Bridging Requirements, Planning, and Evaluation: A Review of Social Robot Navigation
Abstract
:1. Introduction
1.1. Review Scope
1.2. Materials Collection
2. Related Work
3. Requirements of Socially Aware Navigation
3.1. Taxonomy of Requirements for Social Robot Navigation
3.2. Physical Safety of Humans (Req. 1)
3.3. Perceived Safety of Humans (Req. 2)
3.3.1. Regarding the Personal Zones of Individuals (Req. 2.1)
3.3.2. Avoiding Crossing through Human Groups (Req. 2.2)
3.3.3. Passing Speed during Unfocused Interaction (Req. 2.3)
3.3.4. Motion Legibility during Unfocused Interaction (Req. 2.4)
3.3.5. Approach Direction for a Focused Interaction (Req. 2.5)
Individual Humans (Req. 2.5.1)
Human Groups (Req. 2.5.2)
3.3.6. Approach Speed for a Focused Interaction (Req. 2.6)
3.3.7. Occlusion Zones Avoidance (Req. 2.7)
3.4. Naturalness of the Robot Motion (Req. 3)
3.4.1. Avoiding Erratic Motions (Req. 3.1)
3.4.2. Modulating Gaze Direction (Req. 3.2)
Unfocused Interaction
Focused Interaction
3.5. Compliance with Social Norms (Req. 4)
3.5.1. Follow the Accompanying Strategy (Req. 4.1)
Tracking Humans from the Front (Req. 4.1.1)
Person Following (Req. 4.1.2)
Side by Side (Req. 4.1.3)
3.5.2. Avoiding Blocking the Affordance Spaces (Req. 4.2)
3.5.3. Avoiding Crossing the Activity Spaces (Req. 4.3)
3.5.4. Passing on the Dominant Side (Req. 4.4)
3.5.5. Yielding the Way to a Human at Crossings (Req. 4.5)
3.5.6. Standing in Line (Req. 4.6)
3.5.7. Obeying Elevator Etiquette (Req. 4.7)
3.6. Discussion
4. Perception
4.1. Environment Representation
4.2. Human Detection and Tracking
4.3. Human Trajectory Prediction
4.4. Contextual Awareness
4.4.1. Environmental Context
4.4.2. Interpersonal Context
4.4.3. Diversity Context
4.4.4. Task Context
5. Motion Planning
5.1. Global Path Planning
5.1.1. Graph-Based Methods
Algorithms
Human-Aware Constraints
5.1.2. Potential Field Methods
5.1.3. Roadmap Methods
5.1.4. Sampling-Based Methods
Algorithms
Human-Aware Constraints
5.2. Local Trajectory Planning
5.2.1. Sampling-Based Methods
5.2.2. Fuzzy Inference Methods
5.2.3. Force-Based Methods
5.2.4. Velocity Obstacles Methods
5.2.5. Optimization-Based Methods
DWA-Based Methods
TEB-Based Methods
Other Methods
5.2.6. Learning-Based Methods
Inverse Reinforcement Learning
Reinforcement Learning
Miscellaneous Approaches
5.3. Discussion
6. Evaluation
6.1. Methods
6.2. Studies
6.3. Tools
6.3.1. Datasets
6.3.2. Simulators
6.3.3. Benchmarks
7. Discussion
7.1. In-Depth User Studies Exploring Human Preferences and Norm Protocols
7.2. Implementing Complex Social Conventions in Robot Navigation Systems
7.3. Context-Aware Framework for Modulating Motion Planning Objectives
7.4. Context-Aware Benchmarks for Evaluating Nonprimitive Social Interactions
7.5. Design of Absolute Social Metrics for Social Robot Navigation Benchmarking
8. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burgard, W.; Cremers, A.B.; Fox, D.; Hähnel, D.; Lakemeyer, G.; Schulz, D.; Steiner, W.; Thrun, S. The interactive museum tour-guide robot. In Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, Madison, WI, USA, 26–30 July 1998; AAAI ’98/IAAI ’98. pp. 11–18. [Google Scholar]
- Thrun, S.; Bennewitz, M.; Burgard, W.; Cremers, A.; Dellaert, F.; Fox, D.; Hahnel, D.; Rosenberg, C.; Roy, N.; Schulte, J.; et al. MINERVA: A second-generation museum tour-guide robot. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, USA, 10–15 May 1999; Volume 3, pp. 1999–2005. [Google Scholar] [CrossRef]
- Möller, R.; Furnari, A.; Battiato, S.; Härmä, A.; Farinella, G.M. A survey on human-aware robot navigation. Robot. Auton. Syst. 2021, 145, 103837. [Google Scholar] [CrossRef]
- Mirsky, R.; Xiao, X.; Hart, J.; Stone, P. Conflict Avoidance in Social Navigation—A Survey. J. Hum. Robot Interact. 2024, 13, 1–36. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, C.M. Evaluation of Socially-Aware Robot Navigation. Front. Robot. AI 2022, 8, 721317. [Google Scholar] [CrossRef] [PubMed]
- Satake, S.; Kanda, T.; Glas, D.F.; Imai, M.; Ishiguro, H.; Hagita, N. How to approach humans? strategies for social robots to initiate interaction. In Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, La Jolla, CA, USA, 9–13 March 2009; HRI ’09. pp. 109–116. [Google Scholar] [CrossRef]
- Trautman, P.; Ma, J.; Murray, R.M.; Krause, A. Robot navigation in dense human crowds: Statistical models and experimental studies of human-robot cooperation. Int. J. Robot. Res. 2015, 34, 335–356. [Google Scholar] [CrossRef]
- Biswas, J.; Veloso, M. The 1,000-km Challenge: Insights and Quantitative and Qualitative Results. IEEE Intell. Syst. 2016, 31, 86–96. [Google Scholar] [CrossRef]
- Shiomi, M.; Zanlungo, F.; Hayashi, K.; Kanda, T. Towards a Socially Acceptable Collision Avoidance for a Mobile Robot Navigating Among Pedestrians Using a Pedestrian Model. Int. J. Soc. Robot. 2014, 6, 443–455. [Google Scholar] [CrossRef]
- Lasota, P.A.; Fong, T.; Shah, J.A. A Survey of Methods for Safe Human-Robot Interaction. Found. Trends® Robot. 2017, 5, 261–349. [Google Scholar] [CrossRef]
- Singamaneni, P.T.; Bachiller-Burgos, P.; Manso, L.J.; Garrell, A.; Sanfeliu, A.; Spalanzani, A.; Alami, R. A survey on socially aware robot navigation: Taxonomy and future challenges. Int. J. Robot. Res. 2024. [Google Scholar] [CrossRef]
- Francis, A.; Pérez-d’Arpino, C.; Li, C.; Xia, F.; Alahi, A.; Bera, A.; Biswas, A.; Biswas, J.; Chandra, R.; Lewis Chiang, H.T.; et al. Principles and Guidelines for Evaluating Social Robot Navigation Algorithms. arXiv 2023, arXiv:2306.16740. [Google Scholar]
- Rios-Martinez, J.; Spalanzani, A.; Laugier, C. From Proxemics Theory to Socially-Aware Navigation: A Survey. Int. J. Soc. Robot. 2015, 7, 137–153. [Google Scholar] [CrossRef]
- Chik, S.F.; Yeong, C.F.; Su, E.L.M.; Lim, T.Y.; Subramaniam, Y.; Chin, P.J.H. A Review of Social-Aware Navigation Frameworks for Service Robot in Dynamic Human Environments. J. Telecommun. Electron. Comput. Eng. 2016, 8, 41–50. [Google Scholar]
- Kruse, T.; Pandey, A.K.; Alami, R.; Kirsch, A. Human-Aware Robot Navigation: A Survey. Robot. Auton. Syst. 2013, 61, 1726–1743. [Google Scholar] [CrossRef]
- Charalampous, K.; Kostavelis, I.; Gasteratos, A. Recent trends in social aware robot navigation: A survey. Robot. Auton. Syst. 2017, 93, 85–104. [Google Scholar] [CrossRef]
- Mavrogiannis, C.; Baldini, F.; Wang, A.; Zhao, D.; Trautman, P.; Steinfeld, A.; Oh, J. Core Challenges of Social Robot Navigation: A Survey. J. Hum. Robot Interact. 2023, 12, 1–39. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, T. Deep reinforcement learning based mobile robot navigation: A review. Tsinghua Sci. Technol. 2021, 26, 674–691. [Google Scholar] [CrossRef]
- Medina Sánchez, C.; Zella, M.; Capitán, J.; Marrón, P.J. From Perception to Navigation in Environments with Persons: An Indoor Evaluation of the State of the Art. Sensors 2022, 22, 1191. [Google Scholar] [CrossRef]
- Guillén-Ruiz, S.; Bandera, J.P.; Hidalgo-Paniagua, A.; Bandera, A. Evolution of Socially-Aware Robot Navigation. Electronics 2023, 12, 1570. [Google Scholar] [CrossRef]
- Zieliński, C.; Kornuta, T.; Winiarski, T. A Systematic Method of Designing Control Systems for Service and Field Robots. In Proceedings of the 19th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR’2014. IEEE, Miedzyzdroje, Poland, 2–5 September 2014; pp. 1–14. [Google Scholar] [CrossRef]
- Breazeal, C. Designing Sociable Machines. In Socially Intelligent Agents: Creating Relationships with Computers and Robots; Springer: Boston, MA, USA, 2002; pp. 149–156. [Google Scholar] [CrossRef]
- Babel, F.; Kraus, J.M.; Baumann, M. Development and Testing of Psychological Conflict Resolution Strategies for Assertive Robots to Resolve Human-Robot Goal Conflict. Front. Robot. AI 2021, 7, 591448. [Google Scholar] [CrossRef]
- Boddington, P. EPSRC Principles of Robotics: Commentary on safety, robots as products, and responsibility. Connect. Sci. 2017, 29, 170–176. [Google Scholar] [CrossRef]
- Clarke, R. Asimov’s Laws of Robotics: Implications for Information Technology-Part I. Computer 1993, 26, 53–61. [Google Scholar] [CrossRef]
- Bera, A.; Randhavane, T.; Prinja, R.; Manocha, D. SocioSense: Robot navigation amongst pedestrians with social and psychological constraints. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 7018–7025. [Google Scholar] [CrossRef]
- Narayanan, V.; Manoghar, B.M.; Dorbala, V.S.; Manocha, D.; Bera, A. ProxEmo: Gait-based Emotion Learning and Multi-view Proxemic Fusion for Socially-Aware Robot Navigation. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020. [Google Scholar]
- Bena, R.M.; Zhao, C.; Nguyen, Q. Safety-Aware Perception for Autonomous Collision Avoidance in Dynamic Environments. IEEE Robot. Autom. Lett. 2023, 8, 7962–7969. [Google Scholar] [CrossRef]
- Guzzi, J.; Giusti, A.; Gambardella, L.M.; Theraulaz, G.; Di Caro, G.A. Human-friendly robot navigation in dynamic environments. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 423–430. [Google Scholar] [CrossRef]
- Moussaïd, M.; Helbing, D.; Theraulaz, G. How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. USA 2011, 108, 6884–6888. [Google Scholar] [CrossRef] [PubMed]
- Forootaninia, Z.; Karamouzas, I.; Narain, R. Uncertainty Models for TTC-Based Collision-Avoidance. In Proceedings of the Robotics: Science and Systems XIII, Massachusetts Institute of Technology, Cambridge, MA, USA, 12–16 July 2017; Amato, N.M., Srinivasa, S.S., Ayanian, N., Kuindersma, S., Eds.; 2017; Volume 7. [Google Scholar] [CrossRef]
- Karamouzas, I.; Sohre, N.; Narain, R.; Guy, S.J. Implicit Crowds: Optimization Integrator for Robust Crowd Simulation. ACM Trans. Graph. 2017, 36, 1–13. [Google Scholar] [CrossRef]
- Biswas, A.; Wang, A.; Silvera, G.; Steinfeld, A.; Admoni, H. SocNavBench: A Grounded Simulation Testing Framework for Evaluating Social Navigation. J. Hum. Robot Interact. 2022, 11, 1–24. [Google Scholar] [CrossRef]
- Hall, E.T. The Hidden Dimension/by Edward T. Hall; A Doubleday Anchor book; Anchor Books: Garden City, NY, USA, 1969. [Google Scholar]
- Aiello, J.R. A further look at equilibrium theory: Visual interaction as a function of interpersonal distance. Environ. Psychol. Nonverbal Behav. 1977, 1, 122–140. [Google Scholar] [CrossRef]
- Ashton, N.L.; Shaw, M.E. Empirical investigations of a reconceptualized personal space. Bull. Psychon. Soc. 1980, 15, 309–312. [Google Scholar] [CrossRef]
- Baldassare, M. Human Spatial Behavior. Annu. Rev. Sociol. 1978, 4, 29–56. [Google Scholar] [CrossRef]
- Greenberg, C.I.; Strube, M.J.; Myers, R.A. A multitrait-multimethod investigation of interpersonal distance. J. Nonverbal Behav. 1980, 5, 104–114. [Google Scholar] [CrossRef]
- Butler, J.T.; Agah, A. Psychological Effects of Behavior Patterns of a Mobile Personal Robot. Auton. Robot. 2001, 10, 185–202. [Google Scholar] [CrossRef]
- Althaus, P.; Ishiguro, H.; Kanda, T.; Miyashita, T.; Christensen, H. Navigation for human-robot interaction tasks. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; Proceedings. ICRA ’04. Volume 2, pp. 1894–1900. [Google Scholar] [CrossRef]
- Hayduk, L. Personal Space: An Evaluative and Orienting Overview. Psychol. Bull. 1978, 85, 117–134. [Google Scholar] [CrossRef]
- Hayduk, L. The shape of personal space: An experimental investigation. Can. J. Behav. Sci. 1981, 13, 87–93. [Google Scholar] [CrossRef]
- Helbing, D.; Molnár, P. Social force model for pedestrian dynamics. Phys. Rev. E 1995, 51, 4282–4286. [Google Scholar] [CrossRef] [PubMed]
- Johansson, A.; Helbing, D.; Shukla, P.K. Specification of the Social Force Pedestrian Model by Evolutionary Adjustment to Video Tracking Data. Adv. Complex Syst. 2007, 10, 271–288. [Google Scholar] [CrossRef]
- Gérin-Lajoie, M.; Richards, C.L.; Fung, J.; McFadyen, B.J. Characteristics of personal space during obstacle circumvention in physical and virtual environments. Gait Posture 2008, 27, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Baxter, J.C. Interpersonal Spacing in Natural Settings. Sociometry 1970, 33, 444–456. [Google Scholar] [CrossRef] [PubMed]
