Maintenance Decision-Making Using Intelligent Prognostics Within a Single Spare Parts Support System
Abstract
:1. Introduction
2. Literature Review
3. Problem Description and Definition
3.1. Single Spare Parts Support System
3.2. Intelligent Prognostics
3.3. Maintenance Description
4. Methodology
4.1. Long-Term Average Cost Model
4.2. Long-Term Average Availability Model
4.3. Multi-Objective Maintenance Decision-Making Model
5. Numerical Verification
5.1. Data Description on C-MAPSS Dataset and Intelligent Prognostics
5.2. Results on the Testing Data of FD001 at the 76th Engine
5.3. Compared with Single Cost Decision-Making
6. Conclusions
- Utilizing the predicted remaining useful life information to develop a maintenance decision-making method for spare parts ordering and component replacement that balances high availability with low cost.
- Considering both cost and availability as key decision objectives, while treating spare parts ordering and component replacement time as decision variables. The method addresses the trade-off between these two objectives by establishing a decision boundary.
- Aiming to minimize costs while still meeting availability requirements, the method determines the optimal time for ordering spare parts and replacing multiple degraded components.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RUL | Remaining useful life |
PM | Predictive maintenance |
Probability density function | |
CM | Condition monitoring |
CDF | Cumulative distribution function |
RF | Reliability function |
References
- Jasiulewicz-Kaczmarek, M. Maintenance 4.0 Technologies for Sustainable Manufacturing. Appl. Sci. 2024, 14, 7360. [Google Scholar] [CrossRef]
- Eang, C.; Lee, S. Predictive Maintenance and Fault Detection for Motor Drive Control Systems in Industrial Robots Using CNN-RNN-Based Observers. Sensors 2024, 25, 25. [Google Scholar] [CrossRef] [PubMed]
- Achouch, M.; Dimitrova, M.; Ziane, K.; Sattarpanah Karganroudi, S.; Dhouib, R.; Ibrahim, H.; Adda, M. On predictive maintenance in industry 4.0: Overview, models, and challenges. Appl. Sci. 2022, 12, 8081. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, T.; Shi, D. Anomaly Detection and Remaining Useful Life Prediction for Turbofan Engines with a Key Point-Based Approach to Secure Health Management. Sensors 2024, 24, 8022. [Google Scholar] [CrossRef] [PubMed]
- Scarf, P.; Syntetos, A.; Teunter, R. Joint maintenance and spare-parts inventory models: A review and discussion of practical stock-keeping rules. IMA J. Manag. Math. 2024, 35, 83–109. [Google Scholar] [CrossRef]
- Dui, H.; Zhang, Y.; Bai, G. Analysis of variable system cost and maintenance strategy in life cycle considering different failure modes. Reliab. Eng. Syst. Saf. 2024, 243, 109824. [Google Scholar] [CrossRef]
- Cheng, G.; Shen, J.; Wang, F.; Li, L.; Yang, N. Optimal mission abort policy for a multi-component system with failure interaction. Reliab. Eng. Syst. Saf. 2024, 242, 109791. [Google Scholar] [CrossRef]
- Zheng, J.; Ren, J.; Pei, H.; Zhang, J.; Zhang, Z. Lifetime prediction and replacement optimization for a standby system considering storage failures of spare parts. Reliab. Eng. Syst. Saf. 2024, 250, 110195. [Google Scholar] [CrossRef]
- Jin, T.; Si, S.; Zhu, W. Allocating redundancy, maintenance and spare parts for minimizing system cost under decentralized repairs. Front. Eng. Manag. 2024, 11, 377–395. [Google Scholar] [CrossRef]
- Cardeal, G.; Leite, M.; Ribeiro, I. Decision-support model to select spare parts suitable for additive manufacturing. Comput. Ind. 2023, 144, 103798. [Google Scholar] [CrossRef]
- Zheng, M.; Ye, H.; Wang, D.; Pan, E. Joint decisions of components replacement and spare parts ordering considering different supplied product quality. IEEE Trans. Autom. Sci. Eng. 2023, 21, 1952–1964. [Google Scholar] [CrossRef]
