Fractional-Order Electrical Modeling of Aluminum Coated via Plasma Electro-Oxidation and Thermal Spray Methods to Optimize Radiofrequency Medical Devices
Abstract
:1. Introduction
Surface Coating Techniques
2. Materials and Methods
2.1. Measurement System
2.2. Electrical Equivalent Models
2.3. Fitting Data Processing
3. Results and Discussion
3.1. Input Data for Fitting
3.2. Electrical Equivalent Fitting
3.3. Goodness of Fit Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldberg, S.N. Radiofrequency tumor ablation: Principles and techniques. Eur. J. Ultrasound 2001, 13, 129–147. [Google Scholar] [CrossRef] [PubMed]
- Faylon, M.; Baumgard, L.; Rhoads, R.; Spurlock, D. Effects of acute heat stress on lipid metabolism of bovine primary adipocytes. J. Dairy Sci. 2015, 98, 8732–8740. [Google Scholar] [CrossRef] [PubMed]
- Lubna, L.; Hameed, H.; Ansari, S.; Zahid, A.; Sharif, A.; Abbas, H.T.; Alqahtani, F.; Mufti, N.; Ullah, S.; Imran, M.A.; et al. Radio frequency sensing and its innovative applications in diverse sectors: A comprehensive study. Front. Commun. Netw. 2022, 3, 1010228. [Google Scholar] [CrossRef]
- Henschenmacher, B.; Bitsch, A.; de las Heras Gala, T.; Forman, H.J.; Fragoulis, A.; Ghezzi, P.; Kellner, R.; Koch, W.; Kuhne, J.; Sachno, D.; et al. The effect of radiofrequency electromagnetic fields (RF-EMF) on biomarkers of oxidative stress in vivo and in vitro: A protocol for a systematic review. Environ. Int. 2022, 158, 106932. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.; Ardoino, L.; Villani, P.; Marino, C. In Vivo Studies on Radiofrequency (100 kHz–300 GHz) Electromagnetic Field Exposure and Cancer: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 2071. [Google Scholar] [CrossRef] [PubMed]
- Mazur, P. Freezing of living cells: Mechanisms and implications. Am. J. Physiol. 1984, 247, C125–C142. [Google Scholar] [CrossRef] [PubMed]
- Cosman, E.R.; Dolensky, J.R.; Hoffman, R.A. Factors That Affect Radiofrequency Heat Lesion Size. Pain Med. 2014, 15, 2020–2036. [Google Scholar] [CrossRef] [PubMed]
- D’andrea, J.; Ziriax, J.; Adair, E. Radio frequency electromagnetic fields: Mild hyperthermia and safety standards. Prog. Brain Res. 2007, 162, 107–135. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, A.H.; Barbé, K. Dynamical system modelling to discriminate tissue types for bipolar electrosurgery. Biomed. Signal Process. Control 2023, 86, 105209. [Google Scholar] [CrossRef]
- Birs, I.; Muresan, C. Fractional-Order Event-Based Control Meets Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 281–304. [Google Scholar] [CrossRef]
- Wang, X.; Qi, H.; Yang, X.; Xu, H. Analysis of the time-space fractional bioheat transfer equation for biological tissues during laser irradiation. Int. J. Heat Mass Transf. 2021, 177, 121555. [Google Scholar] [CrossRef]
- Ghanmi, A.; Abbas, I.A. An analytical study on the fractional transient heating within the skin tissue during the thermal therapy. J. Therm. Biol. 2019, 82, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Elwy, O.; Abdelaty, A.M.; Said, L.A.; Radwan, A.G. Fractional Calculus Definitions, Approximations, and Engineering Applications. J. Eng. Appl. Sci. 2020, 67, 1–30. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering. Crit. Rev. Biomed. Eng. 2004, 32, 1–104. [Google Scholar] [CrossRef] [PubMed]
- Boghdady, T.A.; Mahmoud, M.; Zahab, E.A.; Tag-Eldin, E.; Sayed, M. Power Level Control of Nuclear Power Plants during Load Following Operation Using Fractional Order Controller Based on a Modified Algorithm. IEEE Access 2023, 11, 134382–134403. [Google Scholar] [CrossRef]
