Nighttime Cough Characteristics in Chronic Obstructive Pulmonary Disease Patients
Abstract
:1. Introduction
2. Methods and Materials
2.1. Data Collection
2.2. Cough Monitor
2.3. Cough Classifier
2.4. Alert Mechanism
3. Results
3.1. Patient Characteristics
3.2. Annotation and Classifier Performance
3.3. Cough Counts
4. Discussion
- Our approach considers only data from stable epochs, obviously leading to a lower slope; see Figure 11. The choice for stable epochs is relevant in view of the non-robust nature of mean and standard deviation statistics.
- The monitor is tuned to a high specificity as a consequence of personalisation and using a high classification threshold. This means that contributions of environmental sound variability (seeping in via false positives) are suppressed to a high degree.
- The considered data are restricted to COPD patients and nighttime monitoring.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Cough Waveforms
Appendix B. Cough Density Plots
Patient | Sessions | Figure | Alert | Stable | Mean | Spread |
---|---|---|---|---|---|---|
001 | 83 | Figure A8 | Y | N | 85.6 | 59.2 |
002 | 48 | Figure A6 | N | N | 23.3 | 40.2 |
003 | 78 | Figure A9 | Y | N | 99.0 | 47.8 |
004 | 86 | Figure A7 | Y | N | 43.9 | 32.5 |
006 | 61 | Figure A8 | N | N | 33.5 | 30.8 |
007 | 76 | Figure A7 | N | N | 40.2 | 28.6 |
008 | 50 | Figure A7 | N | N | 16.7 | 16.3 |
009 | 133 | Figure A6 | Y | N | 13.7 | 19.1 |
010 | 134 | Figure A7 | Y | N | 23.1 | 18.9 |
011 | 81 | Figure A6 | Y | N | 12.0 | 8.8 |
014 | 79 | Figure A8 | N | N | 50.7 | 17.9 |
015 | 43 | Figure A9 | N | Y | 160.7 | 58.1 |
016 | 136 | Figure A6 | Y | N | 11.8 | 9.7 |
017 | 120 | Figure A5 | Y | N | 6.3 | 14.7 |
019 | 54 | Figure A7 | Y | N | 26.4 | 16.7 |
021 | 71 | Figure A10 | Y | N | 165.5 | 157.5 |
022 | 59 | Figure A8 | N | Y | 49.6 | 29.0 |
023 | 93 | Figure A10 | Y | N | 311.7 | 139.3 |
024 | 86 | Figure A6 | N | N | 13.7 | 16.9 |
025 | 138 | Figure A7 | N | Y | 22.5 | 17.8 |
026 | 81 | Figure A6 | Y | N | 11.0 | 12.3 |
027 | 78 | Figure A5 | Y | N | 4.0 | 12.0 |
028 | 73 | Figure A8 | N | Y | 48.8 | 13.9 |
029 | 115 | Figure A6 | N | N | 10.2 | 11.3 |
030 | 118 | Figure A9 | N | N | 78.4 | 33.2 |
031 | 38 | Figure A9 | Y | N | 111.8 | 96.0 |
032 | 76 | Figure A7 | Y | N | 27.6 | 31.2 |
033 | 53 | Figure A5 | Y | N | 18.7 | 31.9 |
034 | 82 | Figure A7 | N | Y | 11.9 | 7.3 |
036 | 72 | Figure A8 | Y | N | 85.4 | 74.8 |
037 | 81 | Figure A8 | N | N | 21.0 | 13.1 |
040 | 81 | Figure A7 | N | Y | 22.5 | 14.9 |
References
- Seemungal, T.A.; Donaldson, G.C.; Bhowmik, A.; Jeffries, D.J.; Wedzicha, J.A. Time Course and Recovery of Exacerbations in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2000, 161, 1609–1613. [Google Scholar] [CrossRef] [PubMed]
- Burgel, P.R.; Nesme-Meyer, P.; Chanez, P.; Caillaud, D.; Carré, P.; Perez, T.; Roche, N. Cough and Sputum Production Are Associated With Frequent Exacerbations and Hospitalizations in COPD Subjects. Chest 2009, 135, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Ekberg-Aronsson, M.; Pehrsson, K.; Nilsson, J.; Nilsson, P.M.; Löfdahl, C.G. Mortality in GOLD stages of COPD and its dependence on symptoms of chronic bronchitis. Respir. Res. 2005, 6, 98. [Google Scholar] [CrossRef]
- Calverley, P.; Pauwels, R.; Löfdahl, C.G.; Svensson, K.; Higenbottam, T.; Carlsson, L.G.; Ståhl, E. Relationship between respiratory symptoms and medical treatment in exacerbations of COPD. Eur. Respir. J. 2005, 26, 406–413. [Google Scholar] [CrossRef]
- Hall, J.I.; Lozano, M.; Estrada-Petrocelli, L.; Birring, S.; Turner, R. The present and future of cough counting tools. J. Thorac. Dis. 2020, 12, 5207–5223. [Google Scholar] [CrossRef] [PubMed]