- Kessler, J.; Schroeter, C.; Gross, H.M. Approaching a Person in a Socially Acceptable Manner Using a Fast Marching Planner. In Intelligent Robotics and Applications; Jeschke, S., Liu, H., Schilberg, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 368–377. [Google Scholar]
- Thompson, D.E.; Aiello, J.R.; Epstein, Y.M. Interpersonal distance preferences. J. Nonverbal Behav. 1979, 4, 113–118. [Google Scholar] [CrossRef]
- Pacchierotti, E.; Christensen, H.; Jensfelt, P. Human-robot embodied interaction in hallway settings: A pilot user study. In Proceedings of the ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, Nashville, TN, USA, 13–15 August 2005; pp. 164–171. [Google Scholar] [CrossRef]
- Pacchierotti, E.; Christensen, H.I.; Jensfelt, P. Evaluation of Passing Distance for Social Robots. In Proceedings of the ROMAN 2006—The 15th IEEE International Symposium on Robot and Human Interactive Communication, Hatfield, UK, 6–8 September 2006; pp. 315–320. [Google Scholar] [CrossRef]
- Welsch, R.; von Castell, C.; Hecht, H. The anisotropy of personal space. PLoS ONE 2019, 14, e0217587. [Google Scholar] [CrossRef]
- Neggers, M.; Cuijpers, R.; Ruijten, P.; Ijsselsteijn, W. Determining Shape and Size of Personal Space of a Human when Passed by a Robot. Int. J. Soc. Robot. 2022, 14, 561–572. [Google Scholar] [CrossRef]
- Huettenrauch, H.; Eklundh, K.S.; Green, A.; Topp, E.A. Investigating Spatial Relationships in Human-Robot Interaction. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–13 October 2006; pp. 5052–5059. [Google Scholar] [CrossRef]
- Torta, E.; Cuijpers, R.H.; Juola, J.F. Design of a Parametric Model of Personal Space for Robotic Social Navigation. Int. J. Soc. Robot. 2013, 5, 357–365. [Google Scholar] [CrossRef]
- Yoda, M.; Shiota, Y. The mobile robot which passes a man. In Proceedings of the 6th IEEE International Workshop on Robot and Human Communication. RO-MAN’97 SENDAI, Sendai, Japan, 19 September–1 October 1997; pp. 112–117. [Google Scholar] [CrossRef]
- Takayama, L.; Pantofaru, C. Influences on Proxemic Behaviors in Human-Robot Interaction. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, St. Louis, MO, USA, 11–15 October 2009; Volume 2009, pp. 5495–5502. [Google Scholar] [CrossRef]
- Hayduk, L.A. Personal space: Understanding the simplex model. J. Nonverbal Behav. 1994, 18, 245–260. [Google Scholar] [CrossRef]
- Park, S.; Trivedi, M. Multi-person interaction and activity analysis: A synergistic track- and body-level analysis framework. Mach. Vis. Appl. 2007, 18, 151–166. [Google Scholar] [CrossRef]
- Kirby, R.; Simmons, R.; Forlizzi, J. COMPANION: A Constraint-Optimizing Method for Person-Acceptable Navigation. In Proceedings of the RO-MAN 2009—The 18th IEEE International Symposium on Robot and Human Interactive Communication, Toyama, Japan, 27 September–2 October 2009; pp. 607–612. [Google Scholar] [CrossRef]
- Neggers, M.M.E.; Cuijpers, R.H.; Ruijten, P.A.M.; IJsselsteijn, W.A. The effect of robot speed on comfortable passing distances. Front. Robot. AI 2022, 9, 915972. [Google Scholar] [CrossRef] [PubMed]
- Moussaïd, M.; Perozo, N.; Garnier, S.; Helbing, D.; Theraulaz, G. The Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics. PLoS ONE 2010, 5, e10047. [Google Scholar] [CrossRef]
- Federici, M.L.; Gorrini, A.; Manenti, L.; Vizzari, G. Data Collection for Modeling and Simulation: Case Study at the University of Milan-Bicocca. In Cellular Automata; Sirakoulis, G.C., Bandini, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 699–708. [Google Scholar]
- Kendon, A. Spacing and Orientation in Co-present Interaction. In Development of Multimodal Interfaces: Active Listening and Synchrony, Proceedings of the Second COST 2102 International Training School, Dublin, Ireland, 23–27 March 2009, Revised Selected Papers; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–15. [Google Scholar] [CrossRef]
- Mead, R.; Atrash, A.; Matarić, M.J. Proxemic Feature Recognition for Interactive Robots: Automating Metrics from the Social Sciences. In Social Robotics; Mutlu, B., Bartneck, C., Ham, J., Evers, V., Kanda, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 52–61. [Google Scholar]
- Rios-Martinez, J.; Renzaglia, A.; Spalanzani, A.; Martinelli, A.; Laugier, C. Navigating between people: A stochastic optimization approach. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA, 14–18 May 2012; pp. 2880–2885. [Google Scholar] [CrossRef]
- Efran, M.G.; Cheyne, J.A. Shared space: The co-operative control of spatial areas by two interacting individuals. Can. J. Behav. Sci./Rev. Can. Des Sci. Du Comport. 1973, 5, 201–210. [Google Scholar] [CrossRef]
- Knowles, E.S.; Kreuser, B.; Haas, S.; Hyde, M.; Schuchart, G.E. Group size and the extension of social space boundaries. J. Personal. Soc. Psychol. 1976, 33, 647–654. [Google Scholar] [CrossRef]
- Krueger, J. Extended cognition and the space of social interaction. Conscious. Cogn. 2011, 20, 643–657. [Google Scholar] [CrossRef] [PubMed]
- Rehm, M.; André, E.; Nischt, M. Lets Come Together—Social Navigation Behaviors of Virtual and Real Humans. In Intelligent Technologies for Interactive Entertainment; Maybury, M., Stock, O., Wahlster, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; p. 336. [Google Scholar]
- Katyal, K.; Gao, Y.; Markowitz, J.; Pohland, S.; Rivera, C.; Wang, I.J.; Huang, C.M. Learning a Group-Aware Policy for Robot Navigation. arXiv 2020, arXiv:2012.12291. [Google Scholar]
- Petrak, B.; Sopper, G.; Weitz, K.; André, E. Do You Mind if I Pass Through? Studying the Appropriate Robot Behavior when Traversing two Conversing People in a Hallway Setting. In Proceedings of the 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), Vancouver, BC, Canada, 8–12 August 2021; pp. 369–375. [Google Scholar] [CrossRef]
- Dragan, A.D.; Lee, K.C.; Srinivasa, S.S. Legibility and predictability of robot motion. In Proceedings of the 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Tokyo, Japan, 3–6 March 2013; pp. 301–308. [Google Scholar] [CrossRef]
- Lu, D.V.; Smart, W.D. Towards more efficient navigation for robots and humans. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1707–1713. [Google Scholar] [CrossRef]
- Kruse, T.; Kirsch, A.; Khambhaita, H.; Alami, R. Evaluating Directional Cost Models in Navigation. In Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction, Bielefeld, Germany, 3–6 March 2014; HRI ’14. pp. 350–357. [Google Scholar] [CrossRef]
- Lichtenthäler, C.; Lorenzy, T.; Kirsch, A. Influence of legibility on perceived safety in a virtual human-robot path crossing task. In Proceedings of the 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, Paris, France, 9–13 September 2012; pp. 676–681. [Google Scholar] [CrossRef]
- Karwowski, J.; Szynkiewicz, W. Quantitative Metrics for Benchmarking Human-Aware Robot Navigation. IEEE Access 2023, 11, 79941–79953. [Google Scholar] [CrossRef]
- Dautenhahn, K.; Walters, M.; Woods, S.; Koay, K.; Nehaniv, C.; Sisbot, E.; Alami, R.; Siméon, T. How may i serve you? A robot companion approaching a seated person in a helping context. In Proceedings of the HRI 2006: Proceedings of the 2006 ACM Conference on Human-Robot Interaction, Salt Lake City, UT, USA, 2–4 March 2006; Volume 2006, pp. 172–179. [Google Scholar] [CrossRef]
- Koay, K.; Sisbot, E.; Syrdal, D.S.; Walters, M.; Dautenhahn, K.; Alami, R. Exploratory Study of a Robot Approaching a Person in the Context of Handing Over an Object. In Proceedings of the AAAI Spring Symposium—Technical Report, Stanford, CA, USA, 26–28 March 2007; pp. 18–24. [Google Scholar]
- Walters, M.L.; Dautenhahn, K.; Woods, S.N.; Koay, K.L. Robotic etiquette: Results from user studies involving a fetch and carry task. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, Arlington, VA, USA, 10–12 March 2007; HRI ’07. pp. 317–324. [Google Scholar] [CrossRef]
- Svenstrup, M.; Tranberg, S.; Andersen, H.J.; Bak, T. Pose estimation and adaptive robot behaviour for human-robot interaction. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; ICRA’09. IEEE Press: New York, NY, USA, 2009; pp. 3222–3227. [Google Scholar]
- Torta, E.; Cuijpers, R.H.; Juola, J.F.; van der Pol, D. Design of Robust Robotic Proxemic Behaviour. In Social Robotics; Mutlu, B., Bartneck, C., Ham, J., Evers, V., Kanda, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 21–30. [Google Scholar]
- Koay, K.L.; Syrdal, D.S.; Ashgari-Oskoei, M.; Walters, M.L.; Dautenhahn, K. Social Roles and Baseline Proxemic Preferences for a Domestic Service Robot. Int. J. Soc. Robot. 2014, 6, 469–488. [Google Scholar] [CrossRef]
- Karreman, D.; Utama, L.; Joosse, M.; Lohse, M.; van Dijk, B.; Evers, V. Robot etiquette: How to approach a pair of people? In Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction, Bielefeld, Germany, 3–6 March 2014; HRI ’14. pp. 196–197. [Google Scholar] [CrossRef]
- Ball, A.; Silvera-Tawil, D.; Rye, D.; Velonaki, M. Group Comfortability When a Robot Approaches. In Social Robotics; Beetz, M., Johnston, B., Williams, M.A., Eds.; Springer: Cham, Switzerland, 2014; pp. 44–53. [Google Scholar]
- Joosse, M.; Poppe, R.; Lohse, M.; Evers, V. Cultural Differences in how an Engagement-Seeking Robot should Approach a Group of People. In Proceedings of the 5th ACM international conference on Collaboration across boundaries: Culture, Distance & Technology (CABS 2014), Kyoto, Japan, 20–24 August 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 121–130. [Google Scholar] [CrossRef]
- Sardar, A.; Joosse, M.; Weiss, A.; Evers, V. Don’t stand so close to me: Users’ attitudinal and behavioral responses to personal space invasion by robots. In Proceedings of the 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Boston, MA, USA, 5–8 March 2012; pp. 229–230. [Google Scholar] [CrossRef]
- Rossi, S.; Staffa, M.; Bove, L.; Capasso, R.; Ercolano, G. User’s Personality and Activity Influence on HRI Comfortable Distances. In Social Robotics; Kheddar, A., Yoshida, E., Ge, S.S., Suzuki, K., Cabibihan, J.J., Eyssel, F., He, H., Eds.; Springer: Cham, Switzerland, 2017; pp. 167–177. [Google Scholar]
- Sparrow, W.A.; Newell, K.M. Metabolic energy expenditure and the regulation of movement economy. Psychon. Bull. Rev. 1998, 5, 173–196. [Google Scholar] [CrossRef]
- Bitgood, S.; Dukes, S. Not Another Step! Economy of Movement and Pedestrian Choice Point Behavior in Shopping Malls. Environ. Behav. 2006, 38, 394–405. [Google Scholar] [CrossRef]
- Arechavaleta, G.; Laumond, J.P.; Hicheur, H.; Berthoz, A. The nonholonomic nature of human locomotion: A modeling study. In Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, 20–22 February 2006; BioRob: Heidelberg, Germany, 2006; pp. 158–163. [Google Scholar] [CrossRef]
- Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of the 1985 IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; Volume 2, pp. 500–505. [Google Scholar] [CrossRef]
- Carton, D.; Turnwald, A.; Wollherr, D.; Buss, M. Proactively Approaching Pedestrians with an Autonomous Mobile Robot in Urban Environments. In Experimental Robotics, Proceedings of the 13th International Symposium on Experimental Robotics, Québec City, QC, Canada, 18–21 June 2012; Springer International Publishing: Heidelberg, Germany, 2013; pp. 199–214. [Google Scholar] [CrossRef]
- Nummenmaa, L.; Hyönä, J.; Hietanen, J.K. I’ll Walk This Way: Eyes Reveal the Direction of Locomotion and Make Passersby Look and Go the Other Way. Psychol. Sci. 2009, 20, 1454–1458. [Google Scholar] [CrossRef] [PubMed]
- Cutting, J.; Vishton, P.; Braren, P. How we avoid collisions with stationary and moving objects. Psychol. Rev. 1995, 102, 627–651. [Google Scholar] [CrossRef]
- Kitazawa, K.; Fujiyama, T. Pedestrian Vision and Collision Avoidance Behavior: Investigation of the Information Process Space of Pedestrians Using an Eye Tracker. In Pedestrian and Evacuation Dynamics 2008; Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 95–108. [Google Scholar]
