Can a Small Change in the Heterocyclic Substituent Significantly Impact the Physicochemical and Biological Properties of (Z)-2-(5-Benzylidene-4-oxo-2-thioxothiazolidin-3-yl)acetic Acid Derivatives?
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Preparation and Characterization
3.2. DFT Calculations
3.2.1. Chemical Properties
3.2.2. Biological Properties
3.3. Optical Properties
3.4. Bioimaging
3.4.1. Cytotoxicity
3.4.2. Imaging
3.4.3. Compound Compatibility with Nuclear Stains and Mounting Methods
3.5. Antimicrobial Effect
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardej, D.; Ashby, C.R.; Khadtare, N.S.; Kulkarni, S.S.; Singh, S.; Talele, T.T. The Synthesis of Phenylalanine-Derived C5-Substituted Rhodanines and Their Activity against Selected Methicillin-Resistant Staphylococcus Aureus (MRSA) Strains. Eur. J. Med. Chem. 2010, 45, 5827–5832. [Google Scholar] [CrossRef]
- Xu, L.-L.; Zheng, C.-J.; Sun, L.-P.; Miao, J.; Piao, H.-R. Synthesis of Novel 1,3-Diaryl Pyrazole Derivatives Bearing Rhodanine-3-Fatty Acid Moieties as Potential Antibacterial Agents. Eur. J. Med. Chem. 2012, 48, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Anumala, U.R.; Gu, J.; Lo Monte, F.; Kramer, T.; Heyny-von Haußen, R.; Hölzer, J.; Goetschy-Meyer, V.; Schön, C.; Mall, G.; Hilger, I.; et al. Fluorescent Rhodanine-3-Acetic Acids Visualize Neurofibrillary Tangles in Alzheimer’s Disease Brains. Bioorg. Med. Chem. 2013, 21, 5139–5144. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, P.; Rajadurai, V.S.; Sivanadanam, J.; Ponnambalam, V.; Rajalingam, R. Effect of Electron Withdrawing Anchoring Groups on the Optoelectronic Properties of Pyrene Sensitizers and Their Interaction with TiO2: A Combined Experimental and Theoretical Approach. J. Photochem. Photobiol. A Chem. 2013, 271, 31–44. [Google Scholar] [CrossRef]
- Subbaiah, M.; Sekar, R.; Palani, E.; Sambandam, A. One-Pot Synthesis of Metal Free Organic Dyes Containing Different Acceptor Moieties for Fabrication of Dye-Sensitized Solar Cells. Tetrahedron Lett. 2013, 54, 3132–3136. [Google Scholar] [CrossRef]
- Rakstys, K.; Solovjova, J.; Malinauskas, T.; Bruder, I.; Send, R.; Sackus, A.; Sens, R.; Getautis, V. A Structural Study of 1-Phenyl-1,2,3,4-Tetrahydroquinoline-Based Dyes for Solid-State DSSC Applications. Dyes Pigments 2014, 104, 211–219. [Google Scholar] [CrossRef]
- Srinivasan, V.; Panneer, M.; Jaccob, M.; Pavithra, N.; Anandan, S.; Kathiravan, A. A Diminutive Modification in Arylamine Electron Donors: Synthesis, Photophysics and Solvatochromic Analysis—Towards the Understanding of Dye Sensitized Solar Cell Performances. Phys. Chem. Chem. Phys. 2015, 17, 28647–28657. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Zarei, M.; Hashemi, S.A.; Babapoor, A.; Amani, A.M. A Conceptual Review of Rhodanine: Current Applications of Antiviral Drugs, Anticancer and Antimicrobial Activities. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1132–1148. [Google Scholar] [CrossRef]
- Abdellah, I.M.; Koraiem, A.I.; El-Shafei, A. Molecular Engineering and Investigation of New Efficient Photosensitizers/Co-Sensitizers Based on Bulky Donor Enriched with EDOT for DSSCs. Dyes Pigments 2019, 164, 244–256. [Google Scholar] [CrossRef]