- Serrurier, A.; Neuschaefer-Rube, C.; Röhrig, R. Past and Trends in Cough Sound Acquisition, Automatic Detection and Automatic Classification: A Comparative Review. Sensors 2022, 22, 2896. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, K.; Holt, K.; Dockry, R.; Smith, J. P159 Validation of the VitaloJAK™ 24 Hour Ambulatory Cough Monitor. Thorax 2012, 67, A131. [Google Scholar] [CrossRef]
- Kuhn, M.; Nalbant, E.; Kohlbrenner, D.; Alge, M.; Kuett, L.; Arvaji, A.; Sievi, N.A.; Russi, E.W.; Clarenbach, C.F. Validation of a small cough detector. ERJ Open Res. 2023, 9, 00279-2022. [Google Scholar] [CrossRef]
- Glass, M.; Kroh, J.; Nguyen, T.; Piao, D.; Cannon-Bailey, S. Stepwise Validation Program for Developing the Algorithm for Chronic Cough with Remote e-stethoscope Platform RESP. Am. J. Respir. Crit. Care Med. 2022, 205, A3187. [Google Scholar]
- Lee, S.E.; Rudd, M.; Kim, T.H.; Oh, J.Y.; Lee, J.H.; Jover, L.; Small, P.M.; Chung, K.F.; Song, W.J. Feasibility and Utility of a Smartphone Application-Based Longitudinal Cough Monitoring in Chronic Cough Patients in a Real-World Setting. Lung 2023, 201, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Do, W.; Russell, R.; Wheeler, C.; Javed, H.; Dogan, C.; Cunningham, G.; Khanna, V.; De Vos, M.; Satia, I.; Bafadhel, M.; et al. Performance of cough monitoring by Albus Home, a contactless and automated system for nocturnal respiratory monitoring at home. ERJ Open Res. 2022, 8, 00265-2022. [Google Scholar] [CrossRef] [PubMed]
- Barata, F.; Cleres, D.; Tinschert, P.; Iris Shih, C.H.; Rassouli, F.; Boesch, M.; Brutsche, M.; Fleisch, E. Nighttime Continuous Contactless Smartphone-Based Cough Monitoring for the Ward: Validation Study. JMIR Form Res. 2023, 7, e38439. [Google Scholar] [CrossRef] [PubMed]
- Crooks, M.G.; den Brinker, A.; Hayman, Y.; Williamson, J.D.; Innes, A.; Wright, C.E.; Hill, P.; Morice, A.H. Continuous Cough Monitoring Using Ambient Sound Recording During Convalescence from a COPD Exacerbation. Lung 2017, 195, 289–294. [Google Scholar] [CrossRef] [PubMed]
- den Brinker, A.C.; van Dinther, R.; Crooks, M.G.; Thackray-Nocera, S.; Morice, A.H. Alert system design based on experimental findings from long-term unobtrusive monitoring in COPD. Biomed. Signal Process. Control 2021, 63, 102205. [Google Scholar] [CrossRef]
- Crooks, M.G.; den Brinker, A.C.; Thackray-Nocera, S.; van Dinther, R.; Wright, C.E.; Morice, A.H. Domiciliary Cough Monitoring for the Prediction of COPD Exacerbations. Lung 2021, 199, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Blouet, S.; Sutter, J.; Fresnel, E.; Kerfourn, A.; Cuvelier, A.; Patout, M. Prediction of severe acute exacerbation using changes in breathing pattern of COPD patients on home noninvasive ventilation. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 2577–2586. [Google Scholar] [CrossRef]
- den Brinker, A.C.; Coman, M.; Ouweltjes, O.; Crooks, M.G.; Thackray-Nocera, S.; Morice, A.H. Performance Requirements for Cough Classifiers in Real-World Applications. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021; pp. 96–100. [Google Scholar] [CrossRef]
- Glasberg, B.R.; Moore, B.C. Derivation of auditory filter shapes from notched-noise data. Hear. Res. 1990, 47, 103–138. [Google Scholar] [CrossRef]
- Angeloni, C.; Geffen, M.N. Contextual modulation of sound processing in the auditory cortex. Curr. Opin. Neurobiol. 2018, 49, 8–15. [Google Scholar] [CrossRef] [PubMed]
- XGBoost. XGBoost Parameters—Xgboost 2.1.1 Documentation. 2022. Available online: https://xgboost.readthedocs.io/en/stable/parameter.html (accessed on 5 December 2024).
