Co3O4-Based Materials as Potential Catalysts for Methane Detection in Catalytic Gas Sensors †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure and Morphology of Investigated Catalysts
3.2. Characterization of Catalytic Response
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bársony, I.; Ádám, M.; Fürjes, P.; Lucklum, R.; Hirschfelder, M.; Kulinyi, S.; Dücső, C. Efficient catalytic combustion in integrated micropellistors. Meas. Sci. Technol. 2009, 20, 124009. [Google Scholar] [CrossRef]
- Szulczyński, B.; Gębicki, J. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air. Environments 2017, 4, 21. [Google Scholar] [CrossRef]
- Roslyakov, I.; Kolesnik, I.; Evdokimov, P.; Skryabina, O.; Garshev, A.; Mironov, S.; Stolyarov, V.; Baranchikov, A.; Napolskii, K. Microhotplate catalytic sensors based on porous anodic alumina: Operando study of methane response hysteresis. Sens. Actuators B 2021, 330, 129307. [Google Scholar] [CrossRef]
- Samotaev, N.; Pisliakov, A.; Gorshkova, A.; Dzhumaev, P.; Barsony, I.; Ducso, C.; Biro, F. Al2O3 nanostructured gas sensitive material for silicon based low power thermocatalytic sensor. Mater. Today Proc. 2020, 30, 443–447. [Google Scholar] [CrossRef]
- Lorenzo-Bayona, J.L.; León, D.; Amez, I.; Castells, B.; Medic, L. Experimental Comparison of Functionality between the Main Types of Methane Measurement Sensors in Mines. Energies 2023, 16, 2207. [Google Scholar] [CrossRef]
- Choya, A.; Rivas, B.d.; González-Velasco, J.R.; Gutiérrez-Ortiz, J.I.; López-Fonseca, R. Oxidation of residual methane from VNG vehicles over Co3O4-based catalysts: Comparison among bulk, Al2O3-supported and Ce-doped catalysts. Appl. Catal. B Environ. 2018, 237, 844–854. [Google Scholar] [CrossRef]
- He, L.; Fan, Y.; Bellettre, J.; Yue, J.; Luo, L. A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs. Renew. Sustain. Energy Rev. 2020, 119, 109589. [Google Scholar] [CrossRef]
- Ma, L.; Geng, Y.; Chen, X.; Yan, N.; Li, J.; Schwank, J.W. Reaction mechanism of propane oxidation over Co3O4 nanorods as rivals of platinum catalysts. Chem. Eng. J. 2020, 402, 125911. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, X.; Zhang, Y.; Wang, Z. Research on High Performance Methane Gas Concentration Sensor Based on Pyramid Beam Splitter Matrix. Sensors 2024, 24, 602. [Google Scholar] [CrossRef] [PubMed]
- Baker, A. Apparatus for Detecting Combustible Gases Having an Electrically Conductive Member Enveloped in a Refractory Material. U.S. Patent 3,092,799, 4 June 1963. [Google Scholar]
- White, R. The Pellistor Is Dead? Long Live the Pellistor! Available online: www.envirotech-online.com/article/environmental-laboratory/7/sgx-sensortech/the-pellistor-is-dead-nbsplong-live-the-pellistor/1699 (accessed on 28 February 2024).
- Doncaster, A. A Discussion on Pellistor Gas Sensor Responses. Annual Buyers Guide. 2009. Available online: https://www.chromatographytoday.com/article/gas-detection/8/clairair/a-discussion-on-pellistor-gas-sensor-responses/467 (accessed on 18 March 2021).
