Low-Complexity Timing Correction Methods for Heart Rate Estimation Using Remote Photoplethysmography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Interpolation
2.2. Filter Interpolation
3. Results
3.1. Signal Interpolation Evaluation
3.2. Heart Rate Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCG | Ballistocardiograph |
CIC | Cascaded integrator–comb |
CNN | Convolutional neural network |
DL | Deep learning |
ECG | Electrocardiography |
HR | Heart rate |
ICA | Independent component analysis |
LSTM | Long short-term memory |
PCA | Principal component analysis |
PPG | Photoplethysmography |
ROI | Regions of interest |
rPPG | Remote photoplethysmography |
References
- Dahiya, E.S.; Kalra, A.M.; Lowe, A.; Anand, G. Wearable technology for monitoring electrocardiograms (ECGs) in adults: A scoping review. Sensors 2024, 24, 1318. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Seok, H.S.; Kim, S.S.; Shin, H. Photoplethysmogram analysis and applications: An integrative review. Front. Physiol. 2022, 12, 808451. [Google Scholar] [CrossRef] [PubMed]
- Wiard, R.M.; Inan, O.T.; Argyres, B.; Etemadi, M.; Kovacs, G.T.; Giovangrandi, L. Automatic detection of motion artifacts in the ballistocardiogram measured on a modified bathroom scale. Med Biol. Eng. Comput. 2011, 49, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Vogt, E.; MacQuarrie, D.; Neary, J.P. Using ballistocardiography to measure cardiac performance: A brief review of its history and future significance. Clin. Physiol. Funct. Imaging 2012, 32, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Blazek, V.; Schmitt, H.J. Photoplethysmography imaging: A new noninvasive and noncontact method for mapping of the dermal perfusion changes. In Proceedings of the Optical Techniques and Instrumentation for the Measurement of Blood Composition, Structure, and Dynamics, Amsterdam, The Netherlands, 7–8 July 2000; Volume 4163, pp. 62–70. [Google Scholar]
- Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote plethysmographic imaging using ambient light. Opt. Express 2008, 16, 21434–21445. [Google Scholar] [CrossRef] [PubMed]
- Pirzada, P.; Wilde, A.; Doherty, G.H.; Harris-Birtill, D. Remote photoplethysmography (rPPG): A state-of-the-art review. medRxiv 2023, 10. [Google Scholar] [CrossRef]
- Temko, A. Accurate heart rate monitoring during physical exercises using PPG. IEEE Trans. Biomed. Eng. 2017, 64, 2016–2024. [Google Scholar] [CrossRef] [PubMed]
- Gudi, A.; Bittner, M.; Van Gemert, J. Real-time webcam heart-rate and variability estimation with clean ground truth for evaluation. Appl. Sci. 2020, 10, 8630. [Google Scholar] [CrossRef]
- Massaroni, C.; Nicolo, A.; Sacchetti, M.; Schena, E. Contactless methods for measuring respiratory rate: A review. IEEE Sens. J. 2020, 21, 12821–12839. [Google Scholar] [CrossRef]
- Gudi, A.; Bittner, M.; Lochmans, R.; Van Gemert, J. Efficient real-time camera based estimation of heart rate and its variability. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- Qiao, D.; Zulkernine, F.; Masroor, R.; Rasool, R.; Jaffar, N. Measuring heart rate and heart rate variability with smartphone camera. In Proceedings of the 2021 22nd IEEE International Conference on Mobile Data Management (MDM), Toronto, ON, Canada, 15–18 June 2021; pp. 248–249. [Google Scholar]
- De Haan, G.; Jeanne, V. Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 2013, 60, 2878–2886. [Google Scholar] [CrossRef]
- Wang, W.; Den Brinker, A.C.; Stuijk, S.; De Haan, G. Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 2016, 64, 1479–1491. [Google Scholar] [CrossRef] [PubMed]
- Rouast, P.V.; Adam, M.T.; Chiong, R.; Cornforth, D.; Lux, E. Remote heart rate measurement using low-cost RGB face video: A technical literature review. Front. Comput. Sci. 2018, 12, 858–872. [Google Scholar] [CrossRef]
- Poh, M.Z.; McDuff, D.J.; Picard, R.W. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 2010, 18, 10762–10774. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, M.; Nowak, J. Measuring pulse rate with a webcam. J. Med Imaging Health Inform. 2012, 2, 87–92. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Zhao, G.; Pietikainen, M. Remote heart rate measurement from face videos under realistic situations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 4264–4271. [Google Scholar]