- Avhad, K.; Jadhav, M.; Patil, D.; Chowdhury, T.H.; Islam, A.; Bedja, I.; Sekar, N. Rhodanine-3-Acetic Acid Containing D-π-A Push-Pull Chromophores: Effect of Methoxy Group on the Performance of Dye-Sensitized Solar Cells. Org. Electron. 2019, 65, 386–393. [Google Scholar] [CrossRef]
- Duvva, N.; Giribabu, L. Hexyl Dithiafulvalene (HDT)-Substituted Carbazole (CBZ) D–π–A Based Sensitizers for Dye-Sensitized Solar Cells. New J. Chem. 2020, 44, 18481–18488. [Google Scholar] [CrossRef]
- Abdellah, I.M.; El-Shafei, A. Influence of Carbonyl Group on Photocurrent Density of Novel Fluorene Based D-π-A Photosensitizers: Synthesis, Photophysical and Photovoltaic Studies. J. Photochem. Photobiol. A Chem. 2020, 387, 112133. [Google Scholar] [CrossRef]
- Horishny, V.; Kartsev, V.; Geronikaki, A.; Matiychuk, V.; Petrou, A.; Glamoclija, J.; Ciric, A.; Sokovic, M. 5-(1H-Indol-3-Ylmethylene)-4-Oxo-2-Thioxothiazolidin-3-Yl)Alkancarboxylic Acids as Antimicrobial Agents: Synthesis, Biological Evaluation, and Molecular Docking Studies. Molecules 2020, 25, 1964. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, P.O.; Aswathy, A.; James, K.; Kala, K.; Ragi, M.T.; Manoj, N. A Molecular Chameleon: Fluorometric to Pb2+, Fluorescent Ratiometric to Hg2+ and Colorimetric to Ag+ Ions. J. Photochem. Photobiol. A Chem. 2021, 407, 113050. [Google Scholar] [CrossRef]
- Benaissa, H.; Ounoughi, K.; Aujard, I.; Fischer, E.; Goïame, R.; Nguyen, J.; Tebo, A.G.; Li, C.; Le Saux, T.; Bertolin, G.; et al. Engineering of a Fluorescent Chemogenetic Reporter with Tunable Color for Advanced Live-Cell Imaging. Nat. Commun. 2021, 12, 6989. [Google Scholar] [CrossRef] [PubMed]
- Abusaif, M.S.; Fathy, M.; Abu-Saied, M.A.; Elhenawy, A.A.; Kashyout, A.B.; Selim, M.R.; Ammar, Y.A. New Carbazole-Based Organic Dyes with Different Acceptors for Dye-Sensitized Solar Cells: Synthesis, Characterization, Dssc Fabrications and Density Functional Theory Studies. J. Mol. Struct. 2021, 1225, 129297. [Google Scholar] [CrossRef]
- Levshin, I.B.; Simonov, A.Y.; Lavrenov, S.N.; Panov, A.A.; Grammatikova, N.E.; Alexandrov, A.A.; Ghazy, E.S.M.O.; Savin, N.A.; Gorelkin, P.V.; Erofeev, A.S.; et al. Antifungal Thiazolidines: Synthesis and Biological Evaluation of Mycosidine Congeners. Pharmaceuticals 2022, 15, 563. [Google Scholar] [CrossRef] [PubMed]
- Kharyal, A.; Ranjan, S.; Jaswal, S.; Parveen, D.; Gupta, G.D.; Thareja, S.; Verma, S.K. Research Progress on 2,4-Thiazolidinedione and 2-Thioxo-4-Thiazolidinone Analogues as Aldose Reductase Inhibitors. J. Mol. Struct. 2022, 1269, 133742. [Google Scholar] [CrossRef]
- Yin, L.J.; Bin Ahmad Kamar, A.K.D.; Fung, G.T.; Liang, C.T.; Avupati, V.R. Review of Anticancer Potentials and Structure-Activity Relationships (SAR) of Rhodanine Derivatives. Biomed. Pharmacother. 2022, 145, 112406. [Google Scholar] [CrossRef]
- Akunuri, R.; Unnissa, T.; Kaul, G.; Akhir, A.; Saxena, D.; Wajidali, M.; Veerareddy, V.; Yaddanapudi, V.M.; Chopra, S.; Nanduri, S. Synthesis and Antibacterial Evaluation of Rhodanine and Its Related Heterocyclic Compounds against S. Aureus and A. Baumannii. Chem. Biodivers. 2022, 19, e202200213. [Google Scholar] [CrossRef]
