Smart Force Sensing in Robot Surgery Utilising the Back Electromotive Force
Abstract
:1. Introduction
2. Materials and Methods
2.1. Smart Sensing
2.1.1. Back EMF Background
2.1.2. Estimating Load Angle to Motor Load
- No motor load: the motor operates without any load, resulting in a load angle of zero (Figure 5I). The magnetic field lines of the rotor and stator align perfectly, yielding a load angle of zero. This corresponds to a maximum back EMF value proportional to the angular velocity .
- Motor loaded: The motor experiences a load, resulting in a load angle greater than zero but less than 90 degrees (Figure 5II). The rotor begins to lag behind the stator’s magnetic field. The load angle increases and the angular velocity stays constant; however, there occurs a phase shift and therefore the back EMF decreases.
- Motor stall: the motor load is too high, causing the motor to stall and skip steps. In this case, the load angle is 90 degrees (Figure 5III). The back EMF diminishes, as the load angle becomes 90 degrees and the angular velocity zero.
2.1.3. StallGuard in Practise
2.2. Experimental Validation
2.2.1. Tip Sensor Calibration
2.2.2. Back EMF Force Test
3. Results
3.1. Tip Sensor Calibration
3.2. Back EMF Force Test
4. Discussion
4.1. Back EMF Force Test
4.2. Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RAS | Robot-assisted surgery |
AdLap RS | Advanced laparoscopic robotic system |
SATA | Shaft-actuated tip-articulating |
DOF | Degree of freedom |
MILSI drive | Modular interfaced sterilisable laparoscopic instrument drive |
CSSD | Central services and sterilisation department |
Back EMF | Back electromotive force |
SSD | Smart SATA Driver |
rpm | Rotations per minute |
References
- Rudiman, R. Minimally invasive gastrointestinal surgery: From past to the future. Ann. Med. Surg. 2021, 71, 102922. [Google Scholar] [CrossRef] [PubMed]
- Williamson, T.; Song, S.E. Robotic surgery techniques to improve traditional laparoscopy. JSLS J. Soc. Laparosc. Robot. Surg. 2022, 26, e2022.00002. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, T.; Kinugasa, Y.; Nakajima, Y.; Kojima, K. Robotic-assisted surgery for rectal cancer: Current state and future perspective. Ann. Gastroenterol. Surg. 2018, 2, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Sinno, A.K.; Fader, A.N. Robotic-assisted surgery in gynecologic oncology. Fertil. Steril. 2014, 102, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.S.; Armijo, P.R.; Krause, C.; Choudhury, S.A.; Oleynikov, D. Review of emerging surgical robotic technology. Surg. Endosc. 2018, 32, 1636–1655. [Google Scholar] [CrossRef] [PubMed]
- Yates, D.R.; Vaessen, C.; Roupret, M. From Leonardo to da Vinci: The history of robot-assisted surgery in urology. BJU Int. 2011, 108, 1708–1713. [Google Scholar] [CrossRef] [PubMed]
- Sheetz, K.H.; Claflin, J.; Dimick, J.B. Trends in the adoption of robotic surgery for common surgical procedures. JAMA Netw. Open 2020, 3, e1918911. [Google Scholar] [CrossRef] [PubMed]
- Gosrisirikul, C.; Don Chang, K.; Raheem, A.A.; Rha, K.H. New era of robotic surgical systems. Asian J. Endosc. Surg. 2018, 11, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, A.; Kumar, N.S.; Vanhoestenberghe, A.; Francis, N.K. Environmental sustainability in robotic and laparoscopic surgery: Systematic review. Br. J. Surg. 2022, 109, 921–932. [Google Scholar] [CrossRef] [PubMed]
- Schrijvershof, P.; Rahimi, A.M.; Leone, N.; Robotics, E.T.; Bloemendaal, A.; Daams, F.; Arezzo, A.; Mintz, Y.; Horeman, T. Design and evaluation of a smart passive dynamic arm support for robotic-assisted laparoscopic surgery. J. Robot. Surg. 2024, 18, 71. [Google Scholar] [CrossRef] [PubMed]
- Lenssen, T.; Dankelman, J.; Horeman, T. The sata-drive: A modular robotic drive for reusable steerable laparoscopic instruments. IEEE Trans. Med. Robot. Bionics 2023, 6, 146–152. [Google Scholar] [CrossRef]
- Lenssen, T.; Bîrjac, R.; Dankelman, J.; Horeman, T. The MISLI-Drive, a modular sterilizable robotic driver for steerable laparoscopic instruments. Front. Robot. AI 2023, 10, 1227708. [Google Scholar] [CrossRef] [PubMed]
- TRINAMIC Motion Control GmbH. TMC2209 Datasheet. 2023. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/TMC2209_datasheet_rev1.09.pdf (accessed on 1 February 2024).
