Application of MOX Sensors to Determine the Emission of Volatile Compounds in Corn Groats as a Function of Vertical Pressure in the Silo and Moisture Content of the Bed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Gas Chromatography–Mass Spectrometry Analysis
2.3. An Electronic Nose
2.4. Statistical Analysis
3. Results and Discussion
3.1. GC–MS and Electronic Nose Analysis
3.2. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pastor-Cavada, E.; Drago, S.R.; González, R.J.; Juan, R.; Pastor, J.E.; Alaiz, M.; Vioque, J. Physical and nutritional properties of extruded products based on whole grain with the addition of wild legumes (Vicia lutea subsp. lutea var. hirta and Vicia sativa subsp. sativa). Int. J. Food Sci. Technol. 2013, 48, 1949–1955. [Google Scholar] [CrossRef]
- Bisharat, G.I.; Oikonomopoulou, V.P.; Panagiotou, N.M.; Krokida, M.K.; Maroulis, Z.B. Effect of extrusion conditions on the structural properties of corn extrudates enriched with dehydrated vegetables. Food Res. Int. 2013, 53, 1–14. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, P.; Shen, G.; Gao, T.; Liu, X.; Shi, J.; Xu, J.; Qiu, J. Relationship Between Mycotoxin Production and Gene Expression in Fusarium graminearum Species Complex Strains Under Various Environmental Conditions. J. Microbiol. 2023, 61, 525–542. [Google Scholar] [CrossRef] [PubMed]
- Chavez, R.A.; Opit, G.; Opoku, B.; Stasiewicz, M.J. Spectral kernel sorting based on high-risk visual features associated with mycotoxin contamination reduces aflatoxin and fumonisin contamination in maize from Ghana. Food Control 2023, 151, 109788. [Google Scholar] [CrossRef]
- Wu, F. Global impacts of aflatoxin in maize: Trade and human health. World Mycotoxin J. 2015, 8, 137–142. [Google Scholar] [CrossRef]
- Gao, S.; Du, Z.; Ju, F.; Yan, P.; Niu, B.; Yao, Y. Effect of rhizosphere microorganisms on aflatoxin contamination of maize. Heliyon 2023, 9. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.S.; Isakeit, T.; Borrego, E.J.; Odvody, G.; Murray, S.; Kolomiets, M.V. Identification of naturally occurring atoxigenic strains of Fusarium verticillioides and their potential as biocontrol agents of mycotoxins and ear rot pathogens of maize. Crop Prot. 2023, 167, 106197. [Google Scholar] [CrossRef]
- Bryła, M.; Waśkiewicz, A.; Szymczyk, K.; Jędrzejczak, R. Effects of pH and temperature on the stability of fumonisins in Maize products. Toxins 2017, 9, 88. [Google Scholar] [CrossRef]
- Kortei, N.K.; Oman Ayiku, P.; Nsor-Atindana, J.; Owusu Ansah, L.; Wiafe-Kwagyan, M.; Kyei-Baffour, V.; Kottoh, I.D.; Odamtten, G.T. Toxicogenic fungal profile, Ochratoxin A exposure and cancer risk characterization through maize (Zea mays) consumed by different age populations in the Volta region of Ghana. Toxicon 2023, 226, 107085. [Google Scholar] [CrossRef]
