Geometry-Based Synchrosqueezing S-Transform with Shifted Instantaneous Frequency Estimator Applied to Gearbox Fault Diagnosis
Abstract
:1. Introduction
- A novel extension of the geometric reassignment framework to ST, enabling the analysis of signals with varying TF characteristics while benefiting from ST’s inherent multi-resolution properties.
- The introduction of a shifted IF estimator that improves the alignment of reassigned coefficients with the ideal IF trajectory, achieving a higher energy concentration in TFRs.
- A comprehensive validation of the proposed GSSST method through simulations and experiments on real-world gearbox fault data, demonstrating its effectiveness in diagnosing complex mechanical faults under challenging conditions.
2. Theoretical Background
2.1. S-Transform (ST)
2.2. ST-Based RM
2.3. SSST
3. GSSST
4. Simulated Validation
5. Experimental Validation
5.1. Application for Planetary Gearbox Fault Data
5.2. Application for Parallel Gearbox Fault Data
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saufi, S.R.; Ahmad, Z.A.B.; Leong, M.S.; Lim, M.H. Gearbox fault diagnosis using a deep learning model with limited data sample. IEEE Trans. Ind. Inform. 2020, 16, 6263–6271. [Google Scholar] [CrossRef]
- García, P.L.; Crispel, S.; Saerens, E.; Verstraten, T.; Lefeber, D. Compact gearboxes for modern robotics: A review. Front. Robot. AI 2020, 7, 103. [Google Scholar] [CrossRef] [PubMed]
- El Yousfi, B.; Soualhi, A.; Medjaher, K.; Guillet, F. Electromechanical modeling of a motor–gearbox system for local gear tooth faults detection. Mech. Syst. Signal Process. 2022, 166, 108435. [Google Scholar] [CrossRef]
- Liu, B.; Riemenschneider, S.; Xu, Y. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum. Mech. Syst. Signal Process. 2006, 20, 718–734. [Google Scholar] [CrossRef]
- Kumar, A.; Gandhi, C.P.; Zhou, Y.; Kumar, R.; Xiang, J. Latest developments in gear defect diagnosis and prognosis: A review. Measurement 2020, 158, 107735. [Google Scholar] [CrossRef]
- Xu, M.; Han, Y.; Sun, X.; Shao, Y.; Gu, F.; Ball, A.D. Vibration characteristics and condition monitoring of internal radial clearance within a ball bearing in a gear-shaft-bearing system. Mech. Syst. Signal Process. 2022, 165, 108280. [Google Scholar] [CrossRef]
- Gu, H.; Liu, W.Y.; Gao, Q.W.; Zhang, Y. A review on wind turbines gearbox fault diagnosis methods. J. Vibroeng. 2021, 23, 26–43. [Google Scholar] [CrossRef]
- Wu, H.; Zhi, S.; Fang, Q.; Liu, Y.; Wang, T.; Cheng, W.; Chu, F. Synchronous Decomposition Match-Reassigning Transform and Its Application in Planetary Gearbox Fault Diagnosis. Meas. Sci. Technol. 2024, 36, 016139. [Google Scholar] [CrossRef]
- Lei, Y.; Lin, J.; Zuo, M.J.; He, Z. Condition monitoring and fault diagnosis of planetary gearboxes: A review. Measurement 2014, 48, 292–305. [Google Scholar] [CrossRef]
- Vitor, A.L.O.; Goedtel, A.; Castoldi, M.F.; Souza, W.A.; Bazan, G.H. Induction machine fault diagnosis with quadratic time–frequency distributions: State of the art. IEEE Trans. Instrum. Meas. 2023, 72, 1–16. [Google Scholar] [CrossRef]
- Liu, F.; Shang, Z.; Gao, M.; Li, W.; Pan, C. Bearing failure diagnosis at time-varying speed based on adaptive clustered fractional Gabor transform. Meas. Sci. Technol. 2023, 34, 095002. [Google Scholar] [CrossRef]
- Qin, R.; Huang, J.; Zhang, Z.; Du, Z.; Xiang, X.; Yu, Y.; Wen, G.; He, W.; Chen, X. An adaptive cepstrum feature representation method with variable frame length and variable filter banks for acoustic emission signals. Mech. Syst. Signal Process. 2024, 208, 111031. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.; Liu, T.; Li, S. Rotating machinery fault diagnosis based on typical resonance demodulation methods: A review. IEEE Sens. J. 2023, 23, 6439–6459. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Li, S. Time-reassigned multisynchrosqueezing of the S-transform for seismic time-frequency analysis. Acta Geophys. 2024, 72, 759–775. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Li, S. Demodulated multisynchrosqueezing S transform for fault diagnosis of rotating machinery. IEEE Sens. J. 2022, 22, 20773–20784. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Dong, G.M.; Xiao, W.B.; Wang, Z.Y. Wigner–Ville distribution based on cyclic spectral density and the application in rolling element bearings diagnosis. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2011, 225, 2831–2847. [Google Scholar] [CrossRef]
- Feng, Z.; Liang, M.; Chu, F. Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples. Mech. Syst. Signal Process. 2013, 38, 165–205. [Google Scholar] [CrossRef]
- Kodera, K.; Gendrin, R.; Villedary, C. Analysis of time-varying signals with small BT values. IEEE Trans. Acoust. Speech Signal Process. 1978, 26, 64–76. [Google Scholar] [CrossRef]
- Auger, F.; Flandrin, P. Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Trans. Signal Process. 1995, 43, 1068–1089. [Google Scholar] [CrossRef]
- Daubechies, I.; Lu, J.; Wu, H.-T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 2011, 30, 243–261. [Google Scholar] [CrossRef]
- Oberlin, T.; Meignen, S.; Perrier, V. The Fourier-based synchrosqueezing transform. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 315–319. [Google Scholar]
- Huang, Z.-L.; Zhang, J.; Zhao, T.-H.; Sun, Y. Synchrosqueezing S-transform and its application in seismic spectral decomposition. IEEE Trans. Geosci. Remote Sens. 2015, 54, 817–825. [Google Scholar] [CrossRef]
- Oberlin, T.; Meignen, S.; Perrier, V. Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations. IEEE Trans. Signal Process. 2015, 63, 1335–1344. [Google Scholar] [CrossRef]
- Pham, D.-H.; Meignen, S. High-order synchrosqueezing transform for multicomponent signals analysis—With an application to gravitational-wave signal. IEEE Trans. Signal Process. 2017, 65, 3168–3178. [Google Scholar] [CrossRef]
- Wang, S.; Chen, X.; Cai, G.; Chen, B.; Li, X.; He, Z. Matching demodulation transform and synchrosqueezing in time-frequency analysis. IEEE Trans. Signal Process. 2013, 62, 69–84. [Google Scholar] [CrossRef]
- Yu, G.; Yu, M.; Xu, C. Synchroextracting transform. IEEE Trans. Ind. Electron. 2017, 64, 8042–8054. [Google Scholar] [CrossRef]
- Yu, G. A geometry study on reassignment method and synchrosqueezing transform. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 3464–3467. [Google Scholar]
- Fourer, D.; Auger, F.; Hu, J. Reassigning and synchrosqueezing the Stockwell transform: Complementary proofs. 2015. [Google Scholar]
- Liu, W.; Liu, Y.; Li, S.; Zhai, Z. Demodulated synchrosqueezing S-transform and its application to machine-fault diagnosis. Meas. Sci. Technol. 2023, 34, 065004. [Google Scholar] [CrossRef]
- Feng, Z.; Qin, S.; Liang, M. Time–frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions. Renew. Energy 2016, 85, 45–56. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, X.; Liang, M.; Ma, F. Time–frequency demodulation analysis based on iterative generalized demodulation for fault diagnosis of planetary gearbox under nonstationary conditions. Mech. Syst. Signal Process. 2015, 62, 54–74. [Google Scholar] [CrossRef]
- Liu, D.; Cui, L.; Cheng, W. A review on deep learning in planetary gearbox health state recognition: Methods, applications, and dataset publication. Meas. Sci. Technol. 2023, 35, 012002. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Z.; He, X.; Zou, D.; Zhou, D. Multi-mode fault diagnosis datasets of gearbox under variable working conditions. Data Brief 2024, 54, 110453. [Google Scholar] [CrossRef]
TFA method | ST | RM | SSST | GSSST |
Renyi entropy | 16.5207 | 10.4725 | 13.8311 | 10.7459 |
TFA method | ST | SSST | GSSST | STFT | WVD | RIDT |
Renyi entropy | 15.8438 | 12.1053 | 10.1574 | 19.2477 | 19.1409 | 18.9354 |
Sun Gear Tooth Number | Ring Gear Tooth Number | Planetary Gear Tooth Number | Planetary Gear Numberr | Fault Frequency of Sun Gear |
---|---|---|---|---|
28 | 100 | 36 | 4 | (25/8) |
TFA method | ST | SSST | GSSST | STFT | WVD | RIDT |
Renyi entropy | 18.1538 | 13.2065 | 11.0169 | 21.0169 | 21.0670 | 20.9345 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Shi, W.; Huang, Z.; Shi, L. Geometry-Based Synchrosqueezing S-Transform with Shifted Instantaneous Frequency Estimator Applied to Gearbox Fault Diagnosis. Sensors 2025, 25, 540. https://doi.org/10.3390/s25020540
Zhu X, Shi W, Huang Z, Shi L. Geometry-Based Synchrosqueezing S-Transform with Shifted Instantaneous Frequency Estimator Applied to Gearbox Fault Diagnosis. Sensors. 2025; 25(2):540. https://doi.org/10.3390/s25020540
Chicago/Turabian StyleZhu, Xinping, Wuxi Shi, Zhongxing Huang, and Liqing Shi. 2025. "Geometry-Based Synchrosqueezing S-Transform with Shifted Instantaneous Frequency Estimator Applied to Gearbox Fault Diagnosis" Sensors 25, no. 2: 540. https://doi.org/10.3390/s25020540
APA StyleZhu, X., Shi, W., Huang, Z., & Shi, L. (2025). Geometry-Based Synchrosqueezing S-Transform with Shifted Instantaneous Frequency Estimator Applied to Gearbox Fault Diagnosis. Sensors, 25(2), 540. https://doi.org/10.3390/s25020540