A Portable Magnetoelectric Gaussmeter Based on Torque Effect
Abstract
:1. Introduction
2. Structure Design and Theoretical Analysis
2.1. Structure Design
2.2. Finite Element Simulation
3. Results and Discussion
3.1. Frequency Dependence
3.2. AC Sensitivity
3.3. DC Sensitivity
3.4. Calibration Method for AC and DC Magnetic Field Detection
3.5. Prototype of the Portable Gaussmeter
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nan, C.W.; Bichurin, M.I.; Dong, S.X.; Viehland, D.; Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 2008, 103, 031101. [Google Scholar] [CrossRef]
- Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 2005, 38, 123–152. [Google Scholar] [CrossRef]
- Srinivasan, G. Magnetoelectric composites. Annu. Rev. Mater. Res. 2010, 40, 153–178. [Google Scholar] [CrossRef]
- Kambale, R.C.; Jeong, D.Y.; Ryu, J. Current status of magnetoelectric composite thin/thick films. Adv. Cond. Matter Phys. 2012, 2012, 824643. [Google Scholar] [CrossRef]
- Priya, S.; Islam, R.; Dong, S.X.; Viehland, D. Recent advancements in magnetoelectric particulate and laminate composites. J. Electroceramics 2007, 19, 149–166. [Google Scholar] [CrossRef]
- Ma, J.; Hu, J.M.; Li, Z.; Nan, C.W. Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 2011, 23, 1062–1087. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.F.; Dong, C.Z.; Chen, H.H.; Wang, J.W.; Wei, Y.Y.; Zaeimbashi, M.; He, Y.F.; Matyushov, A.; Sun, C.X.; Sun, N.X. A review of thin-film magnetoelastic materials for magnetoelectric applications. Sensors 2020, 20, 1532. [Google Scholar] [CrossRef]
- Gao, J.Q.; Jiang, Z.K.; Zhang, S.J.; Mao, Z.N.; Shen, Y.; Chu, Z.Q. Review of magnetoelectric sensors. Actuators 2021, 10, 109. [Google Scholar] [CrossRef]
- Bichurin, M.; Petrov, R.; Sokolov, O.; Leontiev, V.; Kuts, V.; Kiselev, D.; Wang, Y.J. Magnetoelectric magnetic field sensors: A review. Sensors 2021, 21, 6232. [Google Scholar] [CrossRef]
- Leung, C.M.; Li, J.F.; Viehland, D.; Zhuang, X. A review on applications of magnetoelectric composites: From heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters. J. Phys. D Appl. Phys. 2018, 51, 263002. [Google Scholar] [CrossRef]
- Mao, Q.; Wu, J.G.; Hu, Z.Q.; Xu, Y.W.; Du, Y.J.; Hao, Y.B.; Guan, M.M.; Wang, C.Y.; Wang, Z.G.; Zhou, Z.Y. Magnetoelectric devices based on magnetoelectric bulk composites. J. Mater. Chem. C 2021, 9, 5594–5614. [Google Scholar] [CrossRef]
- Lenz, J.; Edelstein, S. Magnetic sensors and their applications. IEEE Sens. J. 2006, 6, 631–649. [Google Scholar] [CrossRef]
- Yue, C.X.; Ding, H.; Liu, X.F. Magnetic-field measurement based on multicore fiber taper and magnetic fluid. IEEE Trans. Instrum. Meas. 2018, 68, 688–692. [Google Scholar] [CrossRef]
- Mattei, J.L.; Konn, A.M.; Lefloch, M. Magnetic behavior of heterogeneous magnetic materials. IEEE Trans. Instrum. Meas. 1993, 42, 121–125. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Lin, Q.J.; Yao, K.; Zhao, N.; Yang, P.; Jiang, Z.D. Fiber vector magnetometer based on balloon-like fiber structure and magnetic fluid. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Zhao, Y.; Lv, R.Q.; Wang, D.; Wang, Q. Fiber optic Fabry-Perot magnetic field sensor with temperature compensation using a fiber Bragg grating. IEEE Trans. Instrum. Meas. 2014, 63, 2210–2214. [Google Scholar] [CrossRef]
