Automated Seizure Detection Based on State-Space Model Identification
Abstract
:1. Introduction
2. Material and Methods
2.1. Jefferson Dataset
2.2. CHB-MIT Dataset
2.3. Data Preprocessing
2.4. Model Estimation
2.5. Features and Classification
3. Results
3.1. Model Estimation
3.2. Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Epilepsy. Available online: https://www.who.int/en/news-room/fact-sheets/detail/epilepsy (accessed on 1 August 2022).
- Epilepsy Foundation. Ambulatory EEG. Available online: https://www.epilepsy.com/learn/diagnosis/eeg/ambulatory-eeg (accessed on 1 August 2022).
- Brophy, G.M.; Bell, R.; Claassen, J.; Alldredge, B.; Bleck, T.P.; Glauser, T.; LaRoche, S.M.; Riviello, J.J.; Shutter, L.; Sperling, M.R.; et al. Guidelines for the Evaluation and Management of Status Epilepticus. Neurocrit. Care 2012, 17, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Stanford Health Care. Neurodiagnostic Labs. Available online: https://stanfordhealthcare.org/medical-clinics/neurodiagnostic-labs/services.html (accessed on 15 March 2024).
- Smith, S.J. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 2005, 76 (Suppl. S2), ii2–ii7. [Google Scholar] [CrossRef] [PubMed]
- Deburchgraeve, W.; Cherian, P.J.; De Vos, M.; Swarte, R.M.; Blok, J.H.; Visser, G.H.; Govaert, P.; Van Huffel, S. Automated neonatal seizure detection mimicking a human observer reading EEG. Clin. Neurophysiol. 2008, 119, 2447–2454. [Google Scholar] [CrossRef] [PubMed]
- Temko, A.; Thomas, E.; Marnane, W.; Lightbody, G.; Boylan, G. EEG-based neonatal seizure detection with support vector machines. Clin. Neurophysiol. 2011, 122, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 2018, 100, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Hassanpour, H.; Mesbah, M.; Boashash, B. Time-frequency feature extraction of newborn EEG seizure using SVD-based techniques. EURASIP J. Adv. Signal Process. 2004, 2004, 898124. [Google Scholar] [CrossRef]
- Wang, L.; Xue, W.; Li, Y.; Luo, M.; Huang, J.; Cui, W.; Huang, C. Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy 2017, 19, 222. [Google Scholar] [CrossRef]
- Shen, H.; Xu, M.; Guez, A.; Li, A.; Ran, F. An accurate sleep stages classification method based on state space model. IEEE Access 2019, 7, 125268–125279. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed]
- Gómez, C.; Arbeláez, P.; Navarrete, M.; Alvarado-Rojas, C.; Le Van Quyen, M.; Valderrama, M. Automatic seizure detection based on imaged-EEG signals through fully convolutional networks. Sci. Rep. 2020, 10, 21833. [Google Scholar] [CrossRef] [PubMed]
- Shoeb, A.H. Application of Machine Learning to Epileptic Seizure Onset Detection Treatment. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2009. [Google Scholar]
- Gotman, J. Automatic recognition of epileptic seizures in the EEG. Electroencephalogr. Clin. Neurophysiol. 1982, 54, 530–540. [Google Scholar] [CrossRef] [PubMed]
- MathWorks. System Identification Overview. Available online: https://www.mathworks.com/help/ident/gs/about-system-identification.html (accessed on 2 August 2022).
- Caicedo, J.M. Practical guidelines for the natural excitation technique (NExT) and the eigensystem realization algorithm (ERA) for modal identification using ambient vibration. Exp. Tech. 2011, 35, 52–58. [Google Scholar] [CrossRef]
- Van Overschee, P.; De Moor, B. N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 1994, 30, 75–93. [Google Scholar] [CrossRef]
- Zhu, W.; Zeng, N.; Wang, N. Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. In Proceedings of the NESUG Proceedings: Health Care and Life Sciences, Baltimore, MD, USA, 14 November 2010; Volume 19, p. 67. [Google Scholar]
- Khan, Y.U.; Rafiuddin, N.; Farooq, O. Automated seizure detection in scalp EEG using multiple wavelet scales. In Proceedings of the IEEE International Conference on Signal Processing, Computing and Control, Solan, India, 15–17 March 2012; pp. 1–5. [Google Scholar]
- Gill, A.F.; Fatima, S.A.; Usman Akram, M.; Khawaja, S.G.; Awan, S.E. Analysis of EEG Signals for Detection of Epileptic Seizure Using Hybrid Feature Set. In Theory and Applications of Applied Electromagnetics; Sulaiman, H., Othman, M., Abd. Aziz, M., Abd Malek, M., Eds.; Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2015; Volume 344. [Google Scholar] [CrossRef]
- Lima, C.A.M.; Coelho, A.L.V. Kernel machines for epilepsy diagnosis via EEG signal classification: A comparative study. Artif. Intell. Med. 2011, 53, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Birjandtalab, J.; Pouyan, M.B.; Cogan, D.; Nourani, M.; Harvey, J. Automated seizure detection using limited-channel EEG and nonlinear dimension reduction. Comput. Biol. Med. 2017, 82, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Fergus, P.; Hussain, A.; Hignett, D.; Al-Jumeily, D.; Abdel-Aziz, K.; Hamdan, H. A machine learning system for automated whole-brain seizure detection. Appl. Comput. Inform. 2016, 12, 70–89. [Google Scholar] [CrossRef]
- Sperling, M.R. EEG Reading Session. J. Clin. Neurophysiol. 2006, 23, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Zabihi, M.; Kiranyaz, S.; Ince, T.; Gabbouj, M. Patient-specific epileptic seizure detection in long-term EEG recording in paediatric patients with intractable seizures. In Proceedings of the IET Intelligent Signal Processing Conference 2013 (ISP 2013), London, UK, 2–3 December 2013. [Google Scholar]
- Pinto-Orellana, M.A.; Cerqueira, F.R. Patient-specific epilepsy seizure detection using random forest classification over one-dimension transformed EEG data. In Proceedings of the International Conference on Intelligent Systems Design and Applications, Porto, Portugal, 16–18 December 2016; Springer: Cham, Switzerland, 2016; pp. 519–528. [Google Scholar]
- Ahmad, M.A.; Khan, N.A.; Majeed, W. Computer assisted analysis system of electroencephalogram for diagnosing epilepsy. In Proceedings of the 2014 22nd International Conference on Pattern Recognition (ICPR), Stockholm, Sweden, 24–28 August 2014; IEEE Computer Society: Washington, DC, USA, 2014; pp. 3386–3391. [Google Scholar]
- Jadeja, N.M. Montages. In How to Read an EEG; Cambridge University Press: Cambridge, MA, USA, 2021; pp. 149–159. [Google Scholar]
- Nordin, A.D.; Hairston, W.D.; Ferris, D.P. Dual-electrode motion artifact cancellation for mobile electroencephalography. J. Neural Eng. 2018, 15, 056024. [Google Scholar] [CrossRef] [PubMed]
Epoch Size | 1 s | 2 s | 5 s | 10 s |
---|---|---|---|---|
Seizure Epochs | 49,595 | 24,386 | 9837 | 4866 |
Non-Seizure Epochs | 100,000 | 49,611 | 19,182 | 9340 |
Total Epochs | 149,595 | 73,997 | 29,019 | 14,206 |
System Orders | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | |
---|---|---|---|---|---|---|---|---|---|
Classifiers | |||||||||
Discriminant | 72.7% | 73.0% | 74.1% | 76.1% | 77.9% | 77.6% | 77.5% | 77.3% | |
Bayes | 72.9% | 73.5% | 74.2% | 76.1% | 76.2% | 76.1% | 75.5% | 72.3% | |
KNN | 89.7% | 91.9% | 93.6% | 92.4% | 90.8% | 89.2% | 87.8% | 84.6% | |
SVM | 72.0% | 72.3% | 73.5% | 75.6% | 76.6% | 77.1% | 76.5% | 72.3% | |
Trees | 93.8% | 94.9% | 96.0% | 95.1% | 94.8% | 94.1% | 93.6% | 93.1% |
Epoch Size | Increment | Sensitivity | Specificity | Accuracy |
---|---|---|---|---|
1 s | 0.5 s | 92.7% | 97.6% | 96.0% |
2 s | 1 s | 92.6% | 97.4% | 95.8% |
5 s | 2.5 s | 92.3% | 97.0% | 95.4% |
10 s | 5 s | 91.5% | 96.7% | 94.9% |
Subject | EEG Duration (h) | Number of Seizures | Seizure Length (s) | Total False Detections | False Detections per Hour |
---|---|---|---|---|---|
1 | 24 | 1 | 576 | 5 | 0.2 |
2 | 24 | 7 | 43~104 | 10 | 0.4 |
3 | 21.3 | 44 | 30~310 | 18 | 0.8 |
4 | 24.1 | 114 | 30~49 | 28 | 1.2 |
5 | 24 | 13 | 30~120 | 10 | 0.4 |
6 | 19.7 | 120 | 16~120 | 10 | 0.5 |
7 | 24 | 1 | 122 | 6 | 0.3 |
8 | 24.1 | 72 | 19~180 | 12 | 0.5 |
9 | 24.8 | 33 | 37~77 | 10 | 0.4 |
10 | 34.4 | 6 | 58~297 | 9 | 0.3 |
Total | 244.4 | 411 | 118 | ||
Average | 24.44 | 41.1 | 11.8 | 0.5 | |
STDEV. | 3.6 | 43.6 | 6.3 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Sperling, M.R.; Wyeth, D.; Guez, A. Automated Seizure Detection Based on State-Space Model Identification. Sensors 2024, 24, 1902. https://doi.org/10.3390/s24061902
Wang Z, Sperling MR, Wyeth D, Guez A. Automated Seizure Detection Based on State-Space Model Identification. Sensors. 2024; 24(6):1902. https://doi.org/10.3390/s24061902
Chicago/Turabian StyleWang, Zhuo, Michael R. Sperling, Dale Wyeth, and Allon Guez. 2024. "Automated Seizure Detection Based on State-Space Model Identification" Sensors 24, no. 6: 1902. https://doi.org/10.3390/s24061902
APA StyleWang, Z., Sperling, M. R., Wyeth, D., & Guez, A. (2024). Automated Seizure Detection Based on State-Space Model Identification. Sensors, 24(6), 1902. https://doi.org/10.3390/s24061902