- Florea, O.G.; Stănoiu, A.; Gheorghe, M.; Cobianu, C.; Neaţu, F.; Trandafir, M.M.; Neaţu, Ş.; Florea, M.; Simion, C.E. Methane Combustion Using Pd Deposited on CeOx-MnOx/La-Al2O3 Pellistors. Materials 2020, 13, 4888. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Khivantsev, K.; Wang, Y. Low-Temperature Methane Oxidation for Efficient Emission Control in Natural Gas Vehicles: Pd and Beyond. ACS Catal. 2020, 10, 14304–14314. [Google Scholar] [CrossRef]
- Lim, T.H.; Cho, S.J.; Yang, H.S.; Engelhard, M.; Kim, D.H. Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion. Appl. Catal. A Gen. 2015, 505, 62–69. [Google Scholar] [CrossRef]
- Dai, Y.; Kumar, V.P.; Zhu, C.; Wang, H.; Smith, K.J.; Wolf, M.O.; MacLachlan, M.J. Bowtie-Shaped NiCo2O4 Catalysts for Low-Temperature Methane Combustion. Adv. Funct. Mater. 2019, 29, 1807519. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Y.; Zhou, H.; Huang, W.; Pu, Z. Combustion of lean methane over Co3O4 catalysts prepared with different cobalt precursors. RSC Adv. 2020, 10, 4490–4498. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Shi, H.; Sun, D.; Lu, H.; Hou, B.; Jia, L.; Xiao, Y.; Li, D. Facet-Dependent Activity of Co3O4 Catalyst for C3H8 Combustion. ChemCatChem 2019, 11, 5570–5579. [Google Scholar] [CrossRef]
- Lin, H.; Liu, Y.; Deng, J.; Jing, L.; Dai, H. Methane Combustion over the Porous Oxides and Supported Noble Metal Catalysts. Catalysts 2023, 13, 427. [Google Scholar] [CrossRef]
- Cargnello, M.; Delgado Jaén, J.J.; Hernández Garrido, J.C.; Bakhmutsky, K.; Montini, T.; Calvino Gámez, J.J.; Gorte, R.J.; Fornasiero, P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 2012, 337, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.F.; Shan, J.; Nguyen, L.; Wang, Z.; Zhang, S.; Zhang, L.; Wu, Z.; Huang, W.; Zeng, S.; Hu, P. Understanding complete oxidation of methane on spinel oxides at a molecular level. Nat. Commun. 2015, 6, 65. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Chang, L.; Yao, L.; Meng, W.; Yu, Q.; Zhang, X.; Liu, X.; Wang, X.; Chen, W.; Li, X. Acid etching induced defective Co3O4 as an efficient catalyst for methane combustion reaction. New J. Chem. 2021, 45, 3546–3551. [Google Scholar] [CrossRef]
- Liotta, L.F.; Wu, H.; Pantaleo, G.; Venezia, A.M. Co3O4 nanocrystals and Co3O4–MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: A review. Catal. Sci. Technol. 2013, 3, 3085–3102. [Google Scholar] [CrossRef]
- Ercolino, G.; Stelmachowski, P.; Grzybek, G.; Kotarba, A.; Specchia, S. Optimization of Pd catalysts supported on Co3O4 for low-temperature lean combustion of residual methane. Appl. Catal. B Environ. 2017, 206, 712–725. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, X.; Zhang, Y.; Sun, L.; Tian, H.; Yang, X. Ultrafine PdOx nanoparticles on spinel oxides by galvanic displacement for catalytic combustion of methane. Catal. Sci. Technol. 2019, 9, 6404–6414. [Google Scholar] [CrossRef]
- Shao, C.; Li, W.; Lin, Q.; Huang, Q.; Pi, D. Low Temperature Complete Combustion of Lean Methane over Cobalt-Nickel Mixed-Oxide Catalysts. Energy Technol. 2017, 5, 604–610. [Google Scholar] [CrossRef]
- Ren, Z.; Wu, Z.; Song, W.; Xiao, W.; Guo, Y.; Ding, J.; Suib, S.L.; Gao, P.-X. Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability. Appl. Catal. B Environ. 2016, 180, 150–160. [Google Scholar] [CrossRef]