- el Khoury, A.E.; Atoui, A. Ochratoxin a: General overview and actual molecular status. Toxins 2010, 2, 461–493. [Google Scholar] [CrossRef]
- Mestres, C.; Matencio, F.; Dramé, D. Small-scale production and storage quality of dry-milled degermed maize products for tropical countries. Int. J. Food Sci. Technol. 2003, 38, 201–207. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Dushkova, M.A.; Simitchiev, A.T.; Kalaydzhiev, H.R.; Ivanova, P.; Menkov, N.D.; Chalova, V.I. Comparison and modeling of moisture sorption isotherms of deproteinized rapeseed meal and model extrudate. J. Food Process. Preserv. 2022, 46, e16978. [Google Scholar] [CrossRef]
- Makowska, A.; Cais-Sokolińska, D.; Lasik, A. Effect of technological factors on water activity of extruded corn product with an addition of whey proteins. Acta Sci. Pol. Technol. Aliment. 2014, 13, 243–247. [Google Scholar] [CrossRef]
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Machungo, C.W.; Berna, A.Z.; McNevin, D.; Wang, R.; Harvey, J.; Trowell, S. Evaluation of performance of metal oxide electronic nose for detection of aflatoxin in artificially and naturally contaminated maize. Sens. Actuators B Chem. 2023, 381, 133446. [Google Scholar] [CrossRef]
- Machungo, C.; Berna, A.Z.; McNevin, D.; Wang, R.; Trowell, S. Comparison of the performance of metal oxide and conducting polymer electronic noses for detection of aflatoxin using artificially contaminated maize. Sens. Actuators B Chem. 2022, 360, 131681. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, Z.; Xu, J.; Walczak, R.D.; Dziuban, J.A.; Lee, C. Volatile organic compounds sensing based on Bennet doubler-inspired triboelectric nanogenerator and machine learning-assisted ion mobility analysis. Sci. Bull. 2021, 66, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Olsson, J.; Börjesson, T.; Lundstedt, T.; Schnürer, J. Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose. Int. J. Food Microbiol. 2002, 72, 203–214. [Google Scholar] [CrossRef]
- Kruszelnicka, W.; Chen, Z.; Ambrose, K. Moisture-Dependent Physical-Mechanical Properties of Maize, Rice, and Soybeans as Related to Handling and Processing. Materials 2022, 15, 8729. [Google Scholar] [CrossRef]
- Horabik, J.; Rusinek, R. Pressure ratio of cereal grains determined in a uniaxial compression test. Int. Agrophysics 2001, 16, 23–28. [Google Scholar]
- Stasiak, M.; Rusinek, R.; Molenda, M.; Fornal, J.; Błaszczak, W. Effect of potato starch modification on mechanical parameters and granules morphology. J. Food Eng. 2011, 102, 154–162. [Google Scholar] [CrossRef]
- Żytek, A.; Rusinek, R.; Oniszczuk, A.; Gancarz, M. Effect of the Consolidation Level on Organic Volatile Compound Emissions from Maize during Storage. Materials 2023, 16, 3066. [Google Scholar] [CrossRef] [PubMed]