- Hayashi, K.; Shiomi, M.; Kanda, T.; Hagita, N. Friendly Patrolling: A Model of Natural Encounters. In Proceedings of the Robotics: Science and Systems VII, University of Southern California, Los Angeles, CA, USA, 27–30 June 2011. [Google Scholar] [CrossRef]
- Kuno, Y.; Sadazuka, K.; Kawashima, M.; Yamazaki, K.; Yamazaki, A.; Kuzuoka, H. Museum guide robot based on sociological interaction analysis. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 28 April–3 May 2007; CHI ’07. pp. 1191–1194. [Google Scholar] [CrossRef]
- Fiore, S.M.; Wiltshire, T.J.; Lobato, E.J.C.; Jentsch, F.G.; Huang, W.H.; Axelrod, B. Toward understanding social cues and signals in human-robot interaction: Effects of robot gaze and proxemic behavior. Front. Psychol. 2013, 4, 859. [Google Scholar] [CrossRef] [PubMed]
- May, A.D.; Dondrup, C.; Hanheide, M. Show me your moves! Conveying navigation intention of a mobile robot to humans. In Proceedings of the 2015 European Conference on Mobile Robots (ECMR), Lincoln, UK, 2–4 September 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Lynch, S.D.; Pettré, J.; Bruneau, J.; Kulpa, R.; Crétual, A.; Olivier, A.H. Effect of Virtual Human Gaze Behaviour During an Orthogonal Collision Avoidance Walking Task. In Proceedings of the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Tuebingen/Reutlingen, Germany, 18–22 March 2018; pp. 136–142. [Google Scholar] [CrossRef]
- Khambhaita, H.; Rios-Martinez, J.; Alami, R. Head-Body Motion Coordination for Human Aware Robot Navigation. In Proceedings of the 9th International workshop on Human-Friendlly Robotics (HFR 2016), Gênes, Italy, 29–30 October 2016; p. 8. [Google Scholar]
- Lu, D.V. Contextualized Robot Navigation. Ph.D. Thesis, Washington University in St. Louis, St. Louis, MO, USA, 2014. [Google Scholar]
- Breazeal, C.; Edsinger, A.; Fitzpatrick, P.; Scassellati, B. Active vision for sociable robots. IEEE Trans. Syst. Man Cybern.—Part A Syst. Hum. 2001, 31, 443–453. [Google Scholar] [CrossRef]
- Mutlu, B.; Shiwa, T.; Kanda, T.; Ishiguro, H.; Hagita, N. Footing in human-robot conversations: How robots might shape participant roles using gaze cues. In Proceedings of the 2009 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI), La Jolla, CA, USA, 11–13 March 2009; pp. 61–68. [Google Scholar] [CrossRef]
- Kendon, A. Some functions of gaze-direction in social interaction. Acta Psychol. 1967, 26, 22–63. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S. Some signals and rules for taking speaking turns in conversations. J. Personal. Soc. Psychol. 1972, 23, 283–292. [Google Scholar] [CrossRef]
- Barchard, K.A.; Lapping-Carr, L.; Westfall, R.S.; Fink-Armold, A.; Banisetty, S.B.; Feil-Seifer, D. Measuring the Perceived Social Intelligence of Robots. J. Hum.-Robot Interact. 2020, 9, 1–29. [Google Scholar] [CrossRef]
- Mumm, J.; Mutlu, B. Human-robot proxemics: Physical and psychological distancing in human-robot interaction. In Proceedings of the 2011 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Lausanne, Switzerland, 8–11 March 2011; pp. 331–338. [Google Scholar] [CrossRef]
- Lin, C.; Rhim, J.; Moon, A.J. Less Than Human: How Different Users of Telepresence Robots Expect Different Social Norms. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 3976–3982. [Google Scholar] [CrossRef]
- Jung, E.; Yi, B.; Yuta, S. Control algorithms for a mobile robot tracking a human in front. In Proceedings of the 25th 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 2411–2416. [Google Scholar] [CrossRef]
- Young, J.E.; Kamiyama, Y.; Reichenbach, J.; Igarashi, T.; Sharlin, E. How to walk a robot: A dog-leash human-robot interface. In Proceedings of the RO-MAN, 2011 IEEE, Atlanta, GA, USA, 31 July–3 August 2011; pp. 376–382. [Google Scholar] [CrossRef]
- Carton, D.; Olszowy, W.; Wollherr, D. Measuring the Effectiveness of Readability for Mobile Robot Locomotion. Int. J. Soc. Robot. 2016, 8, 721–741. [Google Scholar] [CrossRef]
- Gockley, R.; Forlizzi, J.; Simmons, R. Natural person-following behavior for social robots. In Proceedings of the 2007 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI), Arlington, VA, USA, 8–11 March 2007; pp. 17–24. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, J.; Oh, J. Following Social Groups: Socially-Compliant Autonomous Navigation in Dense Crowds. In Proceedings of the IROS ’19 Cognitive Vehicles Workshop, Macau, China, 8 November 2019. [Google Scholar]
- Topp, E.A.; Christensen, H.I. Tracking for following and passing persons. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; IEEE: New York, NY, USA, 2005; pp. 2321–2327. [Google Scholar] [CrossRef]
- Müller, J.; Stachniss, C.; Arras, K.; Burgard, W. Socially Inspired Motion Planning for Mobile Robots in Populated Environments. In Proceedings of the International Conference on Cognitive Systems (CogSys), Karlsruhe, Germany, 2–4 April 2008; pp. 85–90. [Google Scholar]
- Kahn, P.H.; Freier, N.G.; Kanda, T.; Ishiguro, H.; Ruckert, J.H.; Severson, R.L.; Kane, S.K. Design patterns for sociality in human-robot interaction. In Proceedings of the 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), Amsterdam, The Netherlands, 12–15 March 2008; pp. 97–104. [Google Scholar] [CrossRef]
- Costa, M. Interpersonal Distances in Group Walking. J. Nonverbal Behav. 2010, 34, 15–26. [Google Scholar] [CrossRef]
- Honig, S.S.; Oron-Gilad, T.; Zaichyk, H.; Sarne-Fleischmann, V.; Olatunji, S.; Edan, Y. Toward Socially Aware Person-Following Robots. IEEE Trans. Cogn. Dev. Syst. 2018, 10, 936–954. [Google Scholar] [CrossRef]
- Saiki, L.Y.M.; Satake, S.; Huq, R.; Glas, D.F.; Kanda, T.; Hagita, N. How do people walk side-by-side?—Using a computational model of human behavior for a social robot. In Proceedings of the 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Boston, MA, USA, 5–8 March 2012; pp. 301–308. [Google Scholar]
- Karunarathne, D.; Morales, Y.; Kanda, T.; Ishiguro, H. Model of Side-by-Side Walking Without the Robot Knowing the Goal. Int. J. Soc. Robot. 2018, 10, 401–420. [Google Scholar] [CrossRef]
- Lindner, F.; Eschenbach, C. Towards a Formalization of Social Spaces for Socially Aware Robots. In Spatial Information Theory; Egenhofer, M., Giudice, N., Moratz, R., Worboys, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 283–303. [Google Scholar]
- Calderita, L.; Vega, A.; Bustos, P.; Núñez, P. Social Robot Navigation adapted to Time-dependent Affordance Spaces: A Use Case for Caregiving Centers. In Proceedings of the 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Naples Italy, 31 August–4 September 2020; pp. 944–949. [Google Scholar] [CrossRef]
- Raubal, M.; Moratz, R. A Functional Model for Affordance-Based Agents. In Towards Affordance-Based Robot Control; Rome, E., Hertzberg, J., Dorffner, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 91–105. [Google Scholar]
- Chung, S.Y.; Huang, H. Incremental learning of human social behaviors with feature-based spatial effects. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012, Vilamoura, Algarve, Portugal, 7–12 October 2012; IEEE: New York, NY, USA, 2012; pp. 2417–2422. [Google Scholar] [CrossRef]
- Yuan, F.; Twardon, L.; Hanheide, M. Dynamic path planning adopting human navigation strategies for a domestic mobile robot. In Proceedings of the IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010—Conference Proceedings, Taipei, Taiwan, 18–22 October 2010; pp. 3275–3281. [Google Scholar] [CrossRef]
- Pacchierotti, E.; Christensen, H.I.; Jensfelt, P. Embodied Social Interaction for Service Robots in Hallway Environments. In Field and Service Robotics; Corke, P., Sukkariah, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 293–304. [Google Scholar]
- Moussaïd, M.; Helbing, D.; Garnier, S.; Johansson, A.; Combe, M.; Theraulaz, G. Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc. R. Soc. B 2009, 276, 2755–2762. [Google Scholar] [CrossRef] [PubMed]
- Nakauchi, Y.; Simmons, R. A social robot that stands in line. In Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113), Takamatsu, Japan, 31 October–5 November 2000; Volume 1, pp. 357–364. [Google Scholar] [CrossRef]
- Gallo, D.; Gonzalez-Jimenez, S.; Grasso, M.A.; Boulard, C.; Colombino, T. Exploring Machine-like Behaviors for Socially Acceptable Robot Navigation in Elevators. In Proceedings of the 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Sapporo, Japan, 7–10 March 2022; pp. 130–138. [Google Scholar] [CrossRef]
- Ginés, J.; Martín, F.; Vargas, D.; Rodríguez, F.J.; Matellán, V. Social Navigation in a Cognitive Architecture Using Dynamic Proxemic Zones. Sensors 2019, 19, 5189. [Google Scholar] [CrossRef]
- Pandey, A.K.; Alami, R. A framework towards a socially aware Mobile Robot motion in Human-Centered dynamic environment. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 5855–5860. [Google Scholar] [CrossRef]
- Dondrup, C.; Hanheide, M. Qualitative Constraints for Human-aware Robot Navigation using Velocity Costmaps. In Proceedings of the 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, 26–31 August 2016; pp. 586–592. [Google Scholar] [CrossRef]
- Hirose, N.; Shah, D.; Sridhar, A.; Levine, S. SACSoN: Scalable Autonomous Control for Social Navigation. IEEE Robot. Autom. Lett. 2024, 9, 49–56. [Google Scholar] [CrossRef]
- Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33. [Google Scholar] [CrossRef]
- Walters, M.; Dautenhahn, K.; te Boekhorst, R.; Koay, K.L.; Kaouri, C.; Woods, S.; Nehaniv, C.; Lee, D.; Werry, I. The influence of subjects’ personality traits on personal spatial zones in a human-robot interaction experiment. In Proceedings of the ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, Nashville, TN, USA, 13–15 August 2005; pp. 347–352. [Google Scholar] [CrossRef]
- Pacchierotti, E.; Christensen, H.I.; Jensfelt, P. Design of an Office-Guide Robot for Social Interaction Studies. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 4965–4970. [Google Scholar] [CrossRef]
- Marder-Eppstein, E.; Berger, E.; Foote, T.; Gerkey, B.; Konolige, K. The Office Marathon: Robust navigation in an indoor office environment. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 300–307. [Google Scholar] [CrossRef]
- Zhang, D.; Xie, Z.; Li, P.; Yu, J.; Chen, X. Real-time navigation in dynamic human environments using optimal reciprocal collision avoidance. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015; pp. 2232–2237. [Google Scholar] [CrossRef]
- Linder, T.; Breuers, S.; Leibe, B.; Arras, K.O. On multi-modal people tracking from mobile platforms in very crowded and dynamic environments. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 5512–5519. [Google Scholar] [CrossRef]
- Singamaneni, P.T.; Favier, A.; Alami, R. Watch out! There may be a Human. Addressing Invisible Humans in Social Navigation. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 11344–11351. [Google Scholar] [CrossRef]
- Salek Shahrezaie, R.; Manalo, B.N.; Brantley, A.G.; Lynch, C.R.; Feil-Seifer, D. Advancing Socially-Aware Navigation for Public Spaces. In Proceedings of the 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Napoli, Italy, 29 August–2 September 2022; pp. 1015–1022. [Google Scholar] [CrossRef]
- Martinez-Baselga, D.; Riazuelo, L.; Montano, L. Long-Range Navigation in Complex and Dynamic Environments with Full-Stack S-DOVS. Appl. Sci. 2023, 13, 8925. [Google Scholar] [CrossRef]
- Theodoridou, C.; Antonopoulos, D.; Kargakos, A.; Kostavelis, I.; Giakoumis, D.; Tzovaras, D. Robot Navigation in Human Populated Unknown Environments Based on Visual-Laser Sensor Fusion. In Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 29 June–1 July 2022; Association for Computing Machinery: New York, NY, USA, 2022. PETRA ’22. pp. 336–342. [Google Scholar] [CrossRef]
- Vasquez, D.; Stein, P.; Rios-Martinez, J.; Escobedo, A.; Spalanzani, A.; Laugier, C. Human Aware Navigation for Assistive Robotics. In Proceedings of the ISER—13th International Symposium on Experimental Robotics—2012, Québec, QC, Canada, 18–21 June 2012; Available online: www.springerlink.com (accessed on 20 March 2024).
