Influence of Flexible and Textile Substrates on Frequency-Selective Surfaces (FSS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Frequency-Selective Surfaces
2.3. Characterization
3. Results and Discussion
3.1. Morphology of Frequency-Selective Surfaces
3.2. Electrical Resistance
3.3. Simulation Results
3.4. Shielding Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, D.; Caldeirinha, R.F.; Cuinas, I.; Fernandes, T.R. A Review of Manufacturing Materials and Production Methods for Frequency-Selective Structures. IEEE Antennas Propag. Mag. 2018, 60, 110–119. [Google Scholar] [CrossRef]
- Rybicki, T.; Stempien, Z.; Karbownik, I. EMI Shielding and absorption of electroconductive textiles with PANI and PPy conductive polymers and numerical model approach. Energies 2021, 14, 7746. [Google Scholar] [CrossRef]
- Anwar, R.S.; Mao, L.; Ning, H. Frequency selective surfaces: A review. Appl. Sci. 2018, 8, 1689. [Google Scholar] [CrossRef]
- Kapoor, A.; Mishra, R.; Kumar, P. Frequency selective surfaces as spatial filters: Fundamentals, analysis and applications. Alex. Eng. J. 2022, 61, 4263–4293. [Google Scholar] [CrossRef]
- Gianvittorio, J.P.; Romeu, J.; Blanch, S.; Rahmat-Samii, Y. Self-similar prefractal frequency selective surfaces for multiband and dual-polarized applications. IEEE Trans. Antennas Propag. 2003, 51, 3088–3096. [Google Scholar] [CrossRef]
- Yan, M.; Qu, S.; Wang, J.; Zhang, J.; Zhou, H.; Chen, H.; Zheng, L. A miniaturized dual-band FSS with stable resonance frequencies of 2.4 GHz/5 GHz for WLAN applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 895–898. [Google Scholar] [CrossRef]
- Miao, X.G.; Feng, Q.W.; Fang, X.W.; Ghezzo, F.; Zhao, Z.Y.; Liu, R.P. Design, Fabrication and Characterization of Fused Silica-Based Composites with an LTCC-Derived FSS. Adv. Mater. Res. 2014, 941, 305–309. [Google Scholar] [CrossRef]
- Zendejas, J.M.; Gianvittorio, J.P.; Rahmat-Samii, Y.; Judy, J.W. Magnetic MEMS reconfigurable frequency-selective surfaces. J. Microelectromechanical Syst. 2006, 15, 613–623. [Google Scholar] [CrossRef]
- Tang, L.; Wang, Y.; Huang, J. A Thermostable Frequency Selective Surface with both a Low-pass and a Wide Shielding Band. In Proceedings of the 2023 International Telecommunications Conference (ITC-Egypt), Alexandria, Egypt, 18–20 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 34–37. [Google Scholar]
- Liu, X.; Tan, W.; Shen, Z.; Jin, C. Integrated frequency selective surface and antenna printed on a transparent substrate. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2062–2066. [Google Scholar] [CrossRef]
- Wang, L.B.; See, K.Y.; Zhang, J.W.; Salam, B.; Lu, A.C.W. Ultrathin and flexible screen-printed metasurfaces for EMI shielding applications. IEEE Trans. Electromagn. Compat. 2011, 53, 700–705. [Google Scholar] [CrossRef]
- Karbownik, I.; Malinowska, G.; Rybicki, E. Textile Multi-layer Systems for Protection against Electromagnetic Radiation. Fibres Text. East. Eur. 2009, 17, 73. [Google Scholar]
- Brzeziński, S.; Rybicki, T.; Malinowska, G.; Karbownik, I.; Rybicki, E.; Szugajew, L. Effectiveness of shielding electromagnetic radiation, and assumptions for designing the multi-layer structures of textile shielding materials. Fibres Text. East. Eur. 2009, 1, 60–65. [Google Scholar]