- Špetlík, R.; Franc, V.; Matas, J. Visual heart rate estimation with convolutional neural network. In Proceedings of the British Machine Vision Conference, Newcastle, UK, 3–6 September 2018; pp. 3–6. [Google Scholar]
- Chen, W.; McDuff, D. Deepphys: Video-based Physiological Measurement Using Convolutional Attention Networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 349–365. [Google Scholar]
- Bian, M.; Peng, B.; Wang, W.; Dong, J. An accurate LSTM based video heart rate estimation method. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Xi’an, China, 8–11 November 2019; pp. 409–417. [Google Scholar]
- Botina-Monsalve, D.; Benezeth, Y.; Macwan, R.; Pierrart, P.; Parra, F.; Nakamura, K.; Gomez, R.; Miteran, J. Long Short-Term Memory Deep-Filter in Remote Photoplethysmography. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 306–307. [Google Scholar]
- Huang, B.; Chang, C.M.; Lin, C.L.; Chen, W.; Juang, C.F.; Wu, X. Visual heart rate estimation from facial video based on CNN. In Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13 November 2020; pp. 1658–1662. [Google Scholar]
- Revanur, A.; Dasari, A.; Tucker, C.S.; Jeni, L.A. Instantaneous physiological estimation using video transformers. In Multimodal AI in Healthcare: A Paradigm Shift in Health Intelligence; Springer: Berlin/Heidelberg, Germany, 2022; pp. 307–319. [Google Scholar]
- Yu, Z.; Shen, Y.; Shi, J.; Zhao, H.; Torr, P.H.; Zhao, G. Physformer: Facial Video-based Physiological Measurement with Temporal Difference Transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4186–4196. [Google Scholar]
- Yu, Z.; Shen, Y.; Shi, J.; Zhao, H.; Cui, Y.; Zhang, J.; Torr, P.; Zhao, G. Physformer++: Facial Video-based Physiological Measurement with SlowFast Temporal Difference Transformer. Int. J. Comput. Vision 2023, 131, 1307–1330. [Google Scholar] [CrossRef]
- Gupta, A.K.; Kumar, R.; Birla, L.; Gupta, P. Radiant: Better rPPG Estimation Using Signal Embeddings and Transformer. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 4976–4986. [Google Scholar]
- Liu, X.; Hill, B.; Jiang, Z.; Patel, S.; McDuff, D. Efficientphys: Enabling simple, fast and accurate camera-based cardiac measurement. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 5008–5017. [Google Scholar]
- Zou, B.; Guo, Z.; Chen, J.; Ma, H. RhythmFormer: Extracting rPPG signals based on hierarchical temporal periodic transformer. arXiv 2024, arXiv:2402.12788. [Google Scholar]
- Zhang, Y.; Shi, J.; Wang, J.; Zong, Y.; Zheng, W.; Zhao, G. MaskFusionNet: A Dual-Stream Fusion Model with Masked Pre-training Mechanism for rPPG Measurement. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 11521–11534. [Google Scholar] [CrossRef]
- Luo, C.; Xie, Y.; Yu, Z. PhysMamba: Efficient Remote Physiological Measurement with SlowFast Temporal Difference Mamba. arXiv 2024, arXiv:2409.12031. [Google Scholar]
- Liu, X.; Narayanswamy, G.; Paruchuri, A.; Zhang, X.; Tang, J.; Zhang, Y.; Sengupta, R.; Patel, S.; Wang, Y.; McDuff, D. rPPG-Toolbox: Deep remote PPG toolbox. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 10–15 December 2024; Volume 36, pp. 68485–68510. [Google Scholar]
- Schafer, R.W.; Rabiner, L.R. A digital signal processing approach to interpolation. Proc. IEEE 1973, 61, 692–702. [Google Scholar] [CrossRef]
- Stoer, J.; Bulirsch, R.; Bartels, R.; Gautschi, W.; Witzgall, C. Introduction to Numerical Analysis; Springer: Berlin/Heidelberg, Germany, 1980; Volume 1993. [Google Scholar]
- Guven, O.; Eftekhar, A.; Kindt, W.; Constandinou, T.G. Computationally efficient real-time interpolation algorithm for non-uniform sampled biosignals. Healthc. Technol. Lett. 2016, 3, 105–110. [Google Scholar] [CrossRef]
- Palatini, P. Need for a revision of the normal limits of resting heart rate. Hypertension 1999, 33, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Ostchega, Y.; Porter, K.S.; Hughes, J.; Dillon, C.F.; Nwankwo, T. Resting Pulse Rate Reference Data for Children, Adolescents, and Adults; National Center for Health Statistics: Hyattsville, MD, USA, 2011. [Google Scholar]
- Kim, D.Y.; Lee, K.; Sohn, C.B. Assessment of ROI selection for facial video-based rPPG. Sensors 2021, 21, 7923. [Google Scholar] [CrossRef]