- Hardon, S.F.; Schilder, F.; Bonjer, J.; Dankelman, J.; Horeman, T. A new modular mechanism that allows full detachability and cleaning of steerable laparoscopic instruments. Surg. Endosc. 2019, 33, 3484–3493. [Google Scholar] [CrossRef] [PubMed]
- Ida, N. Faraday’s law and induction. In Engineering Electromagnetics; Springer: Cham, Switzerland, 2015; pp. 515–563. [Google Scholar]
- Derammelaere, S.; Carlier, L.; Vervisch, B.; Debruyne, C.; Stockman, K.; Cox, P.; Vandevelde, L.; Van den Abeele, G. The opportunities of two-phase hybrid stepping motor back EMF sampling. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 17–22 September 2011; pp. 83–87. [Google Scholar]
- Ahmad, A.Z.; Taib, M.N. A study on the DC motor speed control by using back-EMF voltage. In Proceedings of the Asian Conference on Sensors, 2003, AsiaSense 2003, Kebangsann, Malaysia, 18 July 2003; pp. 359–364. [Google Scholar]
- Adolfsson, M. Developing a Graphical Application to Control Stepper Motors with Sensorless Load Detection. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2021. [Google Scholar]
- FUTEK Advanced Sensor Technology, Inc. FSH00095/FSH01888 Load Cell Product Drawings. 2024. Available online: https://media.futek.com/content/futek/files/pdf/productdrawings/fsh00095.pdf (accessed on 30 April 2024).
- MathWorks, Inc. MATLAB Version R2024b; MathWorks, Inc.: Natick, MA, USA, 2024. [Google Scholar]
- Meier, R. CoolTerm Version 1.9.0. 2023. Available online: https://freeware.the-meiers.org/ (accessed on 15 April 2024).
- Care, F.R.A.M.; Subagio, B.S.; Rahman, H. Porous concrete basic property criteria as rigid pavement base layer in Indonesia. In Proceedings of the Third International Conference on Sustainable Infrastructure and Built Environment (SIBE 2017), Bandung, Indonesia, 26–27 September 2017; Volume 147, p. 02008. [Google Scholar]
- Sarjana, K.; Hayati, L.; Wahidaturrahmi, W. Mathematical modelling and verbal abilities: How they determine students’ ability to solve mathematical word problems? Beta J. Tadris Mat. 2020, 13, 117–129. [Google Scholar] [CrossRef]
- Casella, G.; Berger, R.L. Statistical Inference, 2nd ed.; Duxbury/Thomson Learning: Pacific Grove, CA, USA, 2002. [Google Scholar]
- Horeman, T.; Rodrigues, S.P.; Jansen, F.W.; Dankelman, J.; van den Dobbelsteen, J.J. Force measurement platform for training and assessment of laparoscopic skills. Surg. Endosc. 2010, 24, 3102–3108. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Nelson, C.A. A sensorless force-feedback system for robot-assisted laparoscopic surgery. Comput. Assist. Surg. 2019, 24, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Curd, K.; Millett, P. Webinar On-Demand Stepper Motors and Back EMF. Available online: https://www.monolithicpower.com/en/support/videos/webinar-on-demand-stepper-motors-and-back-emf.html?srsltid=AfmBOopbKSaBvUlKKD8FQ12gj7HyMDkfURvWCg4Wd2eM89G78OzcQe_b (accessed on 10 May 2024).
Coefficient | Value | 95%-CI |
---|---|---|
a | 0.2549 | (0.04965, 0.4601) |
b | 0.7279 | (0.3753, 1.08) |
c | 3.704 × | (1.272 × , 6.136 × ) |
d | 3.929 | (3.751, 4.107) |
Test Condition | StallGuard Threshold | Average Force [N] |
---|---|---|
TC1 | 230 | 8.2 (SD 0.4) |
TC2 | 220 | 8.0 (SD 0.3) |
TC3 | 210 | 7.7 (SD 0.4) |
TC4 | 200 | 7.4 (SD 0.6) |
TC5 | 190 | 6.6 (SD 0.3) |
TC6 | 180 | 6.2 (SD 0.5) |
TC7 | 170 | 5.9 (SD 0.3) |
TC8 | 160 | 5.3 (SD 0.3) |
TC9 | 150 | 4.6 (SD 0.4) |
TC10 | 140 | 3.6 (SD 0.6) |
TC11 | 130 | 2.4 (SD 0.3) |
Coefficient | Value | 95%-CI |
---|---|---|
a | −2.1 | (−9.5 , 5.3 ) |
b | 3.6 | (3.0, 4.2) |
c | 9.1 | (8.6, 9.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chabot, S.; Schouten, K.; Van Straten, B.; Pomati, S.; Hunt, A.; Dankelman, J.; Horeman, T. Smart Force Sensing in Robot Surgery Utilising the Back Electromotive Force. Sensors 2025, 25, 777. https://doi.org/10.3390/s25030777
Chabot S, Schouten K, Van Straten B, Pomati S, Hunt A, Dankelman J, Horeman T. Smart Force Sensing in Robot Surgery Utilising the Back Electromotive Force. Sensors. 2025; 25(3):777. https://doi.org/10.3390/s25030777
Chicago/Turabian StyleChabot, Storm, Koen Schouten, Bart Van Straten, Stefano Pomati, Andres Hunt, Jenny Dankelman, and Tim Horeman. 2025. "Smart Force Sensing in Robot Surgery Utilising the Back Electromotive Force" Sensors 25, no. 3: 777. https://doi.org/10.3390/s25030777
APA StyleChabot, S., Schouten, K., Van Straten, B., Pomati, S., Hunt, A., Dankelman, J., & Horeman, T. (2025). Smart Force Sensing in Robot Surgery Utilising the Back Electromotive Force. Sensors, 25(3), 777. https://doi.org/10.3390/s25030777