Machine Learning-Based Prediction of Well Logs Guided by Rock Physics and Its Interpretation
Abstract
:1. Introduction
2. Methodology
2.1. Rock Physics
2.2. Data
2.3. Machine Learning
3. Results and Discussions
3.1. Porosity
3.2. Clay Volume Fraction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model | Hyperparameters | Performance | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RF | n_estimators | max_depth | min_samples_splits | bootstrap | min_samples_leaf | random_state | R2 | RMSE | |||||||||||||
fixed | case-ϕ | 200 | none | 2 | true | 1 | 42 | 0.999984 | 0.000057 | ||||||||||||
case-Vc | −1.505964 | 0.053555 | |||||||||||||||||||
optimization range | 100–500 | 10–50, none | 2–10 | true, false | 1–4 | 42 | |||||||||||||||
opt. | case-ϕ | 200 | 20 | 2 | false | 1 | 42 | 0.999977 | 0.000068 | ||||||||||||
case-Vc | 300 | 10 | 9 | true | 1 | 42 | −1.110164 | 0.049144 | |||||||||||||
GBDT | n_estimators | max_depth | learning_rate | subsample | min_samples_leaf | random_state | R2 | RMSE | |||||||||||||
fixed | case-ϕ | 200 | 3 | 0.1 | 1.0 | 1 | 42 | 0.999861 | 0.000167 | ||||||||||||
case-Vc | −0.916561 | 0.046836 | |||||||||||||||||||
optimization range | 100–500 | 3–7 | 0.01–0.3 | 0.6–1 | 1–6 | 42 | |||||||||||||||
opt. | case-ϕ | 300 | 6 | 0.03 | 0.6 | 1 | 42 | 0.999992 | 0.000039 | ||||||||||||
case-Vc | 200 | 3 | 0.01 | 0.7 | 3 | 42 | −0.823654 | 0.045686 | |||||||||||||
MLP | hidden layers | number of neurons | activation | batch size | learn. rate | solver | beta1 | beta2 | epsilon | tol | max iter | n_iter no change | early stop. | alpha | random state | R2 | RMSE | ||||
fixed | case-ϕ | 2 | L1 100 | L2 50 | relu | auto | 0.001 | adam | 0.9 | 0.999 | 10−8 | 0.0001 | 200 | 50 | true | 0.0001 | 42 | 0.990195 | 0.001403 | ||
case-Vc | −0.982821 | 0.047638 | |||||||||||||||||||
optimization range | 1–3 | logistic, relu, tanh | 16–128 | 0.001–0.1 | adam, sgd | 0.9 | 0.999 | 10−8 | 0.0001–0.01 | 200–2000 | 50 | true | 0.0001–1 | 42 | |||||||
opt. | case-ϕ | 2 | L1 100 | L2 100 | logistic | 40 | 0.003 | adam | 0.9 | 0.999 | 10−8 | 0.01 | 200 | 50 | true | 0.0001 | 42 | 0.998986 | 0.000451 | ||
case-Vc | 1 | 50 | relu | 126 | 0.05 | sgd | 0.9 | 0.999 | 10−8 | 0.01 | 1200 | 50 | true | 0.9474 | 42 | −0.883199 | 0.046426 |
K-Fold (n_Folds = 5) | Testing: F03-4 | ||||
---|---|---|---|---|---|
Models | Training: F02-1, F06-1, F03-2 | ||||
Mean_R2 | Mean_RMSE | R2 | RMSE | ||
RF | case-ϕ | 0.999910 | 0.000186 | 0.999977 | 0.000068 |
case-Vc | 0.020244 | 0.046256 | −1.110164 | 0.049144 | |
GBDT | case-ϕ | 0.999965 | 0.000114 | 0.999992 | 0.000039 |
case-Vc | 0.110894 | 0.044113 | −0.823654 | 0.045686 | |
MLP | case-ϕ | 0.999084 | 0.000615 | 0.998986 | 0.000451 |
case-Vc | 0.122800 | 0.043823 | −0.883199 | 0.046426 |
References
- Ellis, D.V.; Singer, J.M. Well Logging for Earth Scientists, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Selley, R.C.; Sonnenberg, S.A. Elements of Petroleum Geology, 3rd ed.; Academic Press: San Diego, CA, USA, 2015. [Google Scholar]
- Tiab, D.; Donaldson, E.C. Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, 4th ed.; Gulf Professional Publishing: Boston, MA, USA, 2015. [Google Scholar]
- Wang, H.; Ma, J.; Li, L. Pore pressure prediction based on rock physics theory and its application in seismic inversion. J. Appl. Geophys. 2024, 229, 105494. [Google Scholar] [CrossRef]