- Chen, W.-L.; Lin, C.-H.; Wang, J.-N.; Lu, P.-J.; Chan, M.-Y.; Wu, J.-T.; Kan, C.-D. Assistive technology using regurgitation fraction and fractional-order integration to assess pulmonary valve insufficiency for pre-surgery decision making and post-surgery outcome evaluation. Biomed. Signal Process. Control 2018, 44, 247–257. [Google Scholar] [CrossRef]
- Sikdar, S.; Menezes, P.V.; Maccione, R.; Jacob, T.; Menezes, P.L. Plasma Electrolytic Oxidation (PEO) Process—Processing, Properties, and Applications. Nanomaterials 2021, 11, 1375. [Google Scholar] [CrossRef] [PubMed]
- Wielage, B.; Alisch, G.; Lampke, T.; Nickel, D. Anodizing—A Key for Surface Treatment of Aluminium. Key Eng. Mater. 2008, 384, 263–281. [Google Scholar] [CrossRef]
- Matykina, E.; Arrabal, R.; Skeldon, P.; Thompson, G. Investigation of the growth processes of coatings formed by AC plasma electrolytic oxidation of aluminium. Electrochim. Acta 2009, 54, 6767–6778. [Google Scholar] [CrossRef]
- Walsh, F.C.; Low, C.T.J.; Wood, R.J.K.; Stevens, K.T.; Archer, J.; Poeton, A.R.; Ryder, A. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Trans. IMF 2009, 87, 122–135. [Google Scholar] [CrossRef]
- Yasakau, K.; Starykevich, M.; Ferreira, M.; Zheludkevich, M. A critical look at interpretation of electrochemical impedance spectra of sol-gel coated aluminium. Electrochim. Acta 2021, 378, 138091. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Chaharmahali, R.; Babaei, K. Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review. J. Magnes. Alloy. 2020, 8, 799–818. [Google Scholar] [CrossRef]
- Ghayekhloo, A.; Afsahi, M.; Orouji, A.A. An Optimized Checkerboard Structure for Cross-Section Reduction: Producing a Coating Surface for Bistatic Radar Using the Equivalent Electric Circuit Model. IEEE Antennas Propag. Mag. 2018, 60, 78–85. [Google Scholar] [CrossRef]
- Choi, W.; Shin, H.-C.; Kim, J.M.; Choi, J.-Y.; Yoon, W.-S. Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. J. Electrochem. Sci. Technol. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Freeborn, T.J. A Survey of Fractional-Order Circuit Models for Biology and Biomedicine. IEEE J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 416–424. [Google Scholar] [CrossRef]
- Lindinger, W.; Hansel, A.; Jordan, A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int. J. Mass Spectrom. Ion Process. 1998, 173, 191–241. [Google Scholar] [CrossRef]
- Elwakil, A.S. Fractional-Order Circuits and Systems: An Emerging Interdisciplinary Research Area. IEEE Circuits Syst. Mag. 2010, 10, 40–50. [Google Scholar] [CrossRef]
- Tepljakov, A.; Vunder, V.; Petlenkov, E.; Nakshatharan, S.S.; Punning, A.; Kaparin, V.; Belikov, J.; Aabloo, A. Fractional-order modeling and control of ionic polymer-metal composite actuator. Smart Mater. Struct. 2019, 28, 084008. [Google Scholar] [CrossRef]
- Desai, P.D.; James, H.M.; Ho, C.Y. Electrical Resistivity of Aluminum and Manganese. J. Phys. Chem. Ref. Data 1984, 13, 1131–1172. [Google Scholar] [CrossRef]
- Odhiambo, J.G.; Li, W.; Zhao, Y.; Li, C. Porosity and Its Significance in Plasma-Sprayed Coatings. Coatings 2019, 9, 460. [Google Scholar] [CrossRef]
- Jadhav, P.; Bongale, A.; Kumar, S. The effects of processing parameters on the formation of oxide layers in aluminium alloys using plasma electrolytic oxidation technique. J. Mech. Behav. Mater. 2021, 30, 118–129. [Google Scholar] [CrossRef]
- Sieber, M.; Althöfer, I.; Höhlich, D.; Scharf, I.; Böttger, D.; Böttger, S.; Böttger, E.; Lampke, T. Anodisation with dynamic current control for tailored alumina coatings. IOP Conf. Ser. Mater. Sci. Eng. 2016, 118, 012038. [Google Scholar] [CrossRef]