- Liang, J.; Patel, U.; Sathyamoorthy, A.J.; Manocha, D. Crowd-Steer: Realtime smooth and collision-free robot navigation in densely crowded scenarios trained using high-fidelity simulation. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 7–15 January 2021. IJCAI’20. [Google Scholar]
- Xie, Z.; Dames, P. DRL-VO: Learning to Navigate Through Crowded Dynamic Scenes Using Velocity Obstacles. IEEE Trans. Robot. 2023, 39, 2700–2719. [Google Scholar] [CrossRef]
- Moravec, H.; Elfes, A. High resolution maps from wide angle sonar. In Proceedings of the 1985 IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; Volume 2, pp. 116–121. [Google Scholar] [CrossRef]
- Ferguson, D.; Likhachev, M. Efficiently Using Cost Maps for Planning Complex Maneuvers; Lab Papers (GRASP): Philadelphia, PA, USA, 2008. [Google Scholar]
- Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees. Auton. Robot. 2013, 34, 189–206. [Google Scholar] [CrossRef]
- Ferguson, D.; Stentz, A. Field D*: An Interpolation-Based Path Planner and Replanner. In Robotics Research; Thrun, S., Brooks, R., Durrant-Whyte, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 239–253. [Google Scholar]
- Gerkey, B.; Konolige, K. Planning and Control in Unstructured Terrain. In Proceedings of the ICRA Workshop on Path Planning on Costmaps, Pasadena, CA, USA, 19–23 May 2008. [Google Scholar]
- Rösmann, C.; Hoffmann, F.; Bertram, T. Integrated online trajectory planning and optimization in distinctive topologies. Robot. Auton. Syst. 2016, 88, 142–153. [Google Scholar] [CrossRef]
- Everett, M.; Chen, Y.F.; How, J.P. Motion Planning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 3052–3059. [Google Scholar] [CrossRef]
- Patel, U.; Kumar, N.K.S.; Sathyamoorthy, A.J.; Manocha, D. DWA-RL: Dynamically Feasible Deep Reinforcement Learning Policy for Robot Navigation among Mobile Obstacles. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 6057–6063. [Google Scholar] [CrossRef]
- Ferrer, G.; Sanfeliu, A. Anticipative kinodynamic planning: Multi-objective robot navigation in urban and dynamic environments. Auton. Robot. 2019, 43, 1473–1488. [Google Scholar] [CrossRef]
- Repiso, E.; Garrell, A.; Sanfeliu, A. People’s Adaptive Side-by-Side Model Evolved to Accompany Groups of People by Social Robots. IEEE Robot. Autom. Lett. 2020, 5, 2387–2394. [Google Scholar] [CrossRef]
- Kivrak, H.; Cakmak, F.; Kose, H.; Yavuz, S. Social navigation framework for assistive robots in human inhabited unknown environments. Eng. Sci. Technol. Int. J. 2021, 24, 284–298. [Google Scholar] [CrossRef]
- Teja Singamaneni, P.; Favier, A.; Alami, R. Human-Aware Navigation Planner for Diverse Human-Robot Interaction Contexts. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 5817–5824. [Google Scholar] [CrossRef]
- Triebel, R.; Arras, K.; Alami, R.; Beyer, L.; Breuers, S.; Chatila, R.; Chetouani, M.; Cremers, D.; Evers, V.; Fiore, M.; et al. SPENCER: A Socially Aware Service Robot for Passenger Guidance and Help in Busy Airports. In Field and Service Robotics: Results of the 10th International Conference; Springer International Publishing: Cham, Switzerland, 2016; pp. 607–622. [Google Scholar] [CrossRef]
- Lu, D.V.; Hershberger, D.; Smart, W.D. Layered costmaps for context-sensitive navigation. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 709–715. [Google Scholar] [CrossRef]
- Arras, K.; Mozos, O.; Burgard, W. Using Boosted Features for the Detection of People in 2D Range Data. In Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 3402–3407. [Google Scholar] [CrossRef]
- Leigh, A.; Pineau, J.; Olmedo, N.; Zhang, H. Person tracking and following with 2D laser scanners. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 726–733. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Wong, A.; Shafiee, M.J.; Li, F.; Chwyl, B. Tiny SSD: A Tiny Single-Shot Detection Deep Convolutional Neural Network for Real-Time Embedded Object Detection. In Proceedings of the 2018 15th Conference on Computer and Robot Vision (CRV), Toronto, ON, Canada, 8–10 May 2018; pp. 95–101. [Google Scholar]
- Cao, Z.; Hidalgo Martinez, G.; Simon, T.; Wei, S.; Sheikh, Y.A. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Bozorgi, H.; Truong, X.T.; Ngo, T.D. Reliable, Robust, Accurate and Real-Time 2D LiDAR Human Tracking in Cluttered Environment: A Social Dynamic Filtering Approach. IEEE Robot. Autom. Lett. 2022, 7, 11689–11696. [Google Scholar] [CrossRef]
- Luber, M.; Arras, K.O. Multi-Hypothesis Social Grouping and Tracking for Mobile Robots. In Proceedings of the Robotics: Science and Systems (RSS’13), Berlin, Germany, 24–28 June 2013. [Google Scholar]
- Juel., W.K.; Haarslev., F.; Krüger., N.; Bodenhagen., L. An Integrated Object Detection and Tracking Framework for Mobile Robots. In Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics—ICINCO. INSTICC; Paris, France, 7–9 July 2020, SciTePress: Setúbal, Portugal, 2020; pp. 513–520. [Google Scholar] [CrossRef]
- Settles, B. Active Learning Literature Survey; Computer Sciences Technical Report 1648; University of Wisconsin: Madison, WI, USA, 2009. [Google Scholar]
- Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3. [Google Scholar]
- Macenski, S.; Foote, T.; Gerkey, B.; Lalancette, C.; Woodall, W. Robot Operating System 2: Design, architecture, and uses in the wild. Sci. Robot. 2022, 7, eabm6074. [Google Scholar] [CrossRef] [PubMed]
- Trautman, P.; Krause, A. Unfreezing the robot: Navigation in dense, interacting crowds. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 797–803. [Google Scholar] [CrossRef]
- Li, M.; Jiang, R.; Ge, S.S.; Lee, T.H. Role playing learning for socially concomitant mobile robot navigation. CAAI Trans. Intell. Technol. 2018, 3, 49–58. [Google Scholar] [CrossRef]
- Chandra, R.; Maligi, R.; Anantula, A.; Biswas, J. SocialMapf: Optimal and Efficient Multi-Agent Path Finding With Strategic Agents for Social Navigation. IEEE Robot. Autom. Lett. 2023, 8, 3214–3221. [Google Scholar] [CrossRef]
- Russell, S. Learning agents for uncertain environments (extended abstract). In Proceedings of the Eleventh Annual Conference on Computational Learning Theory, New York, NY, USA, 24–26 July 1998; COLT’ 98. pp. 101–103. [Google Scholar] [CrossRef]
- Bellman, R. A Markovian Decision Process. Indiana Univ. Math. J. 1957, 6, 679–684. [Google Scholar] [CrossRef]
- Henry, P.; Vollmer, C.; Ferris, B.; Fox, D. Learning to navigate through crowded environments. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 981–986. [Google Scholar] [CrossRef]
- Rhinehart, N.; Kitani, K.M. First-Person Activity Forecasting with Online Inverse Reinforcement Learning. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3716–3725. [Google Scholar] [CrossRef]
- Vasquez, D.; Okal, B.; Arras, K.O. Inverse Reinforcement Learning algorithms and features for robot navigation in crowds: An experimental comparison. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 1341–1346. [Google Scholar] [CrossRef]
- Abbeel, P.; Ng, A.Y. Apprenticeship learning via inverse reinforcement learning. In Proceedings of the Twenty-First International Conference on Machine Learning, New York, NY, USA, 26–27 June 2004; ICML ’04. p. 1. [Google Scholar] [CrossRef]
- Ziebart, B.D.; Maas, A.; Bagnell, J.A.; Dey, A.K. Maximum entropy inverse reinforcement learning. In Proceedings of the 23rd National Conference on Artificial Intelligence, Chicago, IL, USA, 13–17 July 2008; AAAI Press: Washington, DC, USA, 2008. AAAI’08. Volume 3, pp. 1433–1438. [Google Scholar]
- Kretzschmar, H.; Spies, M.; Sprunk, C.; Burgard, W. Socially compliant mobile robot navigation via inverse reinforcement learning. Int. J. Robot. Res. 2016, 35, 1289–1307. [Google Scholar] [CrossRef]
- Tai, L.; Zhang, J.; Liu, M.; Burgard, W. Socially Compliant Navigation Through Raw Depth Inputs with Generative Adversarial Imitation Learning. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 1111–1117. [Google Scholar] [CrossRef]
- Goldhammer, M.; Doll, K.; Brunsmann, U.; Gensler, A.; Sick, B. Pedestrian’s Trajectory Forecast in Public Traffic with Artificial Neural Networks. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 4110–4115. [Google Scholar] [CrossRef]
- Gao, J.; Yang, Z.; Nevatia, R. RED: Reinforced Encoder-Decoder Networks for Action Anticipation. In Proceedings of the British Machine Vision Conference (BMVC), London, UK, 4–7 September 2017. [Google Scholar] [CrossRef]
- Rudenko, A.; Palmieri, L.; Herman, M.; Kitani, K.M.; Gavrila, D.M.; Arras, K.O. Human motion trajectory prediction: A survey. Int. J. Robot. Res. 2020, 39, 895–935. [Google Scholar] [CrossRef]
- Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Fei-Fei, L.; Savarese, S. Social LSTM: Human Trajectory Prediction in Crowded Spaces. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 961–971. [Google Scholar] [CrossRef]
- Furnari, A.; Farinella, G. What Would You Expect? Anticipating Egocentric Actions With Rolling-Unrolling LSTMs and Modality Attention. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6251–6260. [Google Scholar] [CrossRef]
- Chen, Z.; Song, C.; Yang, Y.; Zhao, B.; Hu, Y.; Liu, S.; Zhang, J. Robot Navigation Based on Human Trajectory Prediction and Multiple Travel Modes. Appl. Sci. 2018, 8, 2205. [Google Scholar] [CrossRef]
- Vemula, A.; Muelling, K.; Oh, J. Social Attention: Modeling Attention in Human Crowds. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; IEEE Press: New York, NY, USA, 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Farha, Y.; Richard, A.; Gall, J. When will you do what?—Anticipating Temporal Occurrences of Activities. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 5343–5352. [Google Scholar] [CrossRef]
- Huang, J.; Hao, J.; Juan, R.; Gomez, R.; Nakarnura, K.; Li, G. Model-based Adversarial Imitation Learning from Demonstrations and Human Reward. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 1683–1690. [Google Scholar] [CrossRef]
- Kanda, T.; Glas, D.F.; Shiomi, M.; Ishiguro, H.; Hagita, N. Who will be the customer? a social robot that anticipates people’s behavior from their trajectories. In Proceedings of the 10th International Conference on Ubiquitous Computing, Seoul, Repbulic of Korea, 21–24 September 2008; UbiComp ’08. pp. 380–389. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, Z.; Folkesson, J. Unsupervised robot learning to predict person motion. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 691–696. [Google Scholar] [CrossRef]
- Zanlungo, F.; Ikeda, T.; Kanda, T. Social force model with explicit collision prediction. EPL Europhys. Lett. 2011, 93, 68005. [Google Scholar] [CrossRef]
- Luber, M.; Stork, J.A.; Tipaldi, G.D.; Arras, K.O. People tracking with human motion predictions from social forces. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 464–469. [Google Scholar] [CrossRef]
- Yue, J.; Manocha, D.; Wang, H. Human Trajectory Prediction via Neural Social Physics. In Proceedings of the Computer Vision—ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Proceedings, Part XXXIV. Springer: Berlin/Heidelberg, Germany, 2022; pp. 376–394. [Google Scholar] [CrossRef]
- Gil, O.; Sanfeliu, A. Human motion trajectory prediction using the Social Force Model for real-time and low computational cost applications. In Proceedings of the 6th Iberian Robotics Conference, Coimbra, Portugal, 22–24 November 2023; pp. 1–12. [Google Scholar]
- Elnagar, A. Prediction of moving objects in dynamic environments using Kalman filters. In Proceedings of the 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No.01EX515), Banff, AB, Canada, 29 July–1 August 2001; pp. 414–419. [Google Scholar] [CrossRef]
- Lin, C.Y.; Kau, L.J.; Chan, C.Y. Bimodal Extended Kalman Filter-Based Pedestrian Trajectory Prediction. Sensors 2022, 22, 8231. [Google Scholar] [CrossRef]
- Kim, S.; Guy, S.J.; Liu, W.; Wilkie, D.; Lau, R.W.; Lin, M.C.; Manocha, D. BRVO: Predicting pedestrian trajectories using velocity-space reasoning. Int. J. Robot. Res. 2015, 34, 201–217. [Google Scholar] [CrossRef]
- Hsu, D.; Kindel, R.; Latombe, J.C.; Rock, S. Randomized Kinodynamic Motion Planning with Moving Obstacles. Int. J. Robot. Res. 2002, 21, 233–255. [Google Scholar] [CrossRef]