- Aki, K.; Richards, P.G. Quantitative Seismology, 1st ed.; W.H. Freeman and Co.: San Francisco, CA, USA, 1981. [Google Scholar]
- Avseth, P.; Mukerji, T.; Mavko, G. Quantitative Seismic Interpretation, 1st ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Ettayebi, M.; Wang, S.; Landrø, M. Time-Lapse 3D CSEM for Reservoir Monitoring Based on Rock Physics Simulation of the Wisting Oil Field Offshore Norway. Sensors 2023, 23, 7197. [Google Scholar] [CrossRef] [PubMed]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Handbook of Rock Physics, 1st ed.; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Hertz, H. Ueber die Berührung fester elastischer Körper. J. Reine Angew. Math. 1882, 92, 156–171. [Google Scholar] [CrossRef]
- Zoeppritz, K. Erdbebenwellen VIII B. Uber reflexion und durchgang seismischer wellen durch unstetigkeisflachen. Gottinger Nachr. 1919, 1, 66–84. [Google Scholar]
- Gassmann, F. Uber die elastizitat poroser medien. Vierteljahrsschr. Naturforschenden Ges. Zur. 1951, 96, 1–23. [Google Scholar]
- Kuster, G.T.; Toksöz, M.N. Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical Formulations. Geophysics 1974, 39, 587–606. [Google Scholar] [CrossRef]
- Wyllie, M.R.J.; Gregory, A.R.; Gardner, L.W. Elastic wave velocities in heterogeneous and porous media. Geophysics 1956, 21, 41–70. [Google Scholar] [CrossRef]
- Larionov, V.V. Borehole Radiometry; Nedra: Moscow, Russia, 1969. [Google Scholar]
- Poupon, A.; Gaymard, R. The evaluation of clay content from logs. In Proceedings of the SPWLA Annual Logging Symposium, Los Angeles, CA, USA, 3–6 May 1970. SPWLA–1970–G. [Google Scholar]
- Gardner, G.H.F.; Gardner, L.W.; Gregory, A.R. Formation velocity and density-the diagnostic basics for stratigraphic traps. Geophysics 1974, 39, 770–780. [Google Scholar] [CrossRef]
- Han, D. Effects of Porosity and Clay Content on Acoustic Properties of Sandstones and Unconsolidated Sediments. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1986. [Google Scholar]
- Fjaer, E.; Holt, R.M.; Horsrud, P.; Raaen, A.M.; Risnes, R. Petroleum Related Rock Mechanics; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Simm, R.; Bacon, M. Seismic Amplitude: An Interpreter’s Handbook, 1st ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Pham, N.; Wu, X.; Naeini, E.Z. Missing well log prediction using convolutional long short-term memory network. Geophysics 2020, 85, WA159–WA171. [Google Scholar] [CrossRef]
- Feng, R.; Grana, D.; Balling, N. Variational inference in Bayesian neuralnetwork for well-log prediction. Geophysics 2021, 86, M91–M99. [Google Scholar] [CrossRef]
- Chen, B.; Zeng, X.; Fan, L.; Li, K.; Zhang, W.; Cai, G.; Wang, Y.; Du, R.; Chen, T.; Zhang, B.; et al. Adaptive spatiotemporal neural networks based on machine learning for missing well-log prediction. Geophysics 2023, 88, V431–V443. [Google Scholar] [CrossRef]
- Lin, L.; Wei, H.; Wu, T.; Zhang, P.; Zhong, Z.; Li, C. Missing well-log reconstruction using a sequence self-attention deep-learning framework. Geophysics 2023, 88, D391–D410. [Google Scholar] [CrossRef]
- Pan, W.; Torres-Verdín, C.; Duncan, I.J.; Pyrcz, M.J. Improving multiwell petrophysical interpretation from well logs via machine learning and statistical models. Geophysics 2023, 88, D159–D175. [Google Scholar] [CrossRef]