- Żesławska, E.; Zakrzewski, R.; Nowicki, A.; Korona-Głowniak, I.; Lyčka, A.; Kania, A.; Zborowski, K.K.; Suder, P.; Skórska-Stania, A.; Tejchman, W. Synthesis, Crystal Structures, Lipophilic Properties and Antimicrobial Activity of 5-Pyridylmethylidene-3-Rhodanine-Carboxyalkyl Acids Derivatives. Molecules 2022, 27, 3975. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, Z.; Upadhyay, R.; Patel, A.B. Arylidene and Amino Spacer-Linked Rhodanine-Quinoline Hybrids as Upgraded Antimicrobial Agents. Chem. Biol. Drug Des. 2023, 102, 1632–1642. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Zou, Y.; Chen, X.; Chen, J.; Wang, B.; Tian, J.; Ye, F.; Lu, Y.; Huang, H.; Lu, Y.; et al. Design, Synthesis and Biological Evaluation of 3-Substituted-2-Thioxothiazolidin-4-One (Rhodanine) Derivatives as Antitubercular Agents against Mycobacterium Tuberculosis Protein Tyrosine Phosphatase B. Eur. J. Med. Chem. 2023, 258, 115571. [Google Scholar] [CrossRef] [PubMed]
- Petrou, A.; Geronikaki, A.; Kartsev, V.; Kousaxidis, A.; Papadimitriou-Tsantarliotou, A.; Kostic, M.; Ivanov, M.; Sokovic, M.; Nicolaou, I.; Vizirianakis, I.S. N-Derivatives of (Z)-Methyl 3-(4-Oxo-2-Thioxothiazolidin-5-Ylidene)Methyl)-1H-Indole-2-Carboxylates as Antimicrobial Agents—In Silico and In Vitro Evaluation. Pharmaceuticals 2023, 16, 131. [Google Scholar] [CrossRef] [PubMed]
- Mashraqui, S.H.; Chilekar, A.; Mestri, R.; Upadhyay, J.; Badani, P.; Nemala, S.S.; Bhargava, P. New Metal Free Organic Dyes Incorporating Heterocyclic Benzofuran Core as Conjugated Spacer: Synthesis, Opto-electrochemical, DFT and DSSC Studies. J. Heterocycl. Chem. 2023, 60, 63–73. [Google Scholar] [CrossRef]
- Chaurasyia, A.; Chawla, P.; Monga, V.; Singh, G. Rhodanine Derivatives: An Insight into the Synthetic and Medicinal Perspectives as Antimicrobial and Antiviral Agents. Chem. Biol. Drug Des. 2023, 101, 500–549. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, A.M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228. [Google Scholar] [CrossRef]
- Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents by Broth Dilution. Clin. Microbiol. Infec. 2003, 9, ix. [CrossRef]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. M27-S4; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Biernasiuk, A.; Kawczyńska, M.; Berecka-Rycerz, A.; Rosada, B.; Gumieniczek, A.; Malm, A.; Dzitko, K.; Łączkowski, K.Z. Synthesis, Antimicrobial Activity, and Determination of the Lipophilicity of ((Cyclohex-3-Enylmethylene)Hydrazinyl)Thiazole Derivatives. Med. Chem. Res. 2019, 28, 2023–2036. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- O’Donnell, F.; Smyth, T.J.P.; Ramachandran, V.N.; Smyth, W.F. A Study of the Antimicrobial Activity of Selected Synthetic and Naturally Occurring Quinolines. Int. J. Antimicrob. Ag. 2010, 35, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, G.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.1; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Adamo, C.; Scuseria, G.E.; Barone, V. Accurate Excitation Energies from Time-Dependent Density Functional Theory: Assessing the PBE0 Model. J. Chem. Phys. 1999, 111, 2889–2899. [Google Scholar] [CrossRef]
- Guido, C.; Caprasecca, S. How to Perform Corrected Linear Response Calculations in G09; University of Pisa: Pisa, Italy, 2016. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E. Assessment and Validation of a Screened Coulomb Hybrid Density Functional. J. Chem. Phys. 2004, 120, 7274–7280. [Google Scholar] [CrossRef] [PubMed]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Erratum: “Hybrid Functionals Based on a Screened Coulomb Potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, 219906. [Google Scholar] [CrossRef]
- Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A Long-Range Correction Scheme for Generalized-Gradient-Approximation Exchange Functionals. J. Chem. Phys. 2001, 115, 3540–3544. [Google Scholar] [CrossRef]
- Vydrov, O.A.; Scuseria, G.E. Assessment of a Long-Range Corrected Hybrid Functional. J. Chem. Phys. 2006, 125, 234109. [Google Scholar] [CrossRef]
- Vydrov, O.A.; Scuseria, G.E.; Perdew, J.P. Tests of Functionals for Systems with Fractional Electron Number. J. Chem. Phys. 2007, 126, 154109. [Google Scholar] [CrossRef]
- Caricato, M. A Comparison between State-Specific and Linear-Response Formalisms for the Calculation of Vertical Electronic Transition Energy in Solution with the CCSD-PCM Method. J. Chem. Phys. 2013, 139, 044116. [Google Scholar] [CrossRef] [PubMed]
- Le Bahers, T.; Adamo, C.; Ciofini, I. A Qualitative Index of Spatial Extent in Charge-Transfer Excitations. J. Chem. Theory Comput. 2011, 7, 2498–2506. [Google Scholar] [CrossRef] [PubMed]
- Cancès, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Cosconati, S.; Forli, S.; Perryman, A.L.; Harris, R.; Goodsell, D.S.; Olson, A.J. Virtual Screening with AutoDock: Theory and Practice. Expert. Opin. Drug. Discov. 2010, 5, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Forli, S.; Olson, A.J. A Force Field with Discrete Displaceable Waters and Desolvation Entropy for Hydrated Ligand Docking. J. Med. Chem. 2012, 55, 623–638. [Google Scholar] [CrossRef] [PubMed]
- Sugio, S.; Mochizuki, S.; Noda, M.; Kashima, A. Crystal Structure of Human Serum Albumin. Protein Data Bank, Rutgers University. 1998. Available online: https://www.rcsb.org/structure/1ao6 (accessed on 29 December 2023). [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Potemkin, V.; Grishina, M. Principles for 3D/4D QSAR Classification of Drugs. Drug Discov. Today 2008, 13, 952–959. [Google Scholar] [CrossRef]
- Potemkin, V.A.; Grishina, M.A. A New Paradigm for Pattern Recognition of Drugs. J. Comput. Aided Mol. Des. 2008, 22, 489–505. [Google Scholar] [CrossRef]
- Potemkin, V.A.; Pogrebnoy, A.A.; Grishina, M.A. Technique for Energy Decomposition in the Study of “Receptor-Ligand” Complexes. J. Chem. Inf. Model. 2009, 49, 1389–1406. [Google Scholar] [CrossRef]
- Krawczyk, P.; Jędrzejewska, B.; Seklecka, K.; Cytarska, J.; Łączkowski, K.Z. Effect of the Chloro-Substitution on Electrochemical and Optical Properties of New Carbazole Dyes. Materials 2021, 14, 3091. [Google Scholar] [CrossRef] [PubMed]
- Kula, S.; Krawczyk, P.; Filapek, M.; Maroń, A.M. Influence of N-Donor Substituents on Physicochemical Properties of Phenanthro[9,10-d]Imidazole Derivatives. J. Lumin. 2021, 233, 117910. [Google Scholar] [CrossRef]
- Szukalski, A.; Krawczyk, P.; Sahraoui, B.; Rosińska, F.; Jędrzejewska, B. A Modified Oxazolone Dye Dedicated to Spectroscopy and Optoelectronics. J. Org. Chem. 2022, 87, 7319–7332. [Google Scholar] [CrossRef] [PubMed]
- Szukalski, A.; Krawczyk, P.; Sahraoui, B.; Jędrzejewska, B. Multifunctional Oxazolone Derivative as an Optical Amplifier, Generator, and Modulator. J. Phys. Chem. B 2022, 126, 1742–1757. [Google Scholar] [CrossRef] [PubMed]