- Chen, J.; Zou, X.; Rui, Z.; Ji, H. Deactivation Mechanism, Countermeasures, and Enhanced CH4 Oxidation Performance of Nickel/Cobalt Oxides. Energy Technol. 2020, 8, 1900641. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, S.; Liu, W.; Gao, X.; Gao, D.; Wang, M.; Wang, S. Morphology-dependent performance of Co3O4 via facile and controllable synthesis for methane combustion. Appl. Catal. A Gen. 2016, 525, 94–102. [Google Scholar] [CrossRef]
- Pu, Z.; Zhou, H.; Zheng, Y.; Huang, W.; Li, X. Enhanced methane combustion over Co3O4 catalysts prepared by a facile precipitation method: Effect of aging time. Appl. Surf. Sci. 2017, 410, 14–21. [Google Scholar] [CrossRef]
- Yurchenko, O.; Pernau, H.-F.; Engel, L.; Bierer, B.; Jägle, M.; Wöllenstein, J. Impact of particle size and morphology of cobalt oxide on the thermal response to methane examined by thermal analysis. J. Sens. Sens. Syst. 2021, 10, 37–42. [Google Scholar] [CrossRef]
- Lyu, X.; Yurchenko, O.; Diehle, P.; Altmann, F.; Wöllenstein, J.; Schmitt, K. Accelerated Deactivation of Mesoporous Co3O4-Supported Au–Pd Catalyst through Gas Sensor Operation. Chemosensors 2023, 11, 271. [Google Scholar] [CrossRef]
- Simion, C.E.; Florea, O.G.; Florea, M.; Neaţu, F.; Neaţu, Ş.; Trandafir, M.M.; Stănoiu, A. CeO2:Mn3O4 Catalytic Micro-Converters Tuned for CH4 Detection Based on Catalytic Combustion under Real Operating Conditions. Materials 2020, 13, 2196. [Google Scholar] [CrossRef]
- Yurchenko, O.; Pernau, H.-F.; Engel, L.; Wöllenstein, J. Differential thermal analysis techniques as a tool for preliminary examination of catalyst for combustion. Sci. Rep. 2023, 13, 9792. [Google Scholar] [CrossRef] [PubMed]
- Bierer, B.; Grgić, D.; Yurchenko, O.; Engel, L.; Pernau, H.-F.; Jägle, M.; Reindl, L.; Wöllenstein, J. Low-power sensor node for the detection of methane and propane. J. Sens. Sens. Syst. 2021, 10, 185–191. [Google Scholar] [CrossRef]
- Hu, L.; Peng, Q.; Li, Y. Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137. [Google Scholar] [CrossRef] [PubMed]
- Datye, A.K.; Votsmeier, M. Opportunities and challenges in the development of advanced materials for emission control catalysts. Nat. Mater. 2020, 20, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Sanchis, R.; García, A.; Ivars-Barceló, F.; Taylor, S.H.; García, T.; Dejoz, A.; Vázquez, M.I.; Solsona, B. Highly Active Co3O4-Based Catalysts for Total Oxidation of Light C1-C3 Alkanes Prepared by a Simple Soft Chemistry Method: Effect of the Heat-Treatment Temperature and Mixture of Alkanes. Materials 2021, 14, 7120. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurchenko, O.; Diehle, P.; Altmann, F.; Schmitt, K.; Wöllenstein, J. Co3O4-Based Materials as Potential Catalysts for Methane Detection in Catalytic Gas Sensors. Sensors 2024, 24, 2599. https://doi.org/10.3390/s24082599
Yurchenko O, Diehle P, Altmann F, Schmitt K, Wöllenstein J. Co3O4-Based Materials as Potential Catalysts for Methane Detection in Catalytic Gas Sensors. Sensors. 2024; 24(8):2599. https://doi.org/10.3390/s24082599
Chicago/Turabian StyleYurchenko, Olena, Patrick Diehle, Frank Altmann, Katrin Schmitt, and Jürgen Wöllenstein. 2024. "Co3O4-Based Materials as Potential Catalysts for Methane Detection in Catalytic Gas Sensors" Sensors 24, no. 8: 2599. https://doi.org/10.3390/s24082599
APA StyleYurchenko, O., Diehle, P., Altmann, F., Schmitt, K., & Wöllenstein, J. (2024). Co3O4-Based Materials as Potential Catalysts for Methane Detection in Catalytic Gas Sensors. Sensors, 24(8), 2599. https://doi.org/10.3390/s24082599