Multi-Modal Spectroscopic Assessment of Skin Hydration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Development of the Optical Sensor
2.2. Design and Development of the Bioimpedance Sensor
2.3. Ex Vivo Experiment on Porcine Skin to Compare Developed Optical and Bioimpedance Sensors
2.4. In Vivo Experiment to Compare Optical and Electrical Sensors to Corneometer
3. Results—Ex Vivo Experiments
3.1. Reference Gravimetric Measurements
3.2. Spectral Experimental Results from Optical Sensor
3.3. Experimental Results from Bioimpedance Sensor
4. Results—In Vivo Experiments
5. Statistical Analysis of Results
Comparative Analysis of Results Using Regression Techniques
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boer, M.; Duchnik, E.; Maleszka, R.; Marchlewicz, M. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Adv. Dermatol. Allergol. 2016, 1, 1–5. [Google Scholar] [CrossRef]
- Bhattacharya, N.; Sato, W.J.; Kelly, A.; Ganguli-Indra, G.; Indra, A.K. Epidermal Lipids: Key Mediators of Atopic Dermatitis Pathogenesis. Trends Mol. Med. 2019, 25, 551–562. [Google Scholar] [CrossRef]
- Martinsen, Ø.; Grimnes, S. Long-Term Effect of Some Skin Moisturizers. Open Dermatol. J. 2008, 2, 87–89. [Google Scholar] [CrossRef]
- Barnes, T.M.; Mijaljica, D.; Townley, J.P.; Spada, F.; Harrison, I.P. Vehicles for Drug Delivery and Cosmetic Moisturizers: Review and Comparison. Pharmaceutics 2021, 13, 2012. [Google Scholar] [CrossRef]
- Ezerskaia, A.; Pereira, S.F.; Urbach, H.P.; Varghese, B. Infrared spectroscopic measurement of skin hydration and sebum levels and comparison to corneometer and sebumeter. In Biophotonics: Photonic Solutions for Better Health Care V; SPIE Digital Library: Brussels, Belgium, 2016; p. 98872G. [Google Scholar] [CrossRef]
- Gidado, I.M.; Qassem, M.; Triantis, I.F.; Kyriacou, P.A. Review of Advances in the Measurement of Skin Hydration Based on Sensing of Optical and Electrical Tissue Properties. Sensors 2022, 22, 7151. [Google Scholar] [CrossRef]
- Constantin, M.-M.; Poenaru, E.; Poenaru, C.; Constantin, T.; Davila, C. Skin Hydration Assessment through Modern Non-Invasive Bioengineering Technologies. Maedica 2014, 9, 33. [Google Scholar]
- Amini, M.; Hisdal, J.; Kalvøy, H. Applications of bioimpedance measurement techniques in tissue engineering. J. Electr. Bioimpedance 2018, 9, 142–158. [Google Scholar] [CrossRef] [PubMed]
- Naranjo-Hernández, D.; Reina-Tosina, J.; Min, M. Fundamentals, Recent Advances, and Future Challenges in Bioimpedance Devices for Healthcare Applications. J. Sens. 2019, 2019, 9210258. [Google Scholar] [CrossRef]
- Albulbul, A.; Chan, A.D.C. Electrode-skin impedance changes due to an externally applied force. In Proceedings of the 2012 IEEE International Symposium on Medical Measurements and Applications Proceedings, Budapest, Hungary, 18–19 May 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Priidel, E.; Annus, P.; Krivošei, A.; Rist, M.; Land, R.; Min, M.; Märtens, O. Methods for Detection of Bioimpedance Variations in Resource Constrained Environments. Sensors 2020, 20, 1363. [Google Scholar] [CrossRef]
- Hantschke, M.; Triantis, I.F. Modeling the Impact of Sensitivity Distribution Variations of Tetrapolar Impedance Configurations in Microfluidic Analytical Devices. IEEE Sens. J. 2020, 21, 1655–1664. [Google Scholar] [CrossRef]
- Grimnes, S.; Martinsen, O.G. Bioimpedance and Bioelectricity Basics, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Sunny, A.I.; Kallos, E.; Kosmas, P.; Rahman, M.; Koutsoupidou, M.; Cano-Garcia, H.; Thanou, M.; Rafique, W.; Lipscombe, O.; Kassanos, P.; et al. Feasibility Experiments to Detect Skin Hydration Using a Bio-Impedance Sensor. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; Volume 2019, pp. 6032–6035. [Google Scholar] [CrossRef]
- Bibi, F.; Villain, M.; Guillaume, C.; Sorli, B.; Gontard, N. A Review: Origins of the Dielectric Properties of Proteins and Potential Development as Bio-Sensors. Sensors 2016, 16, 1232. [Google Scholar] [CrossRef]
- Darvin, M.E. Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies. Pharmaceutics 2023, 15, 2272. [Google Scholar] [CrossRef]
- Wilson, R.H.; Nadeau, K.P.; Jaworski, F.B.; Tromberg, B.J.; Durkin, A.J. Review of Short-Wave Infrared Spectroscopy and Imaging Methods for Biological Tissue Characterization. 2015. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370890/ (accessed on 12 December 2023).
- Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E. Using spectral information from the NIR water absorption features for the retrieval of canopy water content. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 388–397. [Google Scholar] [CrossRef]
- Salvi, M.; Loh, H.W.; Seoni, S.; Barua, P.D.; Garcia, S.; Molinari, F.; Acharya, U.R. Multi-modality approaches for medical support systems: A systematic review of the last decade. Inf. Fusion 2024, 103, 102134. Available online: https://www.sciencedirect.com/science/article/pii/S1566253523004505 (accessed on 12 December 2023). [CrossRef]
- Krishnan, S.; Krishnan, S.; Shi, Y.; Shi, Y.; Webb, R.C.; Webb, R.C.; Ma, Y.; Ma, Y.; Bastien, P.; Bastien, P.; et al. Multimodal epidermal devices for hydration monitoring. Microsyst. Nanoeng. 2017, 3, 17014. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.; Dixon, P. InGaAs sees infrared and visible light. Laser Focus Littleton 2004, 40, 109–111. [Google Scholar]
- Medina, I.; Scholl, S.; Rädle, M. Film Thickness and Glycerol Concentration Mapping of Falling Films Based on Fluorescence and Near-Infrared Technique. Micromachines 2022, 13, 2184. [Google Scholar] [CrossRef] [PubMed]
- ThorLabs. Calcium Fluoride Windows. Available online: https://www.thorlabs.com (accessed on 12 December 2023).
- Budidha, K.; Rybynok, V.; Kyriacou, P.A. Design and Development of a Modular, Multichannel Photoplethysmography System. IEEE Trans. Instrum. Meas. 2018, 67, 1954–1965. [Google Scholar] [CrossRef]
- Innovative Sensor Technology. LFS1K0.1305.6W.C.010-6—Conductivity Sensor—For Various Conductivity Measurement Applications. Available online: https://robu.in/wp-content/uploads/2021/12/1224049.pdf (accessed on 31 January 2024).
- Aberg, P.; Nicander, I.; Hansson, J.; Geladi, P.; Holmgren, U.; Ollmar, S. Skin Cancer Identification Using Multifrequency Electrical Impedance—A Potential Screening Tool. IEEE Trans. Biomed. Eng. 2004, 51, 2097–2102. [Google Scholar] [CrossRef] [PubMed]
- Oltulu, P.; Ince, B.; Kokbudak, N.; Findik, S.; Kilinc, F. Measurement of epidermis, dermis, and total skin thicknesses from six different body regions with a new ethical histometric technique. Turk. J. Plast. Surg. 2018, 26, 56–61. [Google Scholar] [CrossRef]
- Chopra, K.; Calva, D.; Sosin, M.; Tadisina, K.K.; Banda, A.; De La Cruz, C.; Chaudhry, M.R.; Legesse, T.; Drachenberg, C.B.; Manson, P.N.; et al. A Comprehensive Examination of Topographic Thickness of Skin in the Human Face. Aesthetic Surg. J. 2015, 35, 1007–1013. [Google Scholar] [CrossRef]
- Jain, S.; Pandey, K.; Lahoti, A.; Rao, P. Evaluation of skin and subcutaneous tissue thickness at insulin injection sites in Indian, insulin naïve, type-2 diabetic adult population. Indian J. Endocrinol. Metab. 2013, 17, 864–870. [Google Scholar] [CrossRef]
- Martinsen, O.G.; Grimnes, S. Bioimpedance and Bioelectricity Basics, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Available online: https://shop.elsevier.com/books/bioimpedance-and-bioelectricity-basics/martinsen/978-0-12-411470-8 (accessed on 19 January 2024).