- Tennant, A.; Hurley, W.; Dias, T. Experimental knitted, textile frequency selective surfaces. Electron. Lett. 2012, 48, 1386–1388. [Google Scholar] [CrossRef]
- Chauraya, A.; Seager, R.; Whittow, W.; Zhang, S.; Vardaxoglou, Y. Embroidered Frequency Selective Surfaces on textiles for wearable applications. In Proceedings of the 2013 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 11–12 November 2013; pp. 388–391. [Google Scholar]
- Ghebrebrhan, M.; Aranda, F.; Walsh, G.; Ziegler, D.; Giardini, S.; Carlson, J.; Gatesman, A. Textile frequency selective surface. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 989–991. [Google Scholar] [CrossRef]
- İbrahim, Ü.N.E.R.; Sultan, C.A.N.; Gürcüm, B.H.; YILMAZ, A.E.; Aksoy, E. Design and Implementation of a Textile-Based Embroidered Frequency Selective Surface. Text. Appar. 2022, 32, 297–303. [Google Scholar]
- Seager, R.D.; Chauraya, A.; Bowman, J.; Broughton, M.; Nimkulrat, N. Fabrication of fabric based frequency selective surfaces (FSS). In Proceedings of the The 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1978–1980. [Google Scholar]
- Whittow, W.G.; Li, Y.; Torah, R.; Yang, K.; Beeby, S.; Tudor, J. Printed frequency selective surfaces on textiles. Electron. Lett. 2014, 50, 916–917. [Google Scholar] [CrossRef]
- Can, S.; Karakaya, E.U.; Yılmaz, A.E. Design, fabrication, and measurement of textile-based frequency selective surfaces. Microw. Opt. Technol. Lett. 2020, 62, 3444–3450. [Google Scholar] [CrossRef]
- Almirall, O.; Fernández-García, R.; Gil, I. Wearable metamaterial for electromagnetic radiation shielding. J. Text. Inst. 2022, 113, 1586–1594. [Google Scholar] [CrossRef]
- Tak, J.; Choi, J. A wearable metamaterial microwave absorber. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 784–787. [Google Scholar] [CrossRef]
- Cınar, A.; Basaran, S.C. Textile-based quad-band electromagnetic absorber design for wearable applications. J. Text. Inst. 2023, 1–5. [Google Scholar] [CrossRef]
- Yang, S.; Liu, P.; Yang, M.; Wang, Q.; Song, J.; Dong, L. From flexible and stretchable meta-atom to metamaterial: A wearable microwave meta-skin with tunable frequency selective and cloaking effects. Sci. Rep. 2016, 6, 21921. [Google Scholar] [CrossRef] [PubMed]
- PN-ISO 3801:1993; Textile and Fabric Determination of Linear and Surface Mass. Polish Committee for Standardization: Warsaw, Poland, 1993.
- EN ISO 5084:1999; Textile Determination of the Thickness of Textile Products. International Organization for Standardization: Geneva, Switzerland, 1999.
- Shukor, M.M.; Aziz, M.A.; Ahmad, B.H.; Suaidi, M.K.; Johar, M.F.; Othman, M.A.; Malek, M.A. Characteristic impedance modeling of circular loop and square loop frequency selective surface (FSS) on hybrid material. In Proceedings of the 2014 International Symposium on Technology Management and Emerging Technologies, Bandung, Indonesia, 27–29 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 486–491. [Google Scholar]
- Available online: https://www.ukinsulations.co.uk/pdfs/Melinex_O.pdf (accessed on 2 February 2023).