- Qin, Y.J.; Li, K.Y.; Zhang, W.T.; Pan, Y.; Chen, J.; Ouyang, J.; Yang, X.F. Active magnetic detection using eddy current magnetic field orthonormal basis function. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Lenz, J.E. A review of magnetic sensors. Proc. IEEE 1990, 78, 973–989. [Google Scholar] [CrossRef]
- Chu, Z.Q.; PourhosseiniAsl, M.; Dong, S.X. Review of multi-layered magnetoelectric composite materials and devices applications. J. Phys. D Appl. Phys. 2018, 51, 243001. [Google Scholar] [CrossRef]
- Zhai, J.; Xing, Z.; Dong, S.; Li, J.; Viehland, D. Magnetoelectric laminate composites: An overview. J. Am. Ceram. Soc. 2008, 91, 351–358. [Google Scholar] [CrossRef]
- Lu, C.J.; Li, P.; Wen, Y.M.; Yang, A.C.; Yang, C.; Wang, D.C.; He, W.; Zhang, J.T. Magnetoelectric composite Metglas/PZT-based current sensor. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Jahns, R.; Greve, H.; Woltermann, E.; Quandt, E.; Knöchel, R.H. Noise performance of magnetometers with resonant thin-film magnetoelectric sensors. IEEE Trans. Instrum. Meas. 2011, 60, 2995–3001. [Google Scholar] [CrossRef]
- Zhai, J.Y.; Dong, S.X.; Xing, Z.P.; Li, J.F.; Viehland, D. Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates. Appl. Phys. Lett. 2006, 89, 083507. [Google Scholar] [CrossRef]
- Reis, S.; Castro, N.; Silva, M.P.; Correia, V.; Rocha, J.G.; Martins, P.; Lanceros-Mendez, S. Lanceros-Mendez. Fabrication and characterization of high-performance polymer-based magnetoelectric DC magnetic field sensors devices. IEEE Trans. Ind. Electron. 2017, 64, 4928–4934. [Google Scholar] [CrossRef]
- Yang, S.Y.; Xu, J.; Zhang, X.N.; Fan, S.X.; Zhang, C.Y.; Huang, Y.C.; Li, Q.; Wang, X.; Cao, D.R.; Xu, J.; et al. Self-biased Metglas/PVDF/Ni magnetoelectric laminate for AC magnetic sensors with a wide frequency range. J. Phys. D Appl. Phys. 2022, 55, 175002. [Google Scholar] [CrossRef]
- Greve, H.; Woltermann, E.; Quenzer, H.J.; Wagner, B.; Quandt, E. Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl. Phys. Lett. 2010, 96, 182501. [Google Scholar] [CrossRef]
- Yarar, E.; Salzer, S.; Hrkac, V.; Piorra, A.; Hoeft, M.; Knoechel, R.; Kienle, L.; Quandt, E. Inverse bilayer magnetoelectric thin film sensor. Appl. Phys. Lett. 2016, 109, 022901. [Google Scholar] [CrossRef]
- Li, M.; Matyushov, A.; Dong, C.Z.; Chen, H.H.; Lin, H.; Nan, T.X.; Qian, Z.Y.; Rinaldi, M.; Lin, Y.H.; Sun, N.X. Ultra-sensitive NEMS magnetoelectric sensor for picotesla DC magnetic field detection. Appl. Phys. Lett. 2017, 110, 143510. [Google Scholar] [CrossRef]
- Hayes, P.; Klug, M.J.; Toxvaerd, S.; Durdaut, P.; Schell, V.; Teplyuk, A.; Burdin, D.; Winkler, A.; Weser, R.; Fetisov, Y.; et al. Converse Magnetoelectric Composite Resonator for Sensing Small Magnetic Fields. Sci. Rep. 2019, 9, 16355. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.Q.; Shi, H.D.; Shi, W.L.; Liu, G.X.; Wu, J.G.; Yang, J.K.; Dong, S.X. Enhanced resonance magnetoelectric coupling in (1-1) connectivity composites. Adv. Mater. 2017, 29, 1606022. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.Z.; He, Y.F.; Li, M.H.; Tu, C.; Chu, Z.Q.; Liang, X.F.; Chen, H.H.; Wei, Y.Y.; Zaeimbashi, M.; Wang, X.J.; et al. A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas. IEEE Antenn. Wirel. Prod. 2020, 19, 398–402. [Google Scholar] [CrossRef]
- Wang, Y.J.; Gray, D.; Berry, D.; Gao, J.Q.; Li, M.H.; Li, J.F.; Viehland, D. An extremely low equivalent magnetic noise magnetoelectric sensor. Adv. Mater. 2011, 23, 4111–4114. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Maurya, D.; Yan, Y.; Srinivasan, G.; Quandt, E.; Priya, S. Self-Biased Magnetoelectric Composites: An Overview and Future Perspectives. Energy Harvest. Syst. 2016, 3, 1–42. [Google Scholar] [CrossRef]