- Guidi, F.; Moretti, G.; Carta, G.; Natali, M.; Rossetto, G.; Pierino, Z.; Salmaso, G.; Rigato, V. Electrochemical anticorrosion performance evaluation of Al2O3 coatings deposited by MOCVD on an industrial brass substrate. Electrochim. Acta 2005, 50, 4609–4614. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, J.; Chen, J. Thermal Transport in Conductive Polymer–Based Materials. Adv. Funct. Mater. 2020, 30, 1904704. [Google Scholar] [CrossRef]
- Barai, D.P.; Chichghare, K.K.; Chawhan, S.S.; Bhanvase, B.A. Synthesis and Characterization of Nanofluids: Thermal Conductivity, Electrical Conductivity and Particle Size Distribution. In Nanotechnology for Energy and Environmental Engineering; Springer: Cham, Switzerland, 2020; pp. 1–49. [Google Scholar] [CrossRef]
- Ram, R.; Soni, V.; Khastgir, D. Electrical and thermal conductivity of polyvinylidene fluoride (PVDF)—Conducting Carbon Black (CCB) composites: Validation of various theoretical models. Compos. Part B Eng. 2020, 185, 107748. [Google Scholar] [CrossRef]
- Kultayeva, S.; Ha, J.-H.; Malik, R.; Kim, Y.-W.; Kim, K.J. Effects of porosity on electrical and thermal conductivities of porous SiC ceramics. J. Eur. Ceram. Soc. 2020, 40, 996–1004. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Chaharmahali, R.; Babaei, K.; Nouri, M.; Keshavarz, M.K.; Kaseem, M. A review of effective strides in amelioration of the biocompatibility of PEO coatings on Mg alloys. J. Magnes. Alloy. 2022, 10, 2354–2383. [Google Scholar] [CrossRef]
- Bose, S.; Ke, D.; Vu, A.A.; Bandyopadhyay, A.; Goodman, S.B. Thermal Oxide Layer Enhances Crystallinity and Mechanical Properties for Plasma-Sprayed Hydroxyapatite Biomedical Coatings. ACS Appl. Mater. Interfaces 2020, 12, 33465–33472. [Google Scholar] [CrossRef] [PubMed]
- Fattah-Alhosseini, A.; Chaharmahali, R.; Keshavarz, M.K.; Babaei, K. Surface characterization of bioceramic coatings on Zr and its alloys using plasma electrolytic oxidation (PEO): A review. Surfaces Interfaces 2021, 25, 101283. [Google Scholar] [CrossRef]
- Molaei, M.; Fattah-Alhosseini, A.; Nouri, M.; Nourian, A. Systematic optimization of corrosion, bioactivity, and biocompatibility behaviors of calcium-phosphate plasma electrolytic oxidation (PEO) coatings on titanium substrates. Ceram. Int. 2022, 48, 6322–6337. [Google Scholar] [CrossRef]
- UNE-EN ISO 10993-1:2021; Evaluación Biológica de Productos Sanitarios.Parte 1: Evaluación y Ensayos Mediante un Proceso de Gestión del Riesgo. International Organization for Standarization (ISO): Geneva, Switzerland, 2021. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=norma-une-en-iso-10993-1-2021-n0067302 (accessed on 13 November 2023).
- Espallargas, N. 1—Introduction to thermal spray coatings. In Future Development of Thermal Spray Coatings—Types, Designs, Manufacture and Applications; Elsevier Inc.: Oxford, UK, 2015; pp. 1–13. [Google Scholar] [CrossRef]
- Fotovvati, B.; Namdari, N.; Dehghanghadikolaei, A. On Coating Techniques for Surface Protection: A Review. J. Manuf. Mater. Process. 2019, 3, 28. [Google Scholar] [CrossRef]
- Chua, E.K.; Li, X.M.; Hu, S.Q.; See, K.Y. Measurement of power distribution network impedance using an error analysis approach. In Proceedings of the 16th Electronics Packaging Technology Conference, EPTC 2014, Singapore, 3–5 December 2014; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 117–121. [Google Scholar] [CrossRef]
- Martinsen, O.G.; Grimnes, S. Bioimpedance and Bioelectricity Basics, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Available online: https://www.elsevier.com/books/bioimpedance-and-bioelectricity-basics/grimnes/978-0-12-411470-8 (accessed on 6 September 2020).