- Rusinek, R.; Dobrzański, B.; Oniszczuk, A.; Gawrysiak-Witulska, M.; Siger, A.; Karami, H.; Ptaszyńska, A.A.; Żytek, A.; Kapela, K.; Gancarz, M. How to Identify Roast Defects in Coffee Beans Based on the Volatile Compound Profile. Molecules 2022, 27, 8530. [Google Scholar] [CrossRef]
- Gergolet Diaz, D.G.; Pizzolitto, R.P.; Vázquez, C.; Usseglio, V.L.; Zunino, M.P.; Dambolena, J.S.; Zygadlo, J.A.; Merlo, C. Effects of the volatile organic compounds produced by Enterococcus spp. on Fusarium verticillioides growth and fumonisin B1 production. J. Stored Prod. Res. 2021, 93, 101825. [Google Scholar] [CrossRef]
- Rusinek, R.; Jelen, H.; Malaga-tobola, U.; Molenda, M. Influence of Changes in the Level of Volatile Compounds Emitted During Rapeseed Quality Degradation on the Reaction of MOS Type Sensor-Array. Sensors 2020, 20, 3135. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Du, J.; Zhao, M.; Huang, J.; Chen, D.; Hui, G. Paddy and maize moldy status characterization using electronic nose. J. Food Meas. Charact. 2014, 8, 54–60. [Google Scholar] [CrossRef]
- Falasconi, M.; Gobbi, E.; Pardo, M.; Della Torre, M.; Bresciani, A.; Sberveglieri, G. Detection of toxigenic strains of Fusarium verticillioides in corn by electronic olfactory system. Sens. Actuators B Chem. 2005, 108, 250–257. [Google Scholar] [CrossRef]
- Gobbi, E.; Falasconi, M.; Torelli, E.; Sberveglieri, G. Electronic nose predicts high and low fumonisin contamination in maize cultures. Food Res. Int. 2011, 44, 992–999. [Google Scholar] [CrossRef]
- Ottoboni, M.; Pinotti, L.; Tretola, M.; Giromini, C.; Fusi, E.; Rebucci, R.; Grillo, M.; Tassoni, L.; Foresta, S.; Gastaldello, S.; et al. Combining E-nose and lateral flow immunoassays (LFIAs) for rapid occurrence/co-occurrence aflatoxin and fumonisin detection in maize. Toxins 2018, 10, 416. [Google Scholar] [CrossRef]
- Dinolfo, M.I.; Martínez, M.; Castañares, E.; Arata, A.F. Fusarium in maize during harvest and storage: A review of species involved, mycotoxins, and management strategies to reduce contamination. Eur. J. Plant Pathol. 2022, 164, 151–166. [Google Scholar] [CrossRef]
- Rusinek, R.; Kobyłka, R. Experimental study and discrete element method modeling of temperature distributions in rapeseed stored in a model bin. J. Stored Prod. Res. 2014, 59, 254–259. [Google Scholar] [CrossRef]
- Babic, L.J.; Radojein, M.; Pavkov, I.; Babic, M.; Turan, J.; Zoranovic, M.; Stanisic, S. Physical properties and compression loading behaviour of corn seed. Int. Agrophysics 2013, 27, 119–126. [Google Scholar] [CrossRef]
- Qiao, M.; Xia, G.; Cui, T.; Xu, Y.; Gao, X.; Su, Y.; Li, Y.; Fan, H. Effect of moisture, protein, starch, soluble sugar contents and microstructure on mechanical properties of maize kernels. Food Chem. 2022, 379, 132147. [Google Scholar] [CrossRef] [PubMed]