- Sakahara, H.; Masutani, Y.; Miyazaki, F. Safe Navigation in Unknown Dynamic Environments with Voronoi Based StRRT. In Proceedings of the 2008 IEEE/SICE International Symposium on System Integration, Nagoya, Japan, 4 December 2008; pp. 60–65. [Google Scholar] [CrossRef]
- Nishitani, I.; Matsumura, T.; Ozawa, M.; Yorozu, A.; Takahashi, M. Human-centered X-Y-T space path planning for mobile robot in dynamic environments. Robot. Auton. Syst. 2015, 66, 18–26. [Google Scholar] [CrossRef]
- Kollmitz, M.; Hsiao, K.; Gaa, J.; Burgard, W. Time dependent planning on a layered social cost map for human-aware robot navigation. In Proceedings of the 2015 European Conference on Mobile Robots (ECMR), Lincoln, UK, 2–4 September 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Khambhaita, H.; Alami, R. A Human-Robot Cooperative Navigation Planner. In Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, Vienna, Austria, 6–9 March 2017; HRI ’17. pp. 161–162. [Google Scholar] [CrossRef]
- Singamaneni, P.T.; Alami, R. HATEB-2: Reactive Planning and Decision making in Human-Robot Co-navigation. In Proceedings of the 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Naples, Italy, 31 August–4 September 2020; pp. 179–186. [Google Scholar] [CrossRef]
- Schöller, C.; Aravantinos, V.; Lay, F.; Knoll, A. What the Constant Velocity Model Can Teach Us About Pedestrian Motion Prediction. IEEE Robot. Autom. Lett. 2020, 5, 1696–1703. [Google Scholar] [CrossRef]
- Weinrich, C.; Volkhardt, M.; Einhorn, E.; Gross, H.M. Prediction of human collision avoidance behavior by lifelong learning for socially compliant robot navigation. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 376–381. [Google Scholar] [CrossRef]
- Trautman, P.; Ma, J.; Murray, R.M.; Krause, A. Robot navigation in dense human crowds: The case for cooperation. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 2153–2160. [Google Scholar] [CrossRef]
- Oli, S.; L’Esperance, B.; Gupta, K. Human Motion Behaviour Aware Planner (HMBAP) for path planning in dynamic human environments. In Proceedings of the 2013 16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, 25–29 November 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Ferrer, G.; Sanfeliu, A. Bayesian Human Motion Intentionality Prediction in urban environments. Pattern Recognit. Lett. 2014, 44, 134–140. [Google Scholar] [CrossRef]
- Schaefer, K.E.; Oh, J.; Aksaray, D.; Barber, D. Integrating Context into Artificial Intelligence: Research from the Robotics Collaborative Technology Alliance. AI Mag. 2019, 40, 28–40. [Google Scholar] [CrossRef]
- Bera, A.; Kim, S.; Randhavane, T.; Pratapa, S.; Manocha, D. GLMP- realtime pedestrian path prediction using global and local movement patterns. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 5528–5535. [Google Scholar] [CrossRef]
- Lim, V.; Rooksby, M.; Cross, E.S. Social Robots on a Global Stage: Establishing a Role for Culture During Human–Robot Interaction. Int. J. Soc. Robot. 2021, 13, 1307–1333. [Google Scholar] [CrossRef]
- Recchiuto, C.; Sgorbissa, A. Diversity-aware social robots meet people: Beyond context-aware embodied AI. arXiv 2022, arXiv:2207.05372. [Google Scholar]
- Bustos, P.; Manso, L.; Bandera, A.; Bandera, J.; García-Varea, I.; Martínez-Gómez, J. The CORTEX cognitive robotics architecture: Use cases. Cogn. Syst. Res. 2019, 55, 107–123. [Google Scholar] [CrossRef]
- Martín, F.; Rodríguez Lera, F.J.; Ginés, J.; Matellán, V. Evolution of a Cognitive Architecture for Social Robots: Integrating Behaviors and Symbolic Knowledge. Appl. Sci. 2020, 10, 6067. [Google Scholar] [CrossRef]
- Banisetty, S.B.; Forer, S.; Yliniemi, L.; Nicolescu, M.; Feil-Seifer, D. Socially Aware Navigation: A Non-linear Multi-objective Optimization Approach. ACM Trans. Interact. Intell. Syst. 2021, 11, 1–26. [Google Scholar] [CrossRef]
- Salek Shahrezaie, R.; Banisetty, S.B.; Mohammadi, M.; Feil-Seifer, D. Towards Deep Reasoning on Social Rules for Socially Aware Navigation. In Proceedings of the Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction, Boulder, CO, USA, 8–11 March 2021; HRI ’21 Companion. pp. 515–518. [Google Scholar] [CrossRef]
- Jia, Y.; Ramalingam, B.; Mohan, R.E.; Yang, Z.; Zeng, Z.; Veerajagadheswar, P. Deep-Learning-Based Context-Aware Multi-Level Information Fusion Systems for Indoor Mobile Robots Safe Navigation. Sensors 2023, 23, 2337. [Google Scholar] [CrossRef]
- Vega, A.; Manso, L.J.; Macharet, D.G.; Bustos, P.; Núñez, P. Socially aware robot navigation system in human-populated and interactive environments based on an adaptive spatial density function and space affordances. Pattern Recognit. Lett. 2019, 118, 72–84. [Google Scholar] [CrossRef]
- Kostavelis, I.; Gasteratos, A. Semantic mapping for mobile robotics tasks: A survey. Robot. Auton. Syst. 2015, 66, 86–103. [Google Scholar] [CrossRef]
- Crespo, J.; Castillo, J.C.; Mozos, O.M.; Barber, R. Semantic Information for Robot Navigation: A Survey. Appl. Sci. 2020, 10, 497. [Google Scholar] [CrossRef]
- Alqobali, R.; Alshmrani, M.; Alnasser, R.; Rashidi, A.; Alhmiedat, T.; Alia, O.M. A Survey on Robot Semantic Navigation Systems for Indoor Environments. Appl. Sci. 2024, 14, 89. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Qi, X.; Liao, Z. Social and Robust Navigation for Indoor Robots Based on Object Semantic Grid and Topological Map. Appl. Sci. 2020, 10, 8991. [Google Scholar] [CrossRef]
- Núñez, P.; Manso, L.; Bustos, P.; Drews, P., Jr.; Macharet, D. Towards a new Semantic Social Navigation Paradigm for Autonomous Robots using CORTEX. In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2016)—BAILAR2016 Workshop, New York, NY, USA, 26–31 August 2016. [Google Scholar] [CrossRef]
- Cosgun, A.; Christensen, H.I. Context-aware robot navigation using interactively built semantic maps. Paladyn J. Behav. Robot. 2018, 9, 254–276. [Google Scholar] [CrossRef]
- Li, J.; Wong, Y.; Zhao, Q.; Kankanhalli, M.S. Visual Social Relationship Recognition. Int. J. Comput. Vis. 2020, 128, 1750–1764. [Google Scholar] [CrossRef]
- Patompak, P.; Jeong, S.; Nilkhamhang, I.; Chong, N.Y. Learning social relations for culture aware interaction. In Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, Repbulic of Korea, 28 June–1 July 2017; pp. 26–31. [Google Scholar] [CrossRef]
- Okal, B.; Arras, K.O. Learning socially normative robot navigation behaviors with Bayesian inverse reinforcement learning. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 2889–2895. [Google Scholar] [CrossRef]
- Haarslev., F.; Juel., W.K.; Kollakidou., A.; Krüger., N.; Bodenhagen., L. Context-aware Social Robot Navigation. In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics—ICINCO. INSTICC, Setúbal, Portugal, 25–28 August 2021; SciTePress: Setúbal, Portugal, 2021; pp. 426–433. [Google Scholar] [CrossRef]
- Schwörer, T.; Schmidt, J.E.; Chrysostomou, D. Nav2CAN: Achieving Context Aware Navigation in ROS2 Using Nav2 and RGB-D sensing. In Proceedings of the 2023 IEEE International Conference on Imaging Systems and Techniques (IST), Copenhagen, Denmark, 17–19 October 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Amaoka, T.; Laga, H.; Nakajima, M. Modeling the Personal Space of Virtual Agents for Behavior Simulation. In Proceedings of the 2009 International Conference on CyberWorlds, Bradford, UK, 7–11 September 2009; pp. 364–370. [Google Scholar] [CrossRef]
- Flandorfer, P. Population Ageing and Socially Assistive Robots for Elderly Persons: The Importance of Sociodemographic Factors for User Acceptance. Int. J. Popul. Res. 2012, 2012, 829835. [Google Scholar] [CrossRef]
- Strait, M.; Briggs, P.; Scheutz, M. Gender, more so than Age, Modulates Positive Perceptions of Language-Based Human-Robot Interaction. In Proceedings of the 4th International Syposium on New Frontiers in Human-Robot Interaction, AISB, Canterbury, UK, 21–22 April 2015. [Google Scholar]
- Nomura, T.; Kanda, T.; Suzuki, T.; Kato, K. Age differences and images of robots. Interact. Stud. 2009, 10, 374–391. [Google Scholar] [CrossRef]
- Robert, L. Personality in the Human Robot Interaction Literature: A Review and Brief Critique. In Proceedings of the 24th Americas Conference on Information Systems, New Orleans, LA, USA, 16–18 August 2018. [Google Scholar]
- Hurtado, J.V.; Londoño, L.; Valada, A. From Learning to Relearning: A Framework for Diminishing Bias in Social Robot Navigation. Front. Robot. AI 2021, 8, 650325. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, M.; Zhou, M.; She, J.; Dong, F.; Hirota, K. Information-Driven Multirobot Behavior Adaptation to Emotional Intention in Human–Robot Interaction. IEEE Trans. Cogn. Dev. Syst. 2018, 10, 647–658. [Google Scholar] [CrossRef]
- Bera, A.; Randhavane, T.; Manocha, D. The Emotionally Intelligent Robot: Improving Socially-aware Human Prediction in Crowded Environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Nanavati, A.; Tan, X.Z.; Connolly, J.; Steinfeld, A. Follow The Robot: Modeling Coupled Human-Robot Dyads During Navigation. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 3836–3843. [Google Scholar] [CrossRef]
- Ginés Clavero, J.; Martín Rico, F.; Rodríguez-Lera, F.J.; Guerrero Hernández, J.M.; Matellán Olivera, V. Defining Adaptive Proxemic Zones for Activity-Aware Navigation. In Advances in Physical Agents II; Bergasa, L.M., Ocaña, M., Barea, R., López-Guillén, E., Revenga, P., Eds.; Springer: Cham, Switzerland, 2021; pp. 3–17. [Google Scholar]
- Repiso, E.; Garrell, A.; Sanfeliu, A. Adaptive Side-by-Side Social Robot Navigation to Approach and Interact with People. Int. J. Soc. Robot. 2020, 12, 909–930. [Google Scholar] [CrossRef]
- Repiso, E.; Zanlungo, F.; Kanda, T.; Garrell, A.; Sanfeliu, A. People’s V-Formation and Side-by-Side Model Adapted to Accompany Groups of People by Social Robots. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 2082–2088. [Google Scholar] [CrossRef]
- Honour, A.; Banisetty, S.B.; Feil-Seifer, D. Perceived Social Intelligence as Evaluation of Socially Navigation. In Proceedings of the Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction, Boulder, CO, USA, 8–11 March 2021; HRI ’21 Companion. pp. 519–523. [Google Scholar] [CrossRef]
- Moore, D.C.; Huang, A.S.; Walter, M.; Olson, E.; Fletcher, L.; Leonard, J.; Teller, S. Simultaneous local and global state estimation for robotic navigation. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3794–3799. [Google Scholar] [CrossRef]
- Macenski, S.; Booker, M.; Wallace, J. Open-Source, Cost-Aware Kinematically Feasible Planning for Mobile and Surface Robotics. arXiv 2024, arXiv:2401.13078. [Google Scholar]
- Sánchez-Ibáñez, J.R.; Pérez-del Pulgar, C.J.; García-Cerezo, A. Path Planning for Autonomous Mobile Robots: A Review. Sensors 2021, 21, 7898. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Yang, X.; Liu, H.; Li, J.; Wang, P. Path planning techniques for mobile robots: Review and prospect. Expert Syst. Appl. 2023, 227, 120254. [Google Scholar] [CrossRef]
- Qin, H.; Shao, S.; Wang, T.; Yu, X.; Jiang, Y.; Cao, Z. Review of Autonomous Path Planning Algorithms for Mobile Robots. Drones 2023, 7, 211. [Google Scholar] [CrossRef]
- Karur, K.; Sharma, N.; Dharmatti, C.; Siegel, J.E. A Survey of Path Planning Algorithms for Mobile Robots. Vehicles 2021, 3, 448–468. [Google Scholar] [CrossRef]
- Yang, L.; Li, P.; Qian, S.; Quan, H.; Miao, J.; Liu, M.; Hu, Y.; Memetimin, E. Path Planning Technique for Mobile Robots: A Review. Machines 2023, 11, 980. [Google Scholar] [CrossRef]
- Bianchi, L.; Dorigo, M.; Gambardella, L.M.; Gutjahr, W.J. A survey on metaheuristics for stochastic combinatorial optimization. Nat. Comput. 2009, 8, 239–287. [Google Scholar] [CrossRef]
- Latombe, J.C. Robot Motion Planning; Springer Inc.: New York, NY, USA, 1991. [Google Scholar]
- Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Stentz, A. Optimal and Efficient Path Planning for Unknown and Dynamic Environments; Tech. Rep. CMU-RI-TR-93-20; Robotics Institute, Carnegie Mellon University: Pittsburgh, PA, USA, 1993. [Google Scholar]
- Stentz, A. The focussed D* algorithm for real-time replanning. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; IJCAI’95. Volume 2, pp. 1652–1659. [Google Scholar]
- Koenig, S.; Likhachev, M.; Furcy, D. Lifelong Planning A*. Artif. Intell. 2004, 155, 93–146. [Google Scholar] [CrossRef]