- Szukalski, A.; Stottko, R.; Krawczyk, P.; Sahraoui, B.; Jędrzejewska, B. Application of the Pyrazolone Derivatives as Effective Modulators in the Opto-Electronic Networks. J. Photochem. Photobiol. A Chem. 2023, 437, 114482. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Lipinski, C.A. Drug-like Properties and the Causes of Poor Solubility and Poor Permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Brinkley, M. A Brief Survey of Methods for Preparing Protein Conjugates with Dyes, Haptens and Crosslinking Reagents. Bioconjug. Chem. 1992, 3, 2–13. [Google Scholar] [CrossRef]
- Chang, C.-H.; Gómez, S.; Fontaine, D.M.; Fikas, P.; Branchini, B.R.; Anderson, J.C. Bioluminescence, Photophysical, Computational and Molecular Docking Studies of Fully Conformationally Restricted Enamine Infraluciferin. Org. Biomol. Chem. 2023, 21, 2941–2949. [Google Scholar] [CrossRef]
- Barrows, S.E.; Eberlein, T.H. Understanding Rotation about a C=C Double Bond. J. Chem. Educ. 2005, 82, 1329. [Google Scholar] [CrossRef]
- Blanchard-Desce, M.; Alain, V.; Midrier, L.; Wortmann, R.; Lebus, S.; Glania, C.; Krämer, P.; Fort, A.; Muller, J.; Barzoukas, M. Intramolecular Charge Transfer and Enhanced Quadratic Optical Non-Linearities in Push Pull Polyenes. J. Photochem. Photobiol. A Chem. 1997, 105, 115–121. [Google Scholar] [CrossRef]
- Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 2nd ed.; VCH: Weinheim, Germany, 1988. [Google Scholar]
- Rekaï, E.D.; Baudin, J.-B.; Jullien, L.; Ledoux, I.; Zyss, J.; Blanchard-Desce, M. A Hyperpolar, Multichromophoric Cyclodextrin Derivative: Synthesis, and Linear and Nonlinear Optical Properties. Chem. Eur. J. 2001, 7, 4395–4402. [Google Scholar] [CrossRef]
- Cidlina, A.; Novakova, V.; Miletin, M.; Zimcik, P. Peripheral Substitution as a Tool for Tuning Electron-Accepting Properties of Phthalocyanine Analogs in Intramolecular Charge Transfer. Dalton Trans. 2015, 44, 6961–6971. [Google Scholar] [CrossRef]
Code | Tm 1 [°C] | T5 2 [°C] | T10 2 [°C] | Tmax 3 [°C] |
---|---|---|---|---|
A-1 | - | 261 | 276 | 284 |
A-2 | 262 | 269 | 278 | 287; 307 |
A-3 | - | 243 | 303 | 307 |
Compound | Solvent | Absorption 1 (λabs) [nm] | Emission (λem) [nm] | Stokes Shift 2 [nm] |
---|---|---|---|---|
A-1 | Toluene | 469 | 511 | 42 |
THF | 470 | 532 | 62 | |
CHCl3 | 479 | 537 | 58 | |
MeCN | 476 | 557 | 81 | |
DMSO | 482 | 563 | 81 | |
MeOH | 460 | 550 | 90 | |
H2O | - | - | - | |
A-2 | Toluene | 400 | 463 | 63 |
THF | 393 | 468 | 75 | |
CHCl3 | 397 | 473 | 76 | |
MeCN | 390 | 477 | 87 | |
DMSO | 400 | 482 | 82 | |
MeOH | 390 | 464 | 74 | |
H2O | - | - | - | |
A-3 | Toluene | - | - | - |
THF | 380 | 452 | nd | |
CHCl3 | 369 | 415 | 46 | |
MeCN | - | - | - | |
DMSO | 386 | 453 | 67 | |
MeOH | 374 | 468 | 94 | |
H2O | - | - | - |
Species | MIC and MBC [µg/mL] Values and MBC/MIC Ratios of the Studied Compounds and Positive Controls | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A-1 | A-2 | A-3 | CIP/VA * | ||||||||||
MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | ||
Gram-positive bacteria | Staphylococcus aureus MRSA ATCC 43300 | 125 | 1000 | 8 | 250 | >2000 | >4 | 1000 | >2000 | >2 | 0.24 | 0.24 | 1 |
Staphylococcus aureus MSSA ATCC 29213 | 250 | 2000 | 8 | 250 | 2000 | 8 | 1000 | >2000 | >2 | 0.48 | 0.48 | 1 | |
Staphylococcus aureus MSSA ATCC 25923 | 125 | >2000 | >16 | 500 | 2000 | 16 | 1000 | >2000 | >2 | 0.48 | 0.48 | 1 | |