- He, Y.; Gao, Z. Joint optimization of preventive maintenance and spare parts ordering considering imperfect detection. Systems 2023, 11, 445. [Google Scholar] [CrossRef]
- Li, P.; Wen, M.; Zu, T.; Kang, R. A Joint Location–Allocation–Inventory Spare Part Optimization Model for Base-Level Support System with Uncertain Demands. Axioms 2023, 12, 46. [Google Scholar] [CrossRef]
- Dui, H.; Yang, X.; Liu, M. Importance measure-based maintenance analysis and spare parts storage configuration in two-echelon maintenance and supply support system. Int. J. Prod. Res. 2023, 61, 8325–8342. [Google Scholar] [CrossRef]
- Akmal, J.S.; Salmi, M.; Björkstrand, R.; Partanen, J.; Holmström, J. Switchover to industrial additive manufacturing: Dynamic decision-making for problematic spare parts. Int. J. Oper. Prod. Manag. 2022, 42, 358–384. [Google Scholar] [CrossRef]
- Vincent, F.Y.; Salsabila, N.Y.; Siswanto, N.; Kuo, P.H. A two-stage genetic algorithm for joint coordination of spare parts inventory and planned maintenance under uncertain failures. Appl. Soft Comput. 2022, 130, 109705. [Google Scholar] [CrossRef]
- Miao, B.; Deng, Q.; Zhang, L.; Huo, Z.; Liu, X. Collaborative scheduling of spare parts production and service workers driven by distributed maintenance demand. J. Manuf. Syst. 2022, 64, 261–274. [Google Scholar] [CrossRef]
- Ghuge, S.; Dohale, V.; Akarte, M. Spare part segmentation for additive manufacturing–A framework. Comput. Ind. Eng. 2022, 169, 108277. [Google Scholar] [CrossRef]
- Akmal, J.S. Switchover to Additive Manufacturing: Dynamic Decision-Making for Accurate, Personalized and Smart End-Use Parts; Aalto University: Espoo, Finland, 2022; Available online: https://urn.fi/URN:ISBN:978-952-64-1013-5 (accessed on 15 December 2024).
- Zheng, M.; Ye, H.; Wang, D.; Pan, E. Joint optimization of condition-based maintenance and spare parts orders for multi-unit systems with dual sourcing. Reliab. Eng. Syst. Saf. 2021, 210, 107512. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Song, Y.; Qiu, Q. Joint optimization of maintenance and spares ordering policy for a use-oriented product-service system with multiple failure modes. Appl. Stoch. Models Bus. Ind. 2021, 37, 1123–1142. [Google Scholar] [CrossRef]
- Muniz, L.R.; Conceição, S.V.; Rodrigues, L.F.; de Freitas Almeida, J.F.; Affonso, T.B. Spare parts inventory management: A new hybrid approach. Int. J. Logist. Manag. 2021, 32, 40–67. [Google Scholar] [CrossRef]
- Yang, R.; Cheng, W. Demand Analysis of Joint Decision-Making Modeling of Equipment Maintenance and Spare Parts Inventory Based on PHM. In Proceedings of the 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), Nanjing, China, 15–17 October 2021. [Google Scholar] [CrossRef]
- Wang, J.; Yang, L.; Ma, X.; Peng, R. Joint optimization of multi-window maintenance and spare part provisioning policies for production systems. Reliab. Eng. Syst. Saf. 2021, 216, 108006. [Google Scholar] [CrossRef]
- Zheng, J.; Mu, H.; Wang, X.; Li, T.M.; Zhang, Q.; Wang, X. An adaptive maintenance policy with nonlinear degradation modeling based on prognostic information. IEEE Access 2020, 8, 160040–160049. [Google Scholar] [CrossRef]
- Mu, H.; Zheng, J.; Du, D.; Pei, H.; Dong, Q.; Zhang, B. Joint Decision for Spare Part Ordering and Equipment Replacement Based on Prognostic Information. In Proceedings of the 2021 CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS), Chengdu, China, 17–18 December 2021. [Google Scholar] [CrossRef]
- Zheng, J.F.; Dong, Q.; Hu, C.H.; Zhang, X.; Mu, H.X. Condition-based Maintenance and Spare Parts Ordering Strategy Considering the Influence of Condition Detection. In Proceedings of the 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), Nanjing, China, 15–17 October 2021. [Google Scholar] [CrossRef]