- Koenig, S.; Likhachev, M. Fast replanning for navigation in unknown terrain. IEEE Trans. Robot. 2005, 21, 354–363. [Google Scholar] [CrossRef]
- Philippsen, R.; Siegwart, R. An Interpolated Dynamic Navigation Function. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 3782–3789. [Google Scholar] [CrossRef]
- Daniel, K.; Nash, A.; Koenig, S.; Felner, A. Theta*: Any-Angle Path Planning on Grids. J. Artif. Intell. Res. (JAIR) 2014, 39, 533–579. [Google Scholar] [CrossRef]
- Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments. Int. J. Robot. Res. 2010, 29, 485–501. [Google Scholar] [CrossRef]
- Sisbot, E.A.; Marin-Urias, L.F.; Alami, R.; Simeon, T. A Human Aware Mobile Robot Motion Planner. IEEE Trans. Robot. 2007, 23, 874–883. [Google Scholar] [CrossRef]
- Truong, X.T.; Ngo, T.D. “To Approach Humans?”: A Unified Framework for Approaching Pose Prediction and Socially Aware Robot Navigation. IEEE Trans. Cogn. Dev. Syst. 2018, 10, 557–572. [Google Scholar] [CrossRef]
- Vega-Magro, A.; Calderita, L.V.; Bustos, P.; Núñez, P. Human-aware Robot Navigation based on Time-dependent Social Interaction Spaces: A use case for assistive robotics. In Proceedings of the 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Ponta Delgada, Portugal, 15–17 April 2020; pp. 140–145. [Google Scholar] [CrossRef]
- Melo, F.; Moreno, P. Socially Reactive Navigation Models for Mobile Robots. In Proceedings of the 2022 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Santa Maria da Feira, Portugal, 29–30 April 2022; pp. 91–97. [Google Scholar] [CrossRef]
- Siegwart, R.; Nourbakhsh, I.R.; Scaramuzza, D. Introduction to Autonomous Mobile Robots, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Borenstein, J.; Koren, Y. High-speed obstacle avoidance for mobile robots. In Proceedings of the IEEE International Symposium on Intelligent Control 1988, Arlington, VA, USA, 24–26 August 1988; pp. 382–384. [Google Scholar] [CrossRef]
- Khatib, M.; Chatila, R. An Extended Potential Field Approach for Mobile Robot Sensor-Based Motions. In Proceedings of the Intelligent Autonomous Systems IAS-4, Karlsruhe, Germany, 27–30 March 1995; IOS Press: Amsterdam, The Netherlands, 1995; pp. 490–496. [Google Scholar]
- Iizuka, S.; Nakamura, T.; Suzuki, S. Robot Navigation in dynamic environment for an indoor human monitoring. In Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication, Edinburgh, UK, 25–29 August 2014; pp. 698–703. [Google Scholar] [CrossRef]
- Weerakoon, T.; Ishii, K.; Nassiraei, A.A.F. An Artificial Potential Field Based Mobile Robot Navigation Method To Prevent From Deadlock. J. Artif. Intell. Soft Comput. Res. 2015, 5, 189–203. [Google Scholar] [CrossRef]
- Azzabi, A.; Nouri, K. An advanced potential field method proposed for mobile robot path planning. Trans. Inst. Meas. Control 2019, 41, 3132–3144. [Google Scholar] [CrossRef]
- Szczepanski, R. Safe Artificial Potential Field—Novel Local Path Planning Algorithm Maintaining Safe Distance From Obstacles. IEEE Robot. Autom. Lett. 2023, 8, 4823–4830. [Google Scholar] [CrossRef]
- Garrido, S.; Moreno, L.; Abderrahim, M.; Martin, F. Path Planning for Mobile Robot Navigation using Voronoi Diagram and Fast Marching. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 2376–2381. [Google Scholar] [CrossRef]
- Friedman, S.; Pasula, H.; Fox, D. Voronoi random fields: Extracting the topological structure of indoor environments via place labeling. In Proceedings of the 20th International Joint Conference on Artifical Intelligence, Hyderabad, India, 6–12 January 2007; IJCAI’07. pp. 2109–2114. [Google Scholar]
- Lu, M.C.; Hsu, C.C.; Chen, Y.J.; Li, S.A. Hybrid Path Planning Incorporating Global and Local Search for Mobile Robot. In Advances in Autonomous Robotics; Herrmann, G., Studley, M., Pearson, M., Conn, A., Melhuish, C., Witkowski, M., Kim, J.H., Vadakkepat, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 441–443. [Google Scholar]
- LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Kavraki, L.; Svestka, P.; Latombe, J.C.; Overmars, M. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [Google Scholar] [CrossRef]
- LaValle, S.M.; Kuffner, J.J. Rapidly-Exploring Random Trees: Progress and Prospects. In Algorithmic and Computational Robotics: New Directions; AK Peters/CRC Press: Natick, MA, USA, 2001; pp. 293–308. [Google Scholar]
- Kuffner, J.; LaValle, S. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), San Francisco, CA, USA, 24–28 April 2000; Volume 2, pp. 995–1001. [Google Scholar] [CrossRef]
- Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [Google Scholar] [CrossRef]
- Moon, C.b.; Chung, W. Kinodynamic Planner Dual-Tree RRT (DT-RRT) for Two-Wheeled Mobile Robots Using the Rapidly Exploring Random Tree. IEEE Trans. Ind. Electron. 2015, 62, 1080–1090. [Google Scholar] [CrossRef]
- Svenstrup, M.; Bak, T.; Andersen, H.J. Trajectory planning for robots in dynamic human environments. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 4293–4298. [Google Scholar] [CrossRef]
- Rios-Martinez, J.; Spalanzani, A.; Laugier, C. Understanding human interaction for probabilistic autonomous navigation using Risk-RRT approach. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 2014–2019. [Google Scholar] [CrossRef]
- Shrestha, M.C.; Nohisa, Y.; Schmitz, A.; Hayakawa, S.; Uno, E.; Yokoyama, Y.; Yanagawa, H.; Or, K.; Sugano, S. Using contact-based inducement for efficient navigation in a congested environment. In Proceedings of the 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Kobe, Japan, 31 August–4 September 2015; pp. 456–461. [Google Scholar] [CrossRef]
- Olson, E.; Leonard, J.; Teller, S. Fast iterative alignment of pose graphs with poor initial estimates. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, Orlando, FL, USA, 15–19 May 2006; pp. 2262–2269. [Google Scholar] [CrossRef]
- Pérez-Higueras, N.; Caballero, F.; Merino, L. Teaching Robot Navigation Behaviors to Optimal RRT Planners. Int. J. Soc. Robot. 2018, 10, 235–249. [Google Scholar] [CrossRef]
- Pérez-Higueras, N.; Ramón-Vigo, R.; Caballero, F.; Merino, L. Robot local navigation with learned social cost functions. In Proceedings of the 2014 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Vienna, Austria, 2–4 September 2014; Volume 02, pp. 618–625. [Google Scholar] [CrossRef]
- Lakhmissi, C.; Boumehraz, M. Fuzzy logic and reinforcement learning based approaches for mobile robot navigation in unknown environment. Mediterr. J. Meas. Control 2013, 9, 109–117. [Google Scholar]
- Pandey, A.; Sonkar, R.K.; Pandey, K.K.; Parhi, D.R. Path planning navigation of mobile robot with obstacles avoidance using fuzzy logic controller. In Proceedings of the 2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 10–11 January 2014; pp. 39–41. [Google Scholar] [CrossRef]
- Omrane, H.; Masmoudi, M.S.; Masmoudi, M. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation. Comput. Intell. Neurosci. 2016, 2016, 9548482. [Google Scholar] [CrossRef] [PubMed]
- Zeinalova, L.M.; Jafarov, B.O. Mobile Robot Navigation with Preference-Based Fuzzy Behaviors. In Proceedings of the 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence—ICSCCW-2021, Antgalya, Turkey, 26–27 August 2021; Aliev, R.A., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M., Sadikoglu, F.M., Eds.; Springer: Cham, Switzerland, 2022; pp. 774–782. [Google Scholar]
- Vásconez, J.P.; Calderón-Díaz, M.; Briceño, I.C.; Pantoja, J.M.; Cruz, P.J. A Behavior-Based Fuzzy Control System for Mobile Robot Navigation: Design and Assessment. In Advanced Research in Technologies, Information, Innovation and Sustainability; Guarda, T., Portela, F., Diaz-Nafria, J.M., Eds.; Springer: Cham, Switzerland, 2024; pp. 412–426. [Google Scholar]
- Palm, R.; Chadalavada, R.; Lilienthal, A.J. Fuzzy Modeling and Control for Intention Recognition in Human-robot Systems. In Proceedings of the 8th International Joint Conference on Computational Intelligence (IJCCI 2016)—FCTA. INSTICC; Porto, Portugal, 9–11 November 2016, SciTePress: Setúbal, Portugal, 2016; pp. 67–74. [Google Scholar] [CrossRef]
- Obo, T.; Yasuda, E. Intelligent Fuzzy Controller for Human-Aware Robot Navigation. In Proceedings of the 2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics, Tsu, Japan, 10–12 September 2018; pp. 392–397. [Google Scholar] [CrossRef]
- Rifqi, A.T.; Dewantara, B.S.B.; Pramadihanto, D.; Marta, B.S. Fuzzy Social Force Model for Healthcare Robot Navigation and Obstacle Avoidance. In Proceedings of the 2021 International Electronics Symposium (IES), Surabaya, Indonesia, 29–30 September 2021; pp. 445–450. [Google Scholar] [CrossRef]
- Sampathkumar, S.K.; Choi, D.; Kim, D. Fuzzy inference system-assisted human-aware navigation framework based on enhanced potential field. Complex Eng. Syst. 2024, 4, 3. [Google Scholar] [CrossRef]
- Glorennec, P.; Jouffe, L. Fuzzy Q-learning. In Proceedings of the 6th International Fuzzy Systems Conference, Barcelona, Spain, 5 July 1997; Volume 2, pp. 659–662. [Google Scholar] [CrossRef]
- Duan, Y.; Xin-Hexu. Fuzzy reinforcement learning and its application in robot navigation. In Proceedings of the 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005; Volume 2, pp. 899–904. [Google Scholar] [CrossRef]
- Quinlan, S.; Khatib, O. Elastic bands: Connecting path planning and control. In Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; Volume 2, pp. 802–807. [Google Scholar] [CrossRef]
- Brock, O.; Khatib, O. Elastic Strips: A Framework for Motion Generation in Human Environments. Int. J. Robot. Res. 2002, 21, 1031–1052. [Google Scholar] [CrossRef]
- Hoogendoorn, S.; Kessels, F.; Daamen, W.; Duives, D. Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena. Phys. A Stat. Mech. Its Appl. 2014, 416, 684–694. [Google Scholar] [CrossRef]
- Liu, B.; Liu, H.; Zhang, H.; Qin, X. A social force evacuation model driven by video data. Simul. Model. Pract. Theory 2018, 84, 190–203. [Google Scholar] [CrossRef]
- Truong, X.T.; Ngo, T.D. Toward Socially Aware Robot Navigation in Dynamic and Crowded Environments: A Proactive Social Motion Model. IEEE Trans. Autom. Sci. Eng. 2017, 14, 1743–1760. [Google Scholar] [CrossRef]
- Ferrer, G.; Zulueta, A.; Cotarelo, F.; Sanfeliu, A. Robot social-aware navigation framework to accompany people walking side-by-side. Auton. Robot. 2017, 41, 775–793. [Google Scholar] [CrossRef]
- Karamouzas, I.; Heil, P.; van Beek, P.; Overmars, M.H. A Predictive Collision Avoidance Model for Pedestrian Simulation. In Motion in Games; Egges, A., Geraerts, R., Overmars, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 41–52. [Google Scholar]
- Jiang, Y.Q.; Chen, B.K.; Wang, B.H.; Wong, W.F.; Cao, B.Y. Extended social force model with a dynamic navigation field for bidirectional pedestrian flow. Front. Phys. 2017, 12, 124502. [Google Scholar] [CrossRef]
- Huang, L.; Gong, J.; Li, W.; Xu, T.; Shen, S.; Liang, J.; Feng, Q.; Zhang, D.; Sun, J. Social Force Model-Based Group Behavior Simulation in Virtual Geographic Environments. ISPRS Int. J. Geo-Inf. 2018, 7, 79. [Google Scholar] [CrossRef]
- Sochman, J.; Hogg, D.C. Who knows who—Inverting the Social Force Model for finding groups. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 830–837. [Google Scholar] [CrossRef]
- Farina, F.; Fontanelli, D.; Garulli, A.; Giannitrapani, A.; Prattichizzo, D. Walking Ahead: The Headed Social Force Model. PLoS ONE 2017, 12, e0169734. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Chen, M.; Li, J.; Liu, B.; Zheng, X. An Extended Social Force Model via Pedestrian Heterogeneity Affecting the Self-Driven Force. IEEE Trans. Intell. Transp. Syst. 2022, 23, 7974–7986. [Google Scholar] [CrossRef]
- Gil, O.; Garrell, A.; Sanfeliu, A. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model. Sensors 2021, 21, 7087. [Google Scholar] [CrossRef]
- Fiorini, P.; Shiller, Z. Motion Planning in Dynamic Environments Using Velocity Obstacles. Int. J. Robot. Res. 1998, 17, 760–772. [Google Scholar] [CrossRef]
- Daza, M.; Barrios-Aranibar, D.; Diaz-Amado, J.; Cardinale, Y.; Vilasboas, J. An Approach of Social Navigation Based on Proxemics for Crowded Environments of Humans and Robots. Micromachines 2021, 12, 193. [Google Scholar] [CrossRef]