- Chung, K.F.; Chaccour, C.; Jover, L.; Galvosas, M.; Song, W.J.; Rudd, M.; Small, P. Longitudinal Cough Frequency Monitoring in Persistent Coughers: Daily Variability and Predictability. Lung 2024, 202, 561–568. [Google Scholar] [CrossRef]
- Morice, A.; Alge, M.; Kuett, L.; Hart, S.; Rigby, A.; Elkayam, D. Cough frequency has a high daily variation in patients with chronic cough. ERJ Open Res. 2024; in press. [Google Scholar] [CrossRef]
Parameter | Setting | Units | |
---|---|---|---|
Mapping to B-scale | 3.45 | B | |
0.04 | |||
Smoothing of data | p | 0.75 | |
Baseline creation | L | 14 | days |
D | 5 | days | |
0.5 | |||
O | 0.35 | B |
Characteristic | |
---|---|
Gender: Male/Female | 24/14 |
Age (years) | 72 [57–84] |
Weight (kg) | 79 [44–173] |
Height (cm) | 168 [152–198] |
BMI (kg/m2) | 27.7 [16.2–41.3] |
Smoking status | |
| 7/31 |
| 46 [10.5–212] |
FEV1 (L) | 1.13 [0.61–2.81] |
% predicted FEV1 | 43 [20–106] |
CAT score | |
| 27 [5–37] |
| 25 [12–36] |
VAS | 30 [0.5–85] |
HARQ | 40 [8–70 ] |
Exacerbations o (1/yr) | 3 [1–7] |
Admissions o (1/yr) | 0 [0–2] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
den Brinker, A.C.; Ouweltjes, O.; Rietman, R.; Thackray-Nocera, S.; Crooks, M.G.; Morice, A.H. Nighttime Cough Characteristics in Chronic Obstructive Pulmonary Disease Patients. Sensors 2025, 25, 404. https://doi.org/10.3390/s25020404
den Brinker AC, Ouweltjes O, Rietman R, Thackray-Nocera S, Crooks MG, Morice AH. Nighttime Cough Characteristics in Chronic Obstructive Pulmonary Disease Patients. Sensors. 2025; 25(2):404. https://doi.org/10.3390/s25020404
Chicago/Turabian Styleden Brinker, Albertus C., Okke Ouweltjes, Ronald Rietman, Susannah Thackray-Nocera, Michael G. Crooks, and Alyn H. Morice. 2025. "Nighttime Cough Characteristics in Chronic Obstructive Pulmonary Disease Patients" Sensors 25, no. 2: 404. https://doi.org/10.3390/s25020404
APA Styleden Brinker, A. C., Ouweltjes, O., Rietman, R., Thackray-Nocera, S., Crooks, M. G., & Morice, A. H. (2025). Nighttime Cough Characteristics in Chronic Obstructive Pulmonary Disease Patients. Sensors, 25(2), 404. https://doi.org/10.3390/s25020404