Staphylococcus epidermidis ATCC 12228 | 250 | >2000 | >8 | 250 | >2000 | >8 | 1000 | >2000 | >2 | 0.12 | 0.12 | 1 | |
Enterococcus faecalis ATCC 29212 | 250 | >2000 | >8 | 125 | >2000 | >16 | 1000 | >2000 | >2 | 0.98 * | 1.95 * | 2 * | |
Micrococcus luteus ATCC 10240 | 62.5 | 1000 | 16 | 62.5 | 2000 | 32 | 500 | 500 | 1 | 0.98 | 1.98 | 2 | |
Bacillus subtilis ATCC 6633 | 250 | 250 | 1 | 125 | 125 | 1 | 500 | >2000 | >4 | 0.03 | 0.03 | 1 | |
Bacillus cereus ATCC 10876 | 500 | 1000 | 2 | 250 | 2000 | 8 | 1000 | 2000 | 2 | 0.06 | 0.12 | 2 | |
Gram-negative bacteria | Escherichia coli ATCC 25922 | 1000 | >2000 | >2 | 1000 | >2000 | >2 | 2000 | >2000 | >1 | 0.004 | 0.004 | 1 |
Klebsiella pneumoniae ATCC 13883 | 1000 | >2000 | >2 | 1000 | >2000 | >2 | 2000 | >2000 | >1 | 0.12 | 0.12 | 1 | |
Proteus mirabilis ATCC 12453 | 1000 | >2000 | >2 | 1000 | >2000 | >2 | 2000 | >2000 | >1 | 0.03 | 0.03 | 1 | |
Salmonella Typhimurium ATCC 14028 | 500 | >2000 | >4 | 500 | >2000 | >4 | >2000 | >2000 | >1 | 0.06 | 0.06 | 1 | |
Pseudomonas aeruginosa ATCC 27853 | 500 | >2000 | >4 | 1000 | >2000 | >2 | 2000 | >2000 | >1 | 0.48 | 0.98 | 2 |
Species | MIC and MFC [µg/mL] Values and MFC/MIC Ratios of the Studied Compounds and Positive Control | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A-1 | A-2 | A-3 | NY | ||||||||||
MIC | MFC | MFC/ MIC | MIC | MFC | MFC/ MIC | MIC | MFC | MFC/ MIC | MIC | MFC | MFC/ MIC | ||
Fungi | Candida albicans ATCC 2091 | 1000 | 1000 | 1 | 1000 | 2000 | 2 | 1000 | 1000 | 1 | 0.24 | 0.24 | 1 |
Candida albicans ATCC 10231 | 1000 | 1000 | 1 | 1000 | 2000 | 2 | 1000 | 1000 | 1 | 0.48 | 0.48 | 1 | |
Candida parapsilosis ATCC 2201 | 1000 | 2000 | 2 | 2000 | 2000 | 1 | 1000 | 2000 | 2 | 0.24 | 0.48 | 2 | |
Candida glabrata ATCC 90030 | 1000 | 2000 | 4 | 2000 | 2000 | 1 | 2000 | 2000 | 1 | 0.24 | 0.48 | 2 | |
Candida krusei ATCC 14243 | 1000 | 2000 | 4 | 2000 | 2000 | 1 | 2000 | 2000 | 1 | 0.24 | 0.24 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szlapa-Kula, A.; Kula, S.; Kaźmierski, Ł.; Biernasiuk, A.; Krawczyk, P. Can a Small Change in the Heterocyclic Substituent Significantly Impact the Physicochemical and Biological Properties of (Z)-2-(5-Benzylidene-4-oxo-2-thioxothiazolidin-3-yl)acetic Acid Derivatives? Sensors 2024, 24, 1524. https://doi.org/10.3390/s24051524
Szlapa-Kula A, Kula S, Kaźmierski Ł, Biernasiuk A, Krawczyk P. Can a Small Change in the Heterocyclic Substituent Significantly Impact the Physicochemical and Biological Properties of (Z)-2-(5-Benzylidene-4-oxo-2-thioxothiazolidin-3-yl)acetic Acid Derivatives? Sensors. 2024; 24(5):1524. https://doi.org/10.3390/s24051524
Chicago/Turabian StyleSzlapa-Kula, Agata, Slawomir Kula, Łukasz Kaźmierski, Anna Biernasiuk, and Przemysław Krawczyk. 2024. "Can a Small Change in the Heterocyclic Substituent Significantly Impact the Physicochemical and Biological Properties of (Z)-2-(5-Benzylidene-4-oxo-2-thioxothiazolidin-3-yl)acetic Acid Derivatives?" Sensors 24, no. 5: 1524. https://doi.org/10.3390/s24051524
APA StyleSzlapa-Kula, A., Kula, S., Kaźmierski, Ł., Biernasiuk, A., & Krawczyk, P. (2024). Can a Small Change in the Heterocyclic Substituent Significantly Impact the Physicochemical and Biological Properties of (Z)-2-(5-Benzylidene-4-oxo-2-thioxothiazolidin-3-yl)acetic Acid Derivatives? Sensors, 24(5), 1524. https://doi.org/10.3390/s24051524