- Lin, M.C.; Sud, A.; Van den Berg, J.; Gayle, R.; Curtis, S.; Yeh, H.; Guy, S.; Andersen, E.; Patil, S.; Sewall, J.; et al. Real-Time Path Planning and Navigation for Multi-agent and Crowd Simulations. In Motion in Games; Egges, A., Kamphuis, A., Overmars, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 23–32. [Google Scholar]
- van den Berg, J.; Lin, M.; Manocha, D. Reciprocal Velocity Obstacles for Real-Time Multi-agent Navigation. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 1928–1935. [Google Scholar] [CrossRef]
- Olivier, A.H.; Marin, A.; Crétual, A.; Berthoz, A.; Pettré, J. Collision avoidance between two walkers: Role-dependent strategies. Gait Posture 2013, 38, 751–756. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, J.; Guy, S.J.; Lin, M.; Manocha, D. Reciprocal n-Body Collision Avoidance. In Robotics Research; Pradalier, C., Siegwart, R., Hirzinger, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–19. [Google Scholar]
- Matsuzaki, S.; Aonuma, S.; Hasegawa, Y. Dynamic Window Approach with Human Imitating Collision Avoidance. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 8180–8186. [Google Scholar] [CrossRef]
- Kobayashi, M.; Zushi, H.; Nakamura, T.; Motoi, N. Local Path Planning: Dynamic Window Approach With Q-Learning Considering Congestion Environments for Mobile Robot. IEEE Access 2023, 11, 96733–96742. [Google Scholar] [CrossRef]
- Seder, M.; Petrovic, I. Dynamic window based approach to mobile robot motion control in the presence of moving obstacles. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 1986–1991. [Google Scholar] [CrossRef]
- Sebastian, M.; Banisetty, S.B.; Feil-Seifer, D. Socially-aware navigation planner using models of human-human interaction. In Proceedings of the 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal, 28 August–1 September 2017; pp. 405–410. [Google Scholar] [CrossRef]
- Hoang, V.B.; Nguyen, V.H.; Ngo, T.D.; Truong, X.T. Socially Aware Robot Navigation Framework: Where and How to Approach People in Dynamic Social Environments. IEEE Trans. Autom. Sci. Eng. 2023, 20, 1322–1336. [Google Scholar] [CrossRef]
- Forer, S.; Banisetty, S.B.; Yliniemi, L.; Nicolescu, M.; Feil-Seifer, D. Socially-Aware Navigation Using Non-Linear Multi-Objective Optimization. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Mavrogiannis, C.; Alves-Oliveira, P.; Thomason, W.; Knepper, R.A. Social Momentum: Design and Evaluation of a Framework for Socially Competent Robot Navigation. J. Hum. Robot Interact. 2022, 11, 1–37. [Google Scholar] [CrossRef]
- Mehta, D.; Ferrer, G.; Olson, E. Autonomous navigation in dynamic social environments using Multi-Policy Decision Making. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Repbulic of Korea, 9–14 October 2016; pp. 1190–1197. [Google Scholar] [CrossRef]
- Tang, Z.; Cunha, R.; Hamel, T.; Silvestre, C. Formation control of a leader-follower structure in three dimensional space using bearing measurements. Automatica 2021, 128, 109567. [Google Scholar] [CrossRef]
- Nguyen, K.; Dang, V.T.; Pham, D.D.; Dao, P.N. Formation control scheme with reinforcement learning strategy for a group of multiple surface vehicles. Int. J. Robust Nonlinear Control 2024, 34, 2252–2279. [Google Scholar] [CrossRef]
- Truc, J.; Singamaneni, P.T.; Sidobre, D.; Ivaldi, S.; Alami, R. KHAOS: A Kinematic Human Aware Optimization-based System for Reactive Planning of Flying-Coworker. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 4764–4770. [Google Scholar] [CrossRef]
- Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep Reinforcement Learning: A Brief Survey. IEEE Signal Process. Mag. 2017, 34, 26–38. [Google Scholar] [CrossRef]
- Akalin, N.; Loutfi, A. Reinforcement Learning Approaches in Social Robotics. Sensors 2021, 21, 1292. [Google Scholar] [CrossRef]
- Kim, B.; Pineau, J. Socially Adaptive Path Planning in Human Environments Using Inverse Reinforcement Learning. Int. J. Soc. Robot. 2016, 8, 51–66. [Google Scholar] [CrossRef]
- Kuderer, M.; Kretzschmar, H.; Burgard, W. Teaching mobile robots to cooperatively navigate in populated environments. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 3138–3143. [Google Scholar] [CrossRef]
- Karnan, H.; Nair, A.; Xiao, X.; Warnell, G.; Pirk, S.; Toshev, A.; Hart, J.; Biswas, J.; Stone, P. Socially CompliAnt Navigation Dataset (SCAND): A Large-Scale Dataset of Demonstrations for Social Navigation. IEEE Robot. Autom. Lett. 2022, 7, 11807–11814. [Google Scholar] [CrossRef]
- Bain, M.; Sammut, C. A Framework for Behavioural Cloning. In Machine Intelligence 15, Intelligent Agents [St. Catherine’s College, Oxford, July 1995], GBR; Oxford University: Oxford, UK, 1999; pp. 103–129. [Google Scholar]
- Silva, G.; Fraichard, T. Human robot motion: A shared effort approach. In Proceedings of the 2017 European Conference on Mobile Robots (ECMR), Paris, France, 6–8 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, Y.F.; Liu, M.; Everett, M.; How, J.P. Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 285–292. [Google Scholar] [CrossRef]
- Chen, Y.F.; Everett, M.; Liu, M.; How, J.P. Socially Aware Motion Planning with Deep Reinforcement Learning. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; IEEE Press: New York, NY, USA, 2017; pp. 1343–1350. [Google Scholar] [CrossRef]
- Jin, J.; Nguyen, N.M.; Sakib, N.; Graves, D.; Yao, H.; Jagersand, M. Mapless Navigation among Dynamics with Social-safety-awareness: A reinforcement learning approach from 2D laser scans. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 6979–6985. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.; Kreiss, S.; Alahi, A. Crowd-Robot Interaction: Crowd-Aware Robot Navigation With Attention-Based Deep Reinforcement Learning. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6015–6022. [Google Scholar]
- Li, K.; Xu, Y.; Wang, J.; Meng, M. SARL*: Deep Reinforcement Learning based Human-Aware Navigation for Mobile Robot in Indoor Environments. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 688–694. [Google Scholar] [CrossRef]
- Guldenring, R.; Görner, M.; Hendrich, N.; Jacobsen, N.J.; Zhang, J. Learning Local Planners for Human-aware Navigation in Indoor Environments. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2020; pp. 6053–6060. [Google Scholar] [CrossRef]
- Qin, J.; Qin, J.; Qiu, J.; Liu, Q.; Li, M.; Ma, Q. SRL-ORCA: A Socially Aware Multi-Agent Mapless Navigation Algorithm in Complex Dynamic Scenes. IEEE Robot. Autom. Lett. 2024, 9, 143–150. [Google Scholar] [CrossRef]
- Ding, W.; Li, S.; Qian, H.; Chen, Y. Hierarchical Reinforcement Learning Framework Towards Multi-Agent Navigation. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; IEEE Press: New York, NY, USA, 2018; pp. 237–242. [Google Scholar] [CrossRef]
- Lu, X.; Woo, H.; Faragasso, A.; Yamashita, A.; Asama, H. Socially aware robot navigation in crowds via deep reinforcement learning with resilient reward functions. Adv. Robot. 2022, 36, 388–403. [Google Scholar] [CrossRef]
- Bachiller, P.; Rodriguez-Criado, D.; Jorvekar, R.R.; Bustos, P.; Faria, D.R.; Manso, L.J. A graph neural network to model disruption in human-aware robot navigation. Multimed. Tools Appl. 2022, 81, 3277–3295. [Google Scholar] [CrossRef]
- Mavrogiannis, C.I.; Thomason, W.B.; Knepper, R.A. Social Momentum: A Framework for Legible Navigation in Dynamic Multi-Agent Environments. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; HRI ’18. pp. 361–369. [Google Scholar] [CrossRef]
- Pérez-D’Arpino, C.; Liu, C.; Goebel, P.; Martín-Martín, R.; Savarese, S. Robot Navigation in Constrained Pedestrian Environments using Reinforcement Learning. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 1140–1146. [Google Scholar] [CrossRef]
- Truong, X.T.; Ngo, T.D. Dynamic Social Zone based Mobile Robot Navigation for Human Comfortable Safety in Social Environments. Int. J. Soc. Robot. 2016, 8, 663–684. [Google Scholar] [CrossRef]
- Sousa, R.M.d.; Barrios-Aranibar, D.; Diaz-Amado, J.; Patiño-Escarcina, R.E.; Trindade, R.M.P. A New Approach for Including Social Conventions into Social Robots Navigation by Using Polygonal Triangulation and Group Asymmetric Gaussian Functions. Sensors 2022, 22, 4602. [Google Scholar] [CrossRef]
- Corrales-Paredes, A.; Sanz, D.O.; Terrón-López, M.J.; Egido-García, V. User Experience Design for Social Robots: A Case Study in Integrating Embodiment. Sensors 2023, 23, 5274. [Google Scholar] [CrossRef]
- Bartneck, C.; Belpaeme, T.; Eyssel, F.; Kanda, T.; Keijsers, M.; Šabanović, S. Human-Robot Interaction: An Introduction; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Senft, E.; Satake, S.; Kanda, T. Would You Mind Me if I Pass by You? Socially-Appropriate Behaviour for an Omni-based Social Robot in Narrow Environment. In Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, Cambridge, UK, 23–26 March 2020; HRI ’20. pp. 539–547. [Google Scholar] [CrossRef]
- Pellegrini, S.; Ess, A.; Schindler, K.; van Gool, L. You’ll never walk alone: Modeling social behavior for multi-target tracking. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 261–268. [Google Scholar] [CrossRef]
- Lerner, A.; Chrysanthou, Y.; Lischinski, D. Crowds by Example. Comput. Graph. Forum 2007, 26, 655–664. [Google Scholar] [CrossRef]
- Rudenko, A.; Kucner, T.P.; Swaminathan, C.S.; Chadalavada, R.T.; Arras, K.O.; Lilienthal, A.J. THÖR: Human-Robot Navigation Data Collection and Accurate Motion Trajectories Dataset. IEEE Robot. Autom. Lett. 2020, 5, 676–682. [Google Scholar] [CrossRef]
- Manso, L.J.; Nuñez, P.; Calderita, L.V.; Faria, D.R.; Bachiller, P. SocNav1: A Dataset to Benchmark and Learn Social Navigation Conventions. Data 2020, 5, 7. [Google Scholar] [CrossRef]
- Wang, A.; Biswas, A.; Admoni, H.; Steinfeld, A. Towards Rich, Portable, and Large-Scale Pedestrian Data Collection. arXiv 2023, arXiv:2203.01974. [Google Scholar]
- Paez-Granados, D.; He, Y.; Gonon, D.; Huber, L.; Billard, A. 3D point cloud and RGBD of pedestrians in robot crowd navigation: Detection and tracking. IEEE Dataport 2021. [Google Scholar] [CrossRef]
- Bae, J.; Kim, J.; Yun, J.; Kang, C.; Choi, J.; Kim, C.; Lee, J.; Choi, J.; Choi, J.W. SiT Dataset: Socially Interactive Pedestrian Trajectory Dataset for Social Navigation Robots. In Proceedings of the Thirty-Seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track, New Orleans, LA, USA, 10 December 2023. [Google Scholar]
- Nguyen, D.M.; Nazeri, M.; Payandeh, A.; Datar, A.; Xiao, X. Toward Human-Like Social Robot Navigation: A Large-Scale, Multi-Modal, Social Human Navigation Dataset. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 7442–7447. [Google Scholar] [CrossRef]
- Camargo, C.; Gonçalves, J.; Conde, M.Á.; Rodríguez-Sedano, F.J.; Costa, P.; García-Peñalvo, F.J. Systematic Literature Review of Realistic Simulators Applied in Educational Robotics Context. Sensors 2021, 21, 4031. [Google Scholar] [CrossRef]
- Michel, O. WebotsTM: Professional Mobile Robot Simulation. Int. J. Adv. Robot. Syst. 2004, 1, 39–42. [Google Scholar] [CrossRef]
- Koenig, N.P.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 3, pp. 2149–2154. [Google Scholar]
- Karwowski, J.; Dudek, W.; Węgierek, M.; Winiarski, T. HuBeRo—A Framework to Simulate Human Behaviour in Robot Research. J. Autom. Mob. Robot. Intell. Syst. 2021, 15, 31–38. [Google Scholar] [CrossRef]
- Tsoi, N.; Xiang, A.; Yu, P.; Sohn, S.S.; Schwartz, G.; Ramesh, S.; Hussein, M.; Gupta, A.W.; Kapadia, M.; Vázquez, M. SEAN 2.0: Formalizing and Generating Social Situations for Robot Navigation. IEEE Robot. Autom. Lett. 2022, 7, 11047–11054. [Google Scholar] [CrossRef]
- Grzeskowiak, F.; Gonon, D.; Dugas, D.; Paez-Granados, D.; Chung, J.J.; Nieto, J.; Siegwart, R.; Billard, A.; Babel, M.; Pettré, J. Crowd against the machine: A simulation-based benchmark tool to evaluate and compare robot capabilities to navigate a human crowd. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE Press: New York, NY, USA, 2021; pp. 3879–3885. [Google Scholar] [CrossRef]
- Li, C.; Xia, F.; Martín-Martín, R.; Lingelbach, M.; Srivastava, S.; Shen, B.; Vainio, K.E.; Gokmen, C.; Dharan, G.; Jain, T.; et al. iGibson 2.0: Object-Centric Simulation for Robot Learning of Everyday Household Tasks. In Proceedings of the 5th Conference on Robot Learning, London, UK, 8–11 November 2022; Faust, A., Hsu, D., Neumann, G., Eds.; PMLR: Rocks, PA, USA, 2022; Volume 164, pp. 455–465. [Google Scholar]