Consolidation | Moisture Content | Days | Alcohols | Acids | Ketones | Esters | Hydrocarbons | Azines | Terpenes | Others |
---|---|---|---|---|---|---|---|---|---|---|
0 kPa | 14% | 1 | 8.59 | 5.84 | 17.53 | 50.86 | 9.62 | 3.44 | n.d. | 4.12 |
2 | 10.73 | 19.17 | 21.58 | 35.50 | 8.10 | 2.65 | n.d. | 2.27 | ||
3 | 5.91 | 31.73 | 22.40 | 30.26 | 5.61 | 1.58 | n.d. | 2.52 | ||
4 | 5.35 | 34.03 | 21.24 | 30.74 | 3.90 | 1.24 | n.d. | 3.50 | ||
5 | 5.30 | 9.85 | 10.98 | 66.67 | n.d. | 3.03 | n.d. | 4.17 | ||
6 | 3.77 | 55.03 | 7.86 | 18.87 | 6.29 | 3.46 | n.d. | 4.72 | ||
7 | 3.48 | 50.87 | 5.22 | 27.39 | 6.96 | 2.61 | n.d. | 3.48 | ||
8 | 3.52 | 47.58 | 1.76 | 26.43 | 13.22 | n.d. | n.d. | 7.49 | ||
9 | 3.68 | 9.47 | 12.11 | 61.05 | 7.37 | n.d. | 3.68 | 2.63 | ||
17% | 1 | 28.65 | 12.06 | 15.89 | 32.91 | 5.67 | 4.82 | n.d. | n.d. | |
2 | 23.55 | 13.64 | 17.28 | 39.47 | 4.68 | 1.38 | n.d. | n.d. | ||
3 | 22.62 | 11.99 | 15.30 | 38.79 | 8.35 | 2.95 | n.d. | n.d. | ||
4 | 20.98 | 11.48 | 14.39 | 42.08 | 6.80 | 4.28 | n.d. | n.d. | ||
5 | 14.18 | 11.19 | 12.31 | 44.40 | 8.58 | 3.73 | 5.60 | n.d. | ||
6 | 16.04 | 7.86 | 20.44 | 35.53 | 9.43 | 3.77 | 6.92 | n.d. | ||
7 | 17.69 | 8.62 | 24.49 | 31.07 | 8.62 | n.d. | 6.58 | 2.95 | ||
8 | 11.18 | 12.33 | 22.93 | 31.60 | 11.95 | 3.08 | 6.94 | n.d. | ||
9 | 30.59 | 10.13 | 33.54 | 8.86 | 6.96 | 2.32 | 5.27 | 2.32 | ||
40 kPa | 14% | 1 | 14.11 | 5.93 | 30.88 | 16.97 | 20.04 | n.d. | 6.13 | 5.93 |
2 | 18.80 | 4.41 | 30.74 | 20.34 | 15.04 | n.d. | 5.98 | 4.70 | ||
3 | 20.18 | 3.68 | 19.09 | 33.69 | 14.92 | n.d. | 4.04 | 4.40 | ||
4 | 16.32 | 4.20 | 17.73 | 40.41 | 12.46 | n.d. | 4.19 | 4.70 | ||
5 | 18.93 | 4.27 | 8.27 | 34.67 | 15.73 | n.d. | 4.80 | 13.33 | ||
6 | 23.16 | 3.86 | 7.37 | 43.51 | 13.33 | n.d. | 4.91 | 3.86 | ||
7 | 40.38 | 11.97 | 9.62 | 15.81 | 10.47 | n.d. | 5.98 | 5.77 | ||
8 | 35.71 | 10.08 | 8.61 | 18.49 | 10.29 | n.d. | 6.51 | 10.29 | ||
9 | 22.79 | 6.05 | 49.30 | n.d. | 13.02 | n.d. | 5.58 | 3.26 | ||
17% | 1 | 24.54 | 10.44 | 15.75 | 21.79 | 10.44 | 5.86 | 5.31 | 5.86 | |
2 | 23.46 | 9.08 | 12.66 | 31.77 | 8.29 | 4.38 | 5.25 | 5.12 | ||
3 | 22.93 | 8.99 | 9.34 | 32.36 | 7.42 | 4.37 | 4.35 | 10.25 | ||
4 | 23.84 | 7.14 | 8.42 | 36.40 | 6.42 | 4.00 | 5.22 | 8.57 | ||
5 | 30.25 | 4.37 | 4.54 | 41.18 | 4.37 | 5.71 | 5.55 | 4.03 | ||
6 | 16.00 | 9.00 | 4.00 | 52.50 | 8.75 | 4.25 | 5.50 | n.d. | ||
7 | 31.46 | 7.67 | 6.14 | 39.39 | 3.07 | 4.09 | 5.37 | 2.81 | ||
8 | 39.48 | 6.26 | 6.26 | 30.09 | 8.70 | n.d. | 6.26 | 2.96 | ||
9 | 27.64 | 6.10 | 45.12 | 10.98 | 6.10 | n.d. | 4.07 | n.d. | ||
80 kPa | 14% | 1 | 20.42 | 12.71 | 24.38 | 22.50 | 20.00 | n.d. | n.d. | n.d. |
2 | 19.57 | 10.30 | 21.64 | 32.75 | 12.71 | n.d. | n.d. | 3.03 | ||
3 | 20.01 | 8.85 | 22.11 | 33.50 | 11.89 | n.d. | n.d. | 3.64 | ||