- Kern, P.; Baner, A.L.; Lange, J. Electrochemical impedance spectroscopy as a tool for investigating the quality and performance of coated food cans. J. Coat. Technol. 1999, 71, 67–74. [Google Scholar] [CrossRef]
- AboBakr, A.; Said, L.A.; Madian, A.H.; Elwakil, A.S.; Radwan, A.G. Experimental comparison of integer/fractional-order electrical models of plant. AEU—Int. J. Electron. Commun. 2017, 80, 1–9. [Google Scholar] [CrossRef]
- Wang, F.S.; Li, Y.; Zhang, Y.X.; Chen, G.Y. A method to select the optimal equivalent electrical circuit applied to study corrosion system of composite coating on magnesium alloy. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2020, 384, 126452. [Google Scholar] [CrossRef]
- Gateman, S.M.; Gharbi, O.; de Melo, H.G.; Ngo, K.; Turmine, M.; Vivier, V. On the use of a constant phase element (CPE) in electrochemistry. Curr. Opin. Electrochem. 2022, 36, 101133. [Google Scholar] [CrossRef]
- Freeborn, T.J.; Maundy, B.; Elwakil, A.S. Extracting the parameters of the double-dispersion Cole bioimpedance model from magnitude response measurements. Med. Biol. Eng. Comput. 2014, 52, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, M.; Said, L.A.; Madian, A.H.; Radwan, A.G.; Elwakil, A.S. Fractional-Order Bio-Impedance Modeling for Interdisciplinary Applications: A Review. IEEE Access 2021, 9, 33158–33168. [Google Scholar] [CrossRef]
- Gönüllü, Y.; Kelm, K.; Mathur, S.; Saruhan, B. Equivalent Circuit Models for Determination of the Relation between the Sensing Behavior and Properties of Undoped/Cr Doped TiO2 NTs. Chemosensors 2014, 2, 69–84. [Google Scholar] [CrossRef]
- Yrjänä, V. DearEIS—A GUI program for analyzing impedance spectra. J. Open Source Softw. 2022, 7, 4808. [Google Scholar] [CrossRef]
- Henley, S.S.; Golden, R.M.; Kashner, T.M. Statistical modeling methods: Challenges and strategies. Biostat. Epidemiol. 2020, 4, 105–139. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, 1–24. [Google Scholar] [CrossRef]
Sample ID | Surface Coating Method | Thickness (µm) |
---|---|---|
1 | PEO | 20 |
2 | PEO | 40 |
3 | PEO | 80 |
4 | PEO | 100 |
5 | TS and CP | 40 and 60 |
6 | TS and CP | 70 and 100 |
7 | TS | 250 |
Parameters | Description |
---|---|
Substrate | Al |
Applied current density (mA·cm−2) | 100 (50 Hz) |
Cell Voltage (V) | 400 to 600 |
Duration (min) | 90 to 150 |
Temperature (K) | 343 to 353 |
Electrolyte | 2 to 10 g dm−3 Na2SiO3 |
Compounds present in oxide layer | 1 to 2 g dm−3 KOH |
Substrate | α, γ-Al2O3 |
Circuit Element Values | Id.1 | Id.2 | Id.3 | Id.4 | Id.5 | Id.6 | Id.7 |
---|---|---|---|---|---|---|---|
R1 (kΩ) | 0.85 | 1.22 | 0.92 | 1.86 | 0.60 | 0.94 | 9.14 |
R2 (kΩ) | 16.07 | 16.97 | 22.30 | 15.15 | 4.43 | 12.40 | 199.00 |
CPE1-T·10−12 (sCPE-P/Ω) | 1.50 | 0.47 | 1.60 | 0.23 | 0.39 | 0.69 | 0.14 |
CPE1-P | 0.81 | 0.99 | 0.74 | 0.83 | 0.94 | 0.99 | 0.78 |
Circuit Element Values | Id.1 | Id.2 | Id.3 | Id.4 | Id.5 | Id.6 | Id.7 |
---|---|---|---|---|---|---|---|
R1 (Ω) | 90.42 | 60.95 | 131.10 | 462.60 | 148.60 | 62.20 | 182.10 |
L1 (mH) | 0.02 | 0.42 | 0.65 | 0.32 | 0.25 | 0.49 | 4.60 |
CPE1-T·10−12 (sCPE-P/Ω) | 129.00 | 47.30 | 58.90 | 193.00 | 289.00 | 84.10 | 6.09 |
CPE1-P | 0.95 | 0.99 | 0.97 | 0.89 | 0.93 | 0.97 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaquero-Gallardo, N.; Millán-Blasco, O.; Martínez-García, H. Fractional-Order Electrical Modeling of Aluminum Coated via Plasma Electro-Oxidation and Thermal Spray Methods to Optimize Radiofrequency Medical Devices. Sensors 2024, 24, 2563. https://doi.org/10.3390/s24082563
Vaquero-Gallardo N, Millán-Blasco O, Martínez-García H. Fractional-Order Electrical Modeling of Aluminum Coated via Plasma Electro-Oxidation and Thermal Spray Methods to Optimize Radiofrequency Medical Devices. Sensors. 2024; 24(8):2563. https://doi.org/10.3390/s24082563
Chicago/Turabian StyleVaquero-Gallardo, Noelia, Oliver Millán-Blasco, and Herminio Martínez-García. 2024. "Fractional-Order Electrical Modeling of Aluminum Coated via Plasma Electro-Oxidation and Thermal Spray Methods to Optimize Radiofrequency Medical Devices" Sensors 24, no. 8: 2563. https://doi.org/10.3390/s24082563
APA StyleVaquero-Gallardo, N., Millán-Blasco, O., & Martínez-García, H. (2024). Fractional-Order Electrical Modeling of Aluminum Coated via Plasma Electro-Oxidation and Thermal Spray Methods to Optimize Radiofrequency Medical Devices. Sensors, 24(8), 2563. https://doi.org/10.3390/s24082563