- Favier, A.; Singamaneni, P.T.; Alami, R. An Intelligent Human Avatar to Debug and Challenge Human-Aware Robot Navigation Systems. In Proceedings of the 2022 ACM/IEEE International Conference on Human-Robot Interaction, Sapporo, Japan, 7–10 March 2022; IEEE Press: New York, NY, USA, 2022. HRI ’22. pp. 760–764. [Google Scholar]
- Hauterville, O.; Fernández, C.; Singamaneni, P.T.; Favier, A.; Matellán, V.; Alami, R. IMHuS: Intelligent Multi-Human Simulator. In Proceedings of the IROS2022 Workshop: Artificial Intelligence for Social Robots Interacting with Humans in the Real World, Kyoto, Japan, 27 October 2022. [Google Scholar]
- Sprague, Z.; Chandra, R.; Holtz, J.; Biswas, J. SOCIALGYM 2.0: Simulator for Multi-Agent Social Robot Navigation in Shared Human Spaces. arXiv 2023, arXiv:2303.05584. [Google Scholar]
- Pérez-Higueras, N.; Otero, R.; Caballero, F.; Merino, L. HuNavSim: A ROS 2 Human Navigation Simulator for Benchmarking Human-Aware Robot Navigation. IEEE Robot. Autom. Lett. 2023, 8, 7130–7137. [Google Scholar] [CrossRef]
- Heiden, E.; Palmieri, L.; Bruns, L.; Arras, K.O.; Sukhatme, G.S.; Koenig, S. Bench-MR: A Motion Planning Benchmark for Wheeled Mobile Robots. IEEE Robot. Autom. Lett. 2021, 6, 4536–4543. [Google Scholar] [CrossRef]
- Toma, A.; Hsueh, H.; Jaafar, H.; Murai, R.; Kelly, P.J.; Saeedi, S. PathBench: A Benchmarking Platform for Classical and Learned Path Planning Algorithms. In Proceedings of the 2021 18th Conference on Robots and Vision (CRV), Burnaby, BC, Canada, 26–28 May 2021; pp. 79–86. [Google Scholar] [CrossRef]
- Rocha, L.; Vivaldini, K. Plannie: A Benchmark Framework for Autonomous Robots Path Planning Algorithms Integrated to Simulated and Real Environments. In Proceedings of the 2022 International Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, 21–24 June 2022; pp. 402–411. [Google Scholar] [CrossRef]
- Tani, J.; Daniele, A.F.; Bernasconi, G.; Camus, A.; Petrov, A.; Courchesne, A.; Mehta, B.; Suri, R.; Zaluska, T.; Walter, M.R.; et al. Integrated Benchmarking and Design for Reproducible and Accessible Evaluation of Robotic Agents. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2020; pp. 6229–6236. [Google Scholar] [CrossRef]
- Mishkin, D.; Dosovitskiy, A.; Koltun, V. Benchmarking Classic and Learned Navigation in Complex 3D Environments. arXiv 2019, arXiv:1901.10915. [Google Scholar]
- Perille, D.; Truong, A.; Xiao, X.; Stone, P. Benchmarking Metric Ground Navigation. In Proceedings of the 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Abu Dhabi, United Arab Emirates, 4–6 November 2020; pp. 116–121. [Google Scholar] [CrossRef]
- Wen, J.; Zhang, X.; Bi, Q.; Pan, Z.; Feng, Y.; Yuan, J.; Fang, Y. MRPB 1.0: A Unified Benchmark for the Evaluation of Mobile Robot Local Planning Approaches. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 8238–8244. [Google Scholar]
- Kästner, L.; Bhuiyan, T.; Le, T.A.; Treis, E.; Cox, J.; Meinardus, B.; Kmiecik, J.; Carstens, R.; Pichel, D.; Fatloun, B.; et al. Arena-Bench: A Benchmarking Suite for Obstacle Avoidance Approaches in Highly Dynamic Environments. IEEE Robot. Autom. Lett. 2022, 7, 9477–9484. [Google Scholar] [CrossRef]
- Chamzas, C.; Quintero-Peña, C.; Kingston, Z.; Orthey, A.; Rakita, D.; Gleicher, M.; Toussaint, M.; Kavraki, L.E. MotionBenchMaker: A Tool to Generate and Benchmark Motion Planning Datasets. IEEE Robot. Autom. Lett. 2022, 7, 882–889. [Google Scholar] [CrossRef]
- Tafnakaji, S.; Hajieghrary, H.; Teixeira, Q.; Bekiroglu, Y. Benchmarking local motion planners for navigation of mobile manipulators. In Proceedings of the 2023 IEEE/SICE International Symposium on System Integration (SII), Atlanta, GA, USA, 17–20 January 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Karwowski, J.; Szynkiewicz, W. SRPB: A benchmark for the quantitative evaluation of a social robot navigation. In Proceedings of the 2023 27th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 22–25 August 2023; pp. 411–416. [Google Scholar] [CrossRef]
- Xia, F.; Shen, W.B.; Li, C.; Kasimbeg, P.; Tchapmi, M.E.; Toshev, A.; Martín-Martín, R.; Savarese, S. Interactive Gibson Benchmark: A Benchmark for Interactive Navigation in Cluttered Environments. IEEE Robot. Autom. Lett. 2020, 5, 713–720. [Google Scholar] [CrossRef]
- Singamaneni, P.T.; Favier, A.; Alami, R. Towards Benchmarking Human-Aware Social Robot Navigation: A New Perspective and Metrics. In Proceedings of the IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Busan, Republic of Korea, 28–31 August 2023. [Google Scholar] [CrossRef]
- Tenorth, M.; Beetz, M. KNOWROB—Knowledge processing for autonomous personal robots. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 4261–4266. [Google Scholar] [CrossRef]
- Singamaneni, P.T.; Umbrico, A.; Orlandini, A.; Alami, R. Towards Enhancing Social Navigation through Contextual and Human-related Knowledge. In Proceedings of the International Conference on Social Robotics 2022 Workshop: ALTRUIST, Florence, Italy, 13–16 December 2022. [Google Scholar]
- Manso, L.; Calderita, L.; Bustos, P.; Garcia, J.; Martínez, M.; Fernández, F.; Romero-Garcés, A.; Bandera, A. A General-Purpose Architecture to Control Mobile Robots. In Proceedings of the WAF 2014 15th Workshop of Physical Agents, León, Spain, 12–13 June 2014. [Google Scholar]
Survey | Robot Types | Perception | Motion Planning | Evaluation | Nav. System Architecture |
---|---|---|---|---|---|
Kruse et al. [15] | wheeled | human traj. prediction | global cost functions, pose selection, global and local planning algorithms | simulation, user studies | allocation of main concepts |
Rios-M. et al. [13] | — | social cues and signals | algorithms embedding social conventions | — | allocation of main concepts |
Chik et al. [14] | wheeled | — | global path planning and local trajectory planning algorithms | — | various motion planning architectures |
Charalampous et al. [16] | — | semantic mapping, human trajectory prediction, contextual awareness | — | benchmarks, datasets | — |
Möller et al. [3] | — | active perception and learning, human behavior prediction | applications of activity recognition for path planning, trajectory modeling | benchmarks, datasets, simulation | — |
Zhu and Zhang [18] | wheeled | — | DRL-based navigation algorithms | — | navigation frameworks structures |
Mirsky et al. [4] | wheeled | — | navigation models and algorithms for conflict avoidance | simulation, various studies | — |
Gao et al. [5] | — | — | models for assessment of specific social phenomena | questionnaires, various studies, scenarios, datasets, simulation, various metrics | — |
Sánchez et al. [19] | — | human detection, semantic mapping, human motion prediction | predictive and reactive navigation methods | datasets | — |
Mavrogiannis et al. [17] | design challenges | human intention prediction | extensive study involving various navigation algorithms | metrics, datasets, simulation, crowd models, demonstration, various studies | — |
Guillén-Ruiz et al. [20] | — | classification of human motion prediction methods | agent motion models and learning-based methods, multi-behavior navigation | — | — |
Francis et al. [12] | diversity of hardware platforms | predicting and accommodating human behavior | social navigation principles analysis, planning extensions with contextual awareness | methodologies and guidelines, metrics, datasets, scenarios, simulators, benchmarks | API for metrics benchmarking |
Singamaneni et al. [11] | ground, aerial, aquatic | human intentions and trajectory prediction, contextual awareness | generation of global and local motion (planning, force, learning), identifying social norms | metrics, datasets, benchmarks, studies, simulators | — |
Ours | ground, wheeled | human detection and tracking, trajectory prediction, contextual awareness | requirements-based global path and local trajectory planning methods with social constraints | metrics, datasets, benchmarks and simulators classification | — |
Approach |
Software Architecture |
Robot Fidelity |
Human Task Variety | Human Control | ||
---|---|---|---|---|---|---|
Scripted Scenarios | Dynamic Goals | Teleop | ||||
Webots [366] | standalone | kinodynamic | MG | ✓ | — | — |
Gazebo [367] (Ignition) | standalone | kinodynamic | MG, PG | ✓ | — | — |
PedsimROS [140] | framework (Gazebo interface) | — | MG | ✓ | — | — |
flatland | standalone | kinematic | MG | — | ✓ | — |
HuBeRo [368] | framework (Gazebo interface) | — | MG, PG, FO, ST, CO, MO | ✓ | ✓ | ✓ |
SEAN 2.0 [369] | Unity | kinodynamic | MG, JG | ✓ | ✓ | ✓ |
Crowdbot [370] | Unity | kinodynamic | MG | ✓ | — | — |
iGibson 2.0 [371] | standalone | kinodynamic | MG | ✓ | — | — |
InHUS [372] | framework (Stage/Morse interfaces) | — | MG | ✓ | ✓ | ✓ |
IMHuS [373] | framework (Gazebo interface) | — | MG | ✓ | ✓ | — |
SocialGym 2.0 [374] | framework (UTMRS interface) | kinodynamic | MG | ✓ | ✓ | — |
HuNavSim [375] | framework (Gazebo interface) | — | MG | ✓ | ✓ | — |
Approach |
Human Motion Planning |
Human Motion Diversity | Human Groups |
---|---|---|---|
Webots [366] | naive trajectory following |
configurable speed in a scripted trajectory | — |
Gazebo [367] (Ignition) | APF-like | configurable weights of potentials | — |
PedsimROS [140] | SFM |
configurable motion model’s properties and group assignment | ✓ |
flatland |
any ROS plugin for motion planning |
possible individual parameters for each planning agent | — |
HuBeRo [368] |
any ROS plugin for motion planning |
possible individual parameters for each planning agent | — |
SEAN 2.0 [369] | Unity’s built-in path planner with SFM |
configurable behaviors (randomized, handcrafted or graph-based control of pedestrians), variable posture | ✓ |
Crowdbot [370] | DWA, RVO, SFM |
configurable speed in a scripted trajectory | — |
iGibson 2.0 [371] | with ORCA |
configurable object radius of ORCA | — |
InHUS [372] |
any ROS plugin for motion planning |
possible individual parameters for each planning agent | — |
IMHuS [373] |
any ROS plugin for motion planning |
possible individual parameters for each planning agent | — |
SocialGym 2.0 [374] | SFM |
configurable motion model’s properties and group assignment | — |
HuNavSim [375] | APF-like/SFM |
configurable behaviors (regular, impassive, surprised, curious, scared, threatening) | ✓ |
Name | Metrics | Suitable Env. | Analysis Tools | ||||
---|---|---|---|---|---|---|---|
Classical Navigation Performance | Physical Safety | Perceived Safety | Motion Naturalness | Social Norms | |||
iGibson Benchmark [387] | ✓ | — | ✓ | — | — | S | – |
MRPB [382] | ✓✓✓✓ | ✓ | — | ✓ | — | S/R | – |
BenchMR [376] | ✓✓✓✓✓
✓ | ✓ | — | ✓ | — | S | scenario rendering, metrics plots |
CrowdBot Benchmark [370] | ✓✓ | ✓✓ | — | ✓✓✓✓ | — | S | scenario rendering, metrics plots |
SocNavBench [33] | ✓✓✓✓✓
✓✓✓✓✓ | ✓✓ | ✓✓ | ✓✓ | — | S | scenario rendering, metrics plots |
Arena-Bench [383] | ✓✓✓✓✓
✓✓✓ | ✓ | — | ✓✓✓ | — | S | scenario rendering, metrics plots |
SEAN 2.0 [369] | ✓✓✓✓✓
✓✓✓ | ✓ | ✓✓ | ✓ | — | S | – |
InHuS [372] | ✓ | ✓✓ | ✓ | — | — | S/R | scenario and metrics rendering |
Tafnakaji et al. [385] | ✓✓✓✓✓ | — | — | ✓ | — | S/R | scenario rendering |
SRPB [76] | ✓✓✓✓✓ ✓ | ✓✓✓✓ | ✓✓✓✓✓ ✓✓✓✓✓ ✓✓✓✓✓ ✓ | ✓✓✓✓✓ | — | S/R | scenario rendering, metrics plots, exporting results to a LATEX table or a spreadsheet |
HuNavSim [375] | ✓✓✓✓✓
✓✓✓ | ✓✓✓✓ | ✓✓✓✓ | ✓✓ | — | S | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karwowski, J.; Szynkiewicz, W.; Niewiadomska-Szynkiewicz, E. Bridging Requirements, Planning, and Evaluation: A Review of Social Robot Navigation. Sensors 2024, 24, 2794. https://doi.org/10.3390/s24092794
Karwowski J, Szynkiewicz W, Niewiadomska-Szynkiewicz E. Bridging Requirements, Planning, and Evaluation: A Review of Social Robot Navigation. Sensors. 2024; 24(9):2794. https://doi.org/10.3390/s24092794
Chicago/Turabian StyleKarwowski, Jarosław, Wojciech Szynkiewicz, and Ewa Niewiadomska-Szynkiewicz. 2024. "Bridging Requirements, Planning, and Evaluation: A Review of Social Robot Navigation" Sensors 24, no. 9: 2794. https://doi.org/10.3390/s24092794
APA StyleKarwowski, J., Szynkiewicz, W., & Niewiadomska-Szynkiewicz, E. (2024). Bridging Requirements, Planning, and Evaluation: A Review of Social Robot Navigation. Sensors, 24(9), 2794. https://doi.org/10.3390/s24092794