- Errandonea, I.; Beltrán, S.; Arrizabalaga, S. Digital Twin for maintenance: A literature review. Comput. Ind. 2020, 123, 103316. [Google Scholar] [CrossRef]
- Fink, O.; Wang, Q.; Svensen, M.; Dersin, P.; Lee, W.J.; Ducoffe, M. Potential, challenges and future directions for deep learning in prognostics and health management applications. Eng. Appl. Artif. Intell. 2020, 92, 103678. [Google Scholar] [CrossRef]
- Meddaoui, A.; Hain, M.; Hachmoud, A. The benefits of predictive maintenance in manufacturing excellence: A case study to establish reliable methods for predicting failures. Int. J. Adv. Manuf. Technol. 2023, 128, 3685–3690. [Google Scholar] [CrossRef]
- Molęda, M.; Małysiak-Mrozek, B.; Ding, W.; Sunderam, V.; Mrozek, D. From corrective to predictive maintenance—A review of maintenance approaches for the power industry. Sensors 2023, 23, 5970. [Google Scholar] [CrossRef]
- Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng. Syst. Saf. 2018, 172, 1–11. [Google Scholar] [CrossRef]
- Zhang, N.; Cai, K.; Zhang, J.; Wang, T. A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system. Reliab. Eng. Syst. Saf. 2022, 217, 108069. [Google Scholar] [CrossRef]
- Zhang, N.; Fouladirad, M.; Barros, A.; Zhang, J. Condition-based maintenance for a K-out-of-N deteriorating system under periodic inspection with failure dependence. Eur. J. Oper. Res. 2020, 287, 159–167. [Google Scholar] [CrossRef]
- De Jonge, B.; Scarf, P.A. A review on maintenance optimization. Eur. J. Oper. Res. 2020, 285, 805–824. [Google Scholar] [CrossRef]
- Oakley, J.L.; Wilson, K.J.; Philipson, P. A condition-based maintenance policy for continuously monitored multi-component systems with economic and stochastic dependence. Reliab. Eng. Syst. Saf. 2022, 222, 108321. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, B.; Ma, J.; Zhang, Q.; Yang, L. A new model for remaining useful life prediction based on NICE and TCN-BiLSTM under missing data. Machines 2022, 10, 974. [Google Scholar] [CrossRef]
Sub-Dataset | Training Engines | Testing Engines | Scenarios | Fault Modes |
---|---|---|---|---|
FD001 | 100 | 100 | 1 | 1 |
FD002 | 260 | 260 | 6 | 1 |
FD003 | 100 | 100 | 1 | 2 |
FD004 | 249 | 249 | 6 | 2 |
Model | Condition Monitoring Time | Optimal Spare Parts Ordering Time | Optimal Component Replacement Time | Maintenance Cost |
---|---|---|---|---|
Single-cost maintenance decision-making model | 405 | 442 | 480 | 47 |
408 | 442 | 579 | 47 | |
411 | 446 | 573 | 47 | |
414 | 437 | 564 | 47 | |
417 | 431 | 558 | 47 | |
The proposed multi-objective maintenance decision-making model | 405 | 439 | 477 | 47 |
408 | 438 | 477 | 47 | |
411 | 430 | 469 | 47 | |
414 | 431 | 461 | 47 | |
417 | 424 | 455 | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Hu, C.; Zheng, J.; Pei, H. Maintenance Decision-Making Using Intelligent Prognostics Within a Single Spare Parts Support System. Sensors 2025, 25, 837. https://doi.org/10.3390/s25030837
Zhang B, Hu C, Zheng J, Pei H. Maintenance Decision-Making Using Intelligent Prognostics Within a Single Spare Parts Support System. Sensors. 2025; 25(3):837. https://doi.org/10.3390/s25030837
Chicago/Turabian StyleZhang, Bowei, Changhua Hu, Jianfei Zheng, and Hong Pei. 2025. "Maintenance Decision-Making Using Intelligent Prognostics Within a Single Spare Parts Support System" Sensors 25, no. 3: 837. https://doi.org/10.3390/s25030837
APA StyleZhang, B., Hu, C., Zheng, J., & Pei, H. (2025). Maintenance Decision-Making Using Intelligent Prognostics Within a Single Spare Parts Support System. Sensors, 25(3), 837. https://doi.org/10.3390/s25030837