- Anjom, F.K.; Vaccarino, F.; Socco, L.V. Machine learning for seismic exploration: Where are we and how far are we from the holy grail? Geophysics 2024, 89, WA157–WA178. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, J. How OpenAI’s text-to-video tool Sora could change science-and society. Nature 2024, 627, 475–476. [Google Scholar] [CrossRef] [PubMed]
- Quiñonero-Candela, J.; Sugiyama, M.; Lawrence, N.D.; Schwaighofer, A. Dataset Shift in Machine Learning, 1st ed.; The MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Pearl, J.; Mackenzie, D. The Book of Why: The New Science of Cause and Effect, 1st ed.; Basic Books: New York, NY, USA, 2018. [Google Scholar]
- Zhang, Y.; Tino, P.; Leonardis, A.; Tang, K. A survey on neural network interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 5, 726–742. [Google Scholar] [CrossRef]
- Wang, J.; Lan, C.; Liu, C.; Ouyang, Y.; Qin, T.; Lu, W.; Chen, Y.; Zeng, W.; Yu, P.S. Generalizing to unseen domains: A survey on domain generalization. IEEE Trans. Knowl. Data Eng. 2023, 35, 8052–8072. [Google Scholar]
- Schölkopf, B. Causality for machine learning. arXiv 2019, arXiv:1911.10500v2. [Google Scholar]
- Schölkopf, B.; Locatello, F.; Bauer, S.; Ke, N.R.; Kalchbrenner, N.; Goyal, A.; Bengio, Y. Toward causal representation learning. Proc. IEEE 2021, 109, 612–634. [Google Scholar] [CrossRef]
- Khan, I.U.; Aslam, N.; AlShedayed, R. A proactive attack detection for heating, ventilation, and air conditioning (HVAC) system using explainable extreme gradient boosting model (XGBoost). Sensors 2022, 22, 9235. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.; Koster, K.; AlRegib, G. Explainable machine learning for hydrocarbon prospect risking. Geophysics 2024, 89, WA13–WA24. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekisdis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Li, P.; Liu, M.; Alfarraj, M.; Tahmasebi, P.; Grana, D. Probabilistic physics-informed neural network for seismic petrophysical inversion. Geophysics 2024, 89, M17–M32. [Google Scholar] [CrossRef]
- Zhao, T.; Liu, C.; Song, C.; Waheed, U.B.; Zhang, X. Smoothness: The key factor in well-log information-assisted PINNtomo. J. Appl. Geophys. 2024, 226, 105417. [Google Scholar] [CrossRef]
- Liu, T.; Ungar, L.; Kording, K. Quantifying causality in data science with quasi-experiments. Nat. Comput. Sci. 2021, 1, 24–32. [Google Scholar] [CrossRef]
- von Rueden, L.; Mayer, S.; Beckh, K.; Georgiev, B.; Giesselbach, S.; Heese, R. Informed machine learning–a taxonomy and survey of integrating prior knowledge into learning systems. IEEE Trans. Knowl. Data Eng. 2023, 35, 614–633. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Lee, J.; Lumley, D.E. Interpreting the effects of shale rock properties on seismic anisotropy by statistical and machine learning methods. Geoenergy Sci. Eng. 2023, 224, 211631. [Google Scholar] [CrossRef]
- Nazat, S.; Arreche, O.; Abdallah, M. On Evaluating Black-Box Explainable AI Methods for Enhancing Anomaly Detection in Autonomous Driving Systems. Sensors 2024, 24, 3515. [Google Scholar] [CrossRef]
- Oloruntobi, O.; Butt, S. The new formation bulk density predictions for siliciclastic rocks. J. Pet. Sci. Eng. 2019, 180, 529–537. [Google Scholar] [CrossRef]
- Tudge, J.; Tobin, H.J. Velocity-porosity relationships in smectite-rich sediments: Shikoku Basin, Japan. Geochem. Geophys. Geosystems 2013, 14, 5194–5207. [Google Scholar] [CrossRef]