- Dhupkariya, S.; Singh, V.K.; Shukla, A. A review of textile materials for the wearable antenna. J. Microw. Eng. Technol. 2015, 1, 1–8. [Google Scholar]
- Ghebrebrhan, M.; Bermel, P.; Yeng, Y.X.; Celanovic, I.; Soljačić, M.; Joannopoulos, J.D. Tailoring thermal emission via Q matching of photonic crystal resonances. Phys. Rev. A 2011, 83, 033810. [Google Scholar] [CrossRef]
- Turki, B.M.; Parker, E.A.; Ziai, M.A.; Batchelor, J.C.; Sanchez-Romaguera, V.; Yeates, S.G. Study of printing errors in digitally fabricated FSS. In Proceedings of the 2013 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 11–12 November 2013; pp. 429–432. [Google Scholar]
- Jin, J.; Lin, Y.; Song, M.; Gui, C.; Leesirisan, S. Enhancing the electrical conductivity of polymer composites. Eur. Polym. J. 2013, 49, 1066–1072. [Google Scholar] [CrossRef]
- Steurer, P.; Wissert, R.; Thomann, R.; Mülhaupt, R. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 2009, 30, 316–327. [Google Scholar] [CrossRef]
- Kapoor, A.; Mishra, R.; Kumar, P. Complementary frequency selective surface pair-based intelligent spatial filters for 5G wireless systems. J. Intell. Syst. 2021, 30, 1054–1069. [Google Scholar] [CrossRef]
- Rahzaani, M.; Dadashzadeh, G.; Khorshidi, M. New technique for designing wideband one layer frequency selective surface in X-band with stable angular response. Microw. Opt. Technol. Lett. 2018, 60, 2133–2139. [Google Scholar] [CrossRef]
Sample | Element | Substrate | Design Size [mm] | Measured Size [mm] |
---|---|---|---|---|
squares in the border | square | T | 21 | 20.0 (+/−0.04) |
F | 19.4 (+/−0.18) | |||
gap | T | 1.5 | 1.16 (+/−0.04) | |
F | 1.33 (+/−0.06) | |||
border | T | 1 | 1.17 (+/−0.04) | |
F | 0.94 (+/−0.44) | |||
distance | T | 4 | 3.40 (+/−0.04) | |
F | 3.56 (+/−0.03) | |||
inversion of squares in the border | border | T | 1.5 | 1.63 (+/−0.04) |
F | 1.70 (+/−0.12) | |||
gap | T | 1 | 0.92 (+/−0.01) | |
F | 0.89 (+/−0.34) | |||
line | T | 4 | 4.2 (+/−0.01) | |
F | 3.98 (+/−0.05) | |||
circles with a border | circles | T | 1.36 | 1.30 (+/−0.06) |
F | 1.25 (+/−0.06) | |||
gap | T | 7 | 5.90 (+/−0.06) | |
F | 6.59 (+/−0.12) | |||
border | T | 10 | 9.63 (+/−0.03) | |
F | 9.89 (+/−0.07) | |||
distance | T | 3 | 2.71 (+/−0.03) | |
F | 2.73 (+/−0.04) |
Number of Layers/ Substrate | 1 [Ω/□] | 2 [Ω/□] | 3 [Ω/□] | 4 [Ω/□] | 5 [Ω/□] |
---|---|---|---|---|---|
Textile | 0.096 | 0.065 | 0.057 | 0.037 | 0.033 |
Foil Melinex | 0.053 | 0.050 | 0.048 | 0.080 | 0.090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rac-Rumijowska, O.; Pokryszka, P.; Rybicki, T.; Suchorska-Woźniak, P.; Woźniak, M.; Kaczkowska, K.; Karbownik, I. Influence of Flexible and Textile Substrates on Frequency-Selective Surfaces (FSS). Sensors 2024, 24, 1704. https://doi.org/10.3390/s24051704
Rac-Rumijowska O, Pokryszka P, Rybicki T, Suchorska-Woźniak P, Woźniak M, Kaczkowska K, Karbownik I. Influence of Flexible and Textile Substrates on Frequency-Selective Surfaces (FSS). Sensors. 2024; 24(5):1704. https://doi.org/10.3390/s24051704
Chicago/Turabian StyleRac-Rumijowska, Olga, Piotr Pokryszka, Tomasz Rybicki, Patrycja Suchorska-Woźniak, Maksymilian Woźniak, Katarzyna Kaczkowska, and Iwona Karbownik. 2024. "Influence of Flexible and Textile Substrates on Frequency-Selective Surfaces (FSS)" Sensors 24, no. 5: 1704. https://doi.org/10.3390/s24051704
APA StyleRac-Rumijowska, O., Pokryszka, P., Rybicki, T., Suchorska-Woźniak, P., Woźniak, M., Kaczkowska, K., & Karbownik, I. (2024). Influence of Flexible and Textile Substrates on Frequency-Selective Surfaces (FSS). Sensors, 24(5), 1704. https://doi.org/10.3390/s24051704