- Kong, R.; Bhargava, R. Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging. Anal. 2011, 136, 2359–2366. [Google Scholar] [CrossRef] [PubMed]
- Ranamukhaarachchi, S.A.; Lehnert, S.; Ranamukhaarachchi, S.L.; Sprenger, L.; Schneider, T.; Mansoor, I.; Rai, K.; Hafeli, U.O.; Stoeber, B. A micromechanical comparison of human and porcine skin before and after preservation by freezing for medical device development. Sci. Rep. 2016, 6, 32074. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Myers, A.; Malhotra, A.; Lin, F.; Bozkurt, A.; Muth, J.F.; Zhu, Y. A Wearable Hydration Sensor with Conformal Nanowire Electrodes. Adv. Healthc. Mater. 2017, 6, 1601159. [Google Scholar] [CrossRef]
- Morin, M.; Ruzgas, T.; Svedenhag, P.; Anderson, C.D.; Ollmar, S.; Engblom, J.; Björklund, S. Skin hydration dynamics investigated by electrical impedance techniques in vivo and in vitro. Sci. Rep. 2020, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zuang, V.; Rona, C.; Distante, F.; Berardesca, E. The use of a capacitance device to evaluate the hydration of human skin. J. Appl. Cosmetol. 1997, 15, 95–102. [Google Scholar]
- Investopedia. Multiple Linear Regression (MLR) Definition, Formula, and Example. Available online: https://www.investopedia.com/terms/m/mlr.asp (accessed on 12 December 2023).
- Berman, J.M.; Awayda, M.S. Redox artifacts in electrophysiological recordings. Am. J. Physiol. Physiol. 2013, 304, C604–C613. [Google Scholar] [CrossRef]
Time (min) | 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 330 | 360 |
Gravimetric Measurement (grams) | 242 | 233 | 230 | 228 | 226 | 225 | 224 | 222 | 221 | 219 | 217 | 215 | 214 | 193 | 192 |
Condition | Dry | Damp |
---|---|---|
Optical @1450 nm | 2.38 V | 2.23 V |
Bioimpedance @1 kHz | 1.6 kΩ | 960 Ω |
Corneometer (A.U) | 38.6 | 88.2 |
Estimated Coefficient | Standard Error | T-Statistic | p-Values | Root Mean Squared Error | 0.501 | |
---|---|---|---|---|---|---|
β0 | −3657.4 | 267.52 | −13.671 | 7.1367 × 10−10 | R-squared value | 0.996 |
X1 | 1411.8 | 97 | 14.554 | 2.9697 × 10−10 | ||
X2 | −0.49935 | 0.11685 | −4.2733 | 0.00066671 | Adjusted R-squared value | 0.995 |
X3 | −0.94791 | 0.05856 | −16.187 | 6.5946 × 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gidado, I.M.; Nwokoye, I.I.; Triantis, I.F.; Qassem, M.; Kyriacou, P.A. Multi-Modal Spectroscopic Assessment of Skin Hydration. Sensors 2024, 24, 1419. https://doi.org/10.3390/s24051419
Gidado IM, Nwokoye II, Triantis IF, Qassem M, Kyriacou PA. Multi-Modal Spectroscopic Assessment of Skin Hydration. Sensors. 2024; 24(5):1419. https://doi.org/10.3390/s24051419
Chicago/Turabian StyleGidado, Iman M., Ifeabunike I. Nwokoye, Iasonas F. Triantis, Meha Qassem, and Panicos A. Kyriacou. 2024. "Multi-Modal Spectroscopic Assessment of Skin Hydration" Sensors 24, no. 5: 1419. https://doi.org/10.3390/s24051419
APA StyleGidado, I. M., Nwokoye, I. I., Triantis, I. F., Qassem, M., & Kyriacou, P. A. (2024). Multi-Modal Spectroscopic Assessment of Skin Hydration. Sensors, 24(5), 1419. https://doi.org/10.3390/s24051419