- Wang, H.; Liu, T.; Tang, T.; Shi, Y. A unified model to evaluate shaliness in compacted and soft formations using downhole GR log. J. Pet. Sci. Eng. 2017, 156, 877–883. [Google Scholar] [CrossRef]
- Aftab, F.; Zafar, M.; Hajana, M.I.; Ahmad, W. A novel gas sands characterization and improved depositional modeling of the Cretaceous Sembar Formation, Lower Indus Basin, Pakistan. Front. Earth Sci. 2022, 10, 1039605. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Sun, J.; Zhou, X.Q.; Li, Q.P.; Fan, Q.; Wu, S.L.; Wu, S.G. Well logging evaluation of fine-grained hydrate-bearing sediment reservoirs: Considering the effect of clay content. Pet. Sci. 2023, 20, 879–892. [Google Scholar] [CrossRef]
- Steeghs, P.; Overeem, I.; Tigrek, S. Seismic volume attribute analysis of the Cenozoic succession in the L08 block (Southern North Sea). Glob. Planet. Change 2000, 27, 245–262. [Google Scholar] [CrossRef]
- Sørensen, J.C.; Gregersen, U.; Breiner, M.; Michelsen, O. High-frequency sequence stratigraphy of Upper Cenozoic deposits in the central and southeastern North Sea areas. Mar. Pet. Geol. 1997, 14, 99–123. [Google Scholar] [CrossRef]
- Mojeddifar, S.; Kamali, G.; Ranjbar, H. Porosity prediction from seismic inversion of a similarity attribute based on a pseudo-forward equation (PFE): A case study from the North Sea Basin, Netherlands. Pet. Sci. 2015, 12, 428–442. [Google Scholar] [CrossRef]
- Ishak, M.A.; Islam, M.A.; Shalaby, M.R.; Hasan, N. The Application of Seismic Attributes and Wheeler Transformations for the Geomorphological Interpretation of Stratigraphic surfaces: A Case Study of the F3 Block, Dutch Offshore Sector, North Sea. Geosciences 2018, 8, 79. [Google Scholar] [CrossRef]
- dGB. Available online: https://terranubis.com/datainfo/F3-Demo-2020 (accessed on 26 June 2024).
- Gross, J. Linear Regression; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef]
- Minsky, M.; Papert, S. Perceptrons: AN Introduction to Computational Geometry, 1st ed.; The MIT Press: Cambridge, MA, USA, 1969. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Shapley, L.S. A value for n-person games. In Contributions to the Theory of Games; Princeton University Press: Princeton, NJ, USA, 1953; pp. 307–317. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Scikit-Learn. Available online: https://scikit-learn.org (accessed on 12 January 2025).
- Lundberg, S.M. Available online: https://pypi.org/project/shap (accessed on 26 June 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, G.; Wei, Z.; Li, S.; Zayier, Y.; Cheng, Y. Machine Learning-Based Prediction of Well Logs Guided by Rock Physics and Its Interpretation. Sensors 2025, 25, 836. https://doi.org/10.3390/s25030836
Zhang J, Liu G, Wei Z, Li S, Zayier Y, Cheng Y. Machine Learning-Based Prediction of Well Logs Guided by Rock Physics and Its Interpretation. Sensors. 2025; 25(3):836. https://doi.org/10.3390/s25030836
Chicago/Turabian StyleZhang, Ji, Guiping Liu, Zhen Wei, Shengge Li, Yeheya Zayier, and Yuanfeng Cheng. 2025. "Machine Learning-Based Prediction of Well Logs Guided by Rock Physics and Its Interpretation" Sensors 25, no. 3: 836. https://doi.org/10.3390/s25030836
APA StyleZhang, J., Liu, G., Wei, Z., Li, S., Zayier, Y., & Cheng, Y. (2025). Machine Learning-Based Prediction of Well Logs Guided by Rock Physics and Its Interpretation. Sensors, 25(3), 836. https://doi.org/10.3390/s25030836