26 | 99.10 |
2 | Buildings | 87.90 | 96.59 | 98.54 | 96.65 | 97.61 | 98.95 |
3 | Ground | 97.18 | 95.28 | 100 | 98.26 | 98.34 | 98.23 |
4 | Wood | 98.35 | 97.84 | 98.86 | 100 | 100 | 100 |
5 | Vineyard | 92.53 | 98.65 | 99.24 | 99.86 | 99.15 | 99.96 |
6 | Roads | 86.89 | 90.96 | 92.74 | 96.52 | 97.69 | 97.40 |
OA (%) | - | 92.80 | 96.37 | 98.18 | 98.42 | 99.14 | 99.46 |
AA (%) | - | 90.23 | 94.43 | 96.44 | 96.56 | 98.51 | 98.94 |
K × 100 | - | 90.53 | 92.53 | 93.56 | 94.28 | 96.47 | 97.67 |
Cases | Houston2013 | MUUFL | Trento | ||||||
---|---|---|---|---|---|---|---|---|---|
OA | AA | Kappa | OA | AA | Kappa | OA | AA | Kappa | |
Only HSI | 95.06 | 94.56 | 94.10 | 87.65 | 87.73 | 85.12 | 96.82 | 97.04 | 96.28 |
Only LiDAR | 60.34 | 62.59 | 60.52 | 45.35 | 47.29 | 45.63 | 81.67 | 80.36 | 80.94 |
HSI+ LiDAR (No GEM) | 95.13 | 95.56 | 95.42 | 88.61 | 88.29 | 85.92 | 96.61 | 97.16 | 96.53 |
HSI+ LiDAR (GEM) | 96.55 | 96.72 | 96.27 | 90.51 | 91.10 | 87.57 | 99.46 | 98.94 | 97.67 |
W | Houston2013 | MUUFL | Trento | ||||||
---|---|---|---|---|---|---|---|---|---|
OA | AA | Kappa | OA | AA | Kappa | OA | AA | Kappa | |
0.6 | 89.72 | 90.43 | 90.25 | 79.46 | 80.41 | 80.27 | 96.24 | 96.57 | 94.34 |
0.7 | 91.96 | 91.68 | 91.26 | 83.24 | 83.67 | 83.26 | 98.63 | 98.82 | 96.24 |
0.8 | 94.43 | 93.87 | 93.96 | 86.95 | 87.43 | 86.87 | 98.96 | 99.02 | 96.85 |
0.9 | 96.41 | 95.24 | 95.87 | 87.42 | 88.21 | 87.15 | 99.27 | 98.56 | 97.46 |
1 | 95.06 | 94.56 | 94.10 | 87.65 | 87.73 | 85.12 | 96.82 | 97.04 | 96.28 |
96.55 | 96.72 | 96.27 | 90.51 | 91.10 | 87.57 | 99.46 | 98.94 | 97.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhou, B.; Zhang, J.; Xie, J.; Wang, Y. Joint Classification of Hyperspectral Images and LiDAR Data Based on Dual-Branch Transformer. Sensors 2024, 24, 867. https://doi.org/10.3390/s24030867
Wang Q, Zhou B, Zhang J, Xie J, Wang Y. Joint Classification of Hyperspectral Images and LiDAR Data Based on Dual-Branch Transformer. Sensors. 2024; 24(3):867. https://doi.org/10.3390/s24030867
Chicago/Turabian StyleWang, Qingyan, Binbin Zhou, Junping Zhang, Jinbao Xie, and Yujing Wang. 2024. "Joint Classification of Hyperspectral Images and LiDAR Data Based on Dual-Branch Transformer" Sensors 24, no. 3: 867. https://doi.org/10.3390/s24030867
APA StyleWang, Q., Zhou, B., Zhang, J., Xie, J., & Wang, Y. (2024). Joint Classification of Hyperspectral Images and LiDAR Data Based on Dual-Branch Transformer. Sensors, 24(3), 867. https://doi.org/10.3390/s24030867