- Nan, T.X.; Hui, Y.; Rinaldi, M.; Sun, N.X. Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection. Sci. Rep. 2013, 3, 1985. [Google Scholar] [CrossRef]
- Li, M.H.; Wang, Z.G.; Wang, Y.J.; Li, J.F.; Viehland, D. Giant magnetoelectric effect in self-biased laminates under zero magnetic field. Appl. Phys. Lett. 2013, 102, 082404. [Google Scholar] [CrossRef]
- Zhang, J.T.; Li, P.; Wen, Y.M.; He, W.; Yang, A.C.; Lu, C.J. Shear-mode self-biased magnetostrictive/piezoelectric laminate multiferroic heterostructures for magnetic field detecting and energy harvesting. Sensor Actuat. A-Phys. 2014, 214, 149–155. [Google Scholar] [CrossRef]
- Wu, J.G.; Du, Y.J.; Xu, Y.W.; Qiao, J.C.; Qu, Y.H.; Wang, Z.G.; Dong, S.X.; Hu, Z.Q.; Liu, M. Self-biased magnetoelectric sensor operating in d36 face-shear mode. IEEE Sens. J. 2023, 23, 22366–22372. [Google Scholar] [CrossRef]
- Wu, J.G.; Hu, Z.Q.; Cheng, M.M.; Zhao, X.G.; Guan, M.M.; Su, W.; Xian, D.; Wang, C.Y.; Wang, Z.G.; Peng, B.; et al. Highly sensitive magneto-mechano-electric magnetic field sensor based on torque effect. IEEE Sens. J. 2020, 21, 1409–1416. [Google Scholar] [CrossRef]
- Peddigari, M.; Kim, H.S.; Kumar, N.; Choi, J.J.; Yoon, W.H.; Jang, J. Optimizing the design of wide magneto-mechano-electric generators to maximize their power output and lifetime in self-powered environmental monitoring systems. Nano Energy 2023, 114, 108645. [Google Scholar] [CrossRef]
- Kwak, M.S.; Peddigari, M.; Min, Y.; Choi, J.J.; Kim, J.H.; Listyawan, M.A.; Ryu, J.; Hwang, G.T.; Yoon, W.H.; Jang, J. Boosting the lifespan of magneto-mechano-electric generator via vertical installation for sustainable powering of Internet of Things sensor. Nano Energy 2022, 101, 107567. [Google Scholar] [CrossRef]
- Yu, Y.L.; Cheng, Z.; Chang, J.L.; Mai, Z.F.; Wang, B.; Zhu, R.L.; Sun, M.H.; Dong, S.X.; Ci, P.H. Enhanced In-Plane Omnidirectional Energy Harvesting from Extremely Weak Magnetic Fields via Fourfold Symmetric Magneto-Mechano-Electric Coupling. Adv. Energy Mater. 2024, 14, 43. [Google Scholar] [CrossRef]
- Kim, H.S.; Kumar, N.; Choi, J.J.; Yoon, W.H.; Yi, S.N.; Jang, J. Self-Powered Smart Proximity-Detection System Based on a Hybrid Magneto-Mechano-Electric Generator. Adv. Intell. Syst. 2024, 6, 1. [Google Scholar] [CrossRef]
- Xing, Z.P.; Xu, K.; Dai, G.Y.; Li, J.F.; Viehland, D. Giant magnetoelectric torque effect and multicoupling in two phases ferromagnetic/piezoelectric system. J. Appl. Phys. 2011, 110, 104501. [Google Scholar] [CrossRef]
- Xing, Z.P.; Xu, K. Investigation of low frequency giant magnetoelectric torque effect. Sensor Actuat. A-Phys. 2013, 189, 182–186. [Google Scholar] [CrossRef]
- Wang, Y. Composite connection design. In Mechanics and Structural Design of Composite Materials, 1st ed.; East China Univ. Science and Technology Press: Shanghai, China, 2012; pp. 119–120. [Google Scholar]
- Xing, Z.P.; Li, J.F.; Viehland, D. Giant magnetoelectric effect in Pb (Zr, Ti) O3-bimorph/NdFeB laminate device. Appl. Phys. Lett. 2008, 93, 013505. [Google Scholar] [CrossRef]
- Du, G.; Zhu, Z.; Gong, X. Forced vibration of a particle. In Fundamentals of Acoustics, 2nd ed.; Nanjing University Press: Nanjing, China, 2012; pp. 21–23. [Google Scholar]
- Chen, L.; Luo, Y. Effect of Bias Magnetic Field on Magnetoelectric Characteristics in Magnetