Time-Series Change Detection Using KOMPSAT-5 Data with Statistical Homogeneous Pixel Selection Algorithm
Abstract
:1. Background
2. Materials and Methods
2.1. Statistical Homogeneous Pixels Selection Algorithm Implementation
- Compute the average of N temporal and spatial pixels to derive the amplitude image. The normality of is then evaluated over a homogeneous region using the Anderson–Darling (AD) goodness-of-fit test.
- Select a region presumed to be homogeneous to serve as a reference for analysis
- Apply the Anderson–Darling (AD) goodness-of-fit test to to determine whether the data conforms to a normal distribution
- Define a significance level to classify pixels, accepting or rejecting them based on the results of the AD test.
- Identify and output the resultant SHPs, which represent statistically stable pixels suitable for further analysis in time-series images.
2.2. Study Site
2.3. SAR and Ancillary Datasets Used
2.4. Methodological Framework
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anderson–Darling |
CLAHE | Contrast-limited adaptive histogram equalization |
CPM | Coregistration polynomial model |
DEM | Digital elevation model |
KOMPSAT-5 | Korea Multi-Purpose Satellite-5 |
OA | Overall accuracy |
SHPs | Statistical homogenous pixels |
SLC | Single-look complex |
SNAP | Sentinel Application Platform |
SRTM | Shuttle Radar Topographic Mission |
Appendix A
Parameter | KOMPSAT-5 |
---|---|
Band | X-band |
Acquisition Mode | Enhanced Standard |
Multi-Beam ID | ES-05 |
Orbit Direction | Ascending |
Look Direction | Right |
Mean Incidence Angle (deg) | 30.27 |
Azimuth Pixel Spacing (m) | 2.05 |
Ground Range Pixel Spacing (m) | 1.94 |
Swath | 30 km |
Polarization | HH |
Positional Accuracy | 6.22 m CE90 absolute |
Date of Acquisition (YYYYMMDD) |
---|
20210130 |
20210227 |
20210327 |
20210424 |
20210522 |
20210619 |
20210717 |
20210814 |
20210911 |
20211009 |
20211106 |
20211204 |
20220101 |
20220129 |
20220226 |
20220326 |
20220423 |
20220521 |
20220618 |
20220716 |
20220813 |
20221008 |
20221203 |
20221231 |
20230225 |
20230325 |
20230422 |
20230520 |
20230617 |
20230715 |
20231007 |
20231104 |
20231122 |
20231123 |
20231202 |
20231220 |
20231230 |
Input Image Size | Processing Time | Overall Accuracy | |
---|---|---|---|
Proposed Technique | 2500 × 2500 | 2 | 92% |
5000 × 5000 | 4 | 92% | |
10,000 × 10,000 | 10 | 92% | |
Chae et al. (2022) [2] | 2500 × 2500 | 3 | Not reported |
5000 × 5000 | 11 | Not reported | |
10,000 × 10,000 | 40 | Not reported | |
Choi et al. (2022) [11] | 2500 × 2500 | Not reported | 90% |
5000 × 5000 | Not reported | 90% | |
10,000 × 10,000 | Not reported | 90% |
References
- Radke, R.J.; Andra, S.; Al-Kofahi, O.; Roysam, B. Image change detection algorithms: A systematic survey. IEEE Trans. Image Process. 2005, 14, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.H.; Oh, K.Y.; Lee, S. Development of proto-type program for automatic change detection and cueing of multi-temporal kompsat-5 sar imagery. Korean J. Remote Sens. 2022, 38, 1955–1969. [Google Scholar]
- Cui, B.; Zhang, Y.; Yan, L.; Cai, X. A sar intensity images change detection method based on fusion difference detector and statistical properties. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 439–443. [Google Scholar] [CrossRef]
- Yousif, O.; Ban, Y. Improving urban change detection from multitemporal sar images using pca-nlm. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2032–2041. [Google Scholar] [CrossRef]
- Niu, X.; Ban, Y. Multi-temporal radarsat-2 polarimetric sar data for urban land-cover classification using an object-based support vector machine and a rule-based approach. Int. J. Remote Sens. 2013, 34, 1–26. [Google Scholar] [CrossRef]
- Pan, Z.; Hu, Y.; Wang, G. Detection of short-term urban land use changes by combining sar time series images and spectral angle mapping. Front. Earth Sci. 2019, 13, 495–509. [Google Scholar] [CrossRef]
- Wan, L.; Xiang, Y.; You, H. An object-based hierarchical compound classification method for change detection in heterogeneous optical and sar images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9941–9959. [Google Scholar] [CrossRef]
- Song, X.; Cheng, B. Change detection using change vector analysis from landsat tm images in wuhan. Procedia Environ. Sci. 2011, 11, 238–244. [Google Scholar]
- Bazi, Y.; Bruzzone, L.; Melgani, F. An unsupervised approach based on the generalized gaussian model to automatic change detection in multitemporal sar images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 874–887. [Google Scholar] [CrossRef]
- Inglada, J.; Mercier, G. A new statistical similarity measure for change detection in multitemporal sar images and its extension to multiscale change analysis. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1432–1445. [Google Scholar] [CrossRef]
- Choi, Y.; Yang, D.; Han, S.; Han, J. Change target extraction based on scale-adaptive difference image and morphology filter for kompsat-5. Remote Sens. 2022, 14, 245. [Google Scholar] [CrossRef]
- Park, S.E.; Lee, S.G. Change detection of urban areas affected by earthquake using kompsat-5 data. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3568–3570. [Google Scholar]
- Even, M.; Schulz, K. Insar deformation analysis with distributed scatterers: A review complemented by new advances. Remote Sens. 2018, 10, 744. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: Squeesar. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Neuhäuser, M. One-sided two-sample and trend tests based on a modified baumgartner-weiß-schindler statistic. J. Nonparametr. Stat. 2001, 13, 729–739. [Google Scholar] [CrossRef]
- Stephens, M.A. Edf statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc. 1974, 69, 730–737. [Google Scholar] [CrossRef]
- Ho Tong Minh, D.; Ngo, Y.N. Compressed sar interferometry in the big data era. Remote Sens. 2022, 14, 390. [Google Scholar] [CrossRef]
- Chen, B.; Yang, J.; Li, Z.; Yu, C.; Yu, Y.; Qin, L.; Yang, Y.; Yu, H. A new sequential homogeneous pixel selection algorithm for distributed scatterer insar. GISci. Remote Sens. 2023, 60, 2218261. [Google Scholar] [CrossRef]
- William, H.P.; Saul, A.T.; William, T.V.; Brian, F.P. Numerical Recipes: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphics Gems IV; Morgan Kaufmann: San Francisco, CA, USA, 1994; pp. 474–485. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waqar, M.M.; Yang, H.; Sukmawati, R.; Chae, S.-H.; Oh, K.-Y. Time-Series Change Detection Using KOMPSAT-5 Data with Statistical Homogeneous Pixel Selection Algorithm. Sensors 2025, 25, 583. https://doi.org/10.3390/s25020583
Waqar MM, Yang H, Sukmawati R, Chae S-H, Oh K-Y. Time-Series Change Detection Using KOMPSAT-5 Data with Statistical Homogeneous Pixel Selection Algorithm. Sensors. 2025; 25(2):583. https://doi.org/10.3390/s25020583
Chicago/Turabian StyleWaqar, Mirza Muhammad, Heein Yang, Rahmi Sukmawati, Sung-Ho Chae, and Kwan-Young Oh. 2025. "Time-Series Change Detection Using KOMPSAT-5 Data with Statistical Homogeneous Pixel Selection Algorithm" Sensors 25, no. 2: 583. https://doi.org/10.3390/s25020583
APA StyleWaqar, M. M., Yang, H., Sukmawati, R., Chae, S.-H., & Oh, K.-Y. (2025). Time-Series Change Detection Using KOMPSAT-5 Data with Statistical Homogeneous Pixel Selection Algorithm. Sensors, 25(2), 583. https://doi.org/10.3390/s25020583