- Lokendra, B.; Puneet, G. AND-rPPG: A novel denoising-rPPG network for improving remote heart rate estimation. Comput. Biol. Med. 2022, 141, 105146. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, P.; Peng, J.; Fu, H. Non-contact PPG signal and heart rate estimation with multi-hierarchical convolutional network. Pattern Recognit. 2023, 139, 109421. [Google Scholar] [CrossRef]
- Othman, W.; Kashevnik, A.; Ali, A.; Shilov, N.; Ryumin, D. Remote Heart Rate Estimation Based on Transformer with Multi-Skip Connection Decoder: Method and Evaluation in the Wild. Sensors 2024, 24, 775. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Lu, F. Assessment of deep learning-based heart rate estimation using remote photoplethysmography under different illuminations. IEEE Trans.-Hum.-Mach. Syst. 2022, 52, 1236–1246. [Google Scholar] [CrossRef]
- Ba, Y.; Wang, Z.; Karinca, K.D.; Bozkurt, O.D.; Kadambi, A. Style Transfer with Bio-realistic Appearance Manipulation for Skin-tone Inclusive rPPG. In Proceedings of the 2022 IEEE International Conference on Computational Photography (ICCP), Pasadena, CA, USA, 1–3 August 2022; pp. 1–12. [Google Scholar]
- Park, S.; Kim, B.K.; Dong, S.Y. Self-Supervised RGB-NIR Fusion Video Vision Transformer Framework for rPPG Estimation. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Le, D.Q.; Chiang, J.C.; Lie, W.N. Remote PPG Estimation from RGB-NIR Facial Image Sequence for Heart Rate Estimation. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 27 May–1 June 2022; pp. 2077–2081. [Google Scholar]
- Wu, B.F.; Wu, B.J.; Tsai, B.R.; Hsu, C.P. A Facial-Image-Based Blood Pressure Measurement System Without Calibration. IEEE Trans. Instrum. Meas. 2022, 71, 1–13. [Google Scholar] [CrossRef]
- Casalino, G.; Castellano, G.; Zaza, G. A mHealth Solution for Contact-less Self-monitoring of Blood Oxygen Saturation. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–7. [Google Scholar]
- Ayesha, A.H.; Qiao, D.; Zulkernine, F. A Web Application for Experimenting and Validating Remote Measurement of Vital Signs. In Proceedings of the International Conference on Information Integration and Web, Virtual, 28–30 November 2022; pp. 237–251. [Google Scholar]
Parameter | Value |
---|---|
Brightness | 55 |
Saturation | 64 |
Contrast | 50 |
Hue | 0 |
Exposure | −6 (EV) |
Gamma | 300 |
Parameter | Value |
---|---|
Subjects | 22 |
Actual sampling rate | 20–30 fps |
Nominal sampling rate | 25 fps |
Recording duration | 32 s |
Recording samples | 800 |
FFT samples | 750 |
RMSE (Mean/Standard Deviation) | ||||
---|---|---|---|---|
Loss Count | No Processing | CIC IP | Linear IP | Cubic IP |
0 | 5.11/0.00 | 5.11/0.00 | 5.11/0.00 | 5.11/0.00 |
10 | 11.20/1.35 | 5.80/1.42 | 4.99/0.25 | 5.13/0.38 |
20 | 14.23/1.47 | 6.52/1.74 | 5.05/0.50 | 5.32/0.74 |
30 | 15.36/1.37 | 7.19/1.89 | 5.19/0.78 | 5.54/0.97 |
40 | 18.78/1.36 | 7.60/1.97 | 5.24/0.83 | 5.81/1.21 |
50 | 20.25/1.20 | 8.11/2.11 | 5.44/1.06 | 6.00/1.31 |
MAE (Mean/Standard Deviation) | ||||
Loss Count | No Processing | CIC IP | Linear IP | Cubic IP |
0 | 3.41/0.00 | 3.41/0.00 | 3.41/0.00 | 3.41/0.00 |
10 | 6.96/0.84 | 3.64/0.64 | 3.30/0.22 | 3.42/0.24 |
20 | 9.40/1.17 | 3.99/0.84 | 3.32/0.28 | 3.50/0.39 |
30 | 10.88/1.10 | 4.36/0.94 | 3.36/0.36 | 3.60/0.48 |
40 | 14.03/1.18 | 4.61/1.05 | 3.39/0.38 | 3.72/0.59 |
50 | 15.69/1.22 | 4.95/1.17 | 3.48/0.49 | 3.80/0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-C.; Lin, S.-X.; Jeong, H. Low-Complexity Timing Correction Methods for Heart Rate Estimation Using Remote Photoplethysmography. Sensors 2025, 25, 588. https://doi.org/10.3390/s25020588
Chen C-C, Lin S-X, Jeong H. Low-Complexity Timing Correction Methods for Heart Rate Estimation Using Remote Photoplethysmography. Sensors. 2025; 25(2):588. https://doi.org/10.3390/s25020588
Chicago/Turabian StyleChen, Chun-Chi, Song-Xian Lin, and Hyundoo Jeong. 2025. "Low-Complexity Timing Correction Methods for Heart Rate Estimation Using Remote Photoplethysmography" Sensors 25, no. 2: 588. https://doi.org/10.3390/s25020588
APA StyleChen, C.-C., Lin, S.-X., & Jeong, H. (2025). Low-Complexity Timing Correction Methods for Heart Rate Estimation Using Remote Photoplethysmography. Sensors, 25(2), 588. https://doi.org/10.3390/s25020588