4 | 18.62 | 12.62 | 22.36 | 33.26 | 8.90 | n.d. | n.d. | 4.25 | ||
5 | 16.34 | 15.05 | 23.79 | 33.50 | 6.47 | n.d. | n.d. | 4.85 | ||
6 | 22.27 | 8.15 | 24.06 | 39.36 | 6.16 | n.d. | n.d. | n.d. | ||
7 | 13.51 | 12.74 | 26.45 | 35.71 | 7.34 | n.d. | n.d. | 4.25 | ||
8 | 11.71 | 15.73 | 25.00 | 37.41 | 6.82 | n.d. | n.d. | 3.32 | ||
9 | 7.94 | 2.12 | 72.49 | 12.70 | 4.76 | n.d. | n.d. | n.d. | ||
17% | 1 | 35.24 | 6.58 | 7.22 | 17.20 | 19.75 | 7.01 | 7.01 | n.d. | |
2 | 35.69 | 6.32 | 5.86 | 20.11 | 13.39 | 13.19 | n.d. | 5.44 | ||
3 | 35.87 | 6.35 | 5.36 | 19.94 | 15.46 | 11.67 | n.d. | 5.34 | ||
4 | 36.69 | 5.67 | 5.30 | 19.97 | 16.55 | 10.59 | n.d. | 5.23 | ||
5 | 29.04 | 4.53 | 8.92 | 25.07 | 18.56 | 4.11 | 5.67 | 4.11 | ||
6 | 35.43 | 5.58 | 13.11 | 28.31 | 8.09 | n.d. | 5.72 | 3.77 | ||
7 | 43.21 | 4.29 | 7.86 | 14.11 | 11.25 | 4.46 | 7.14 | 7.68 | ||
8 | 40.28 | 10.22 | 7.66 | 12.77 | 13.75 | 4.13 | 7.27 | 3.93 | ||
9 | 54.96 | 2.07 | 15.29 | 24.79 | n.d. | 1.65 | 1.24 | n.d. |
Energy value | 369 kcal/1582 kJ |
Protein | 7 g |
Total fat | 1.8 g |
Saturated fatty acids | 0.2 g |
Monounsaturated fatty acids | 0.3 g |
Polyunsaturated fatty acids | 0.6 g |
Carbohydrates | 79 g |
Dietary fiber | 3.9 g |
Vitamins | |
Vitamin A | 214 I.U. |
Vitamin E | 0.12 mg |
Vitamin B6 | 0.2 mg |
Folic acid | 85 μg |
Pantothenic acid | 0.848 mg |
Minerals | |
Calcium | 8 mg |
Iron | 0.2 mg |
Magnesium | 114 mg |
Phosphorus | 285 mg |
Potassium | 195 mg |
Sodium | 5 mg |
Zinc | 1.68 mg |
Copper | 0.75 mg |
Manganese | 1.63 mg |
Selenium | 2.7 μg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusinek, R.; Żytek, A.; Stasiak, M.; Wiącek, J.; Gancarz, M. Application of MOX Sensors to Determine the Emission of Volatile Compounds in Corn Groats as a Function of Vertical Pressure in the Silo and Moisture Content of the Bed. Sensors 2024, 24, 2187. https://doi.org/10.3390/s24072187
Rusinek R, Żytek A, Stasiak M, Wiącek J, Gancarz M. Application of MOX Sensors to Determine the Emission of Volatile Compounds in Corn Groats as a Function of Vertical Pressure in the Silo and Moisture Content of the Bed. Sensors. 2024; 24(7):2187. https://doi.org/10.3390/s24072187
Chicago/Turabian StyleRusinek, Robert, Aleksandra Żytek, Mateusz Stasiak, Joanna Wiącek, and Marek Gancarz. 2024. "Application of MOX Sensors to Determine the Emission of Volatile Compounds in Corn Groats as a Function of Vertical Pressure in the Silo and Moisture Content of the Bed" Sensors 24, no. 7: 2187. https://doi.org/10.3390/s24072187
APA StyleRusinek, R., Żytek, A., Stasiak, M., Wiącek, J., & Gancarz, M. (2024). Application of MOX Sensors to Determine the Emission of Volatile Compounds in Corn Groats as a Function of Vertical Pressure in the Silo and Moisture Content of the Bed. Sensors, 24(7), 2187. https://doi.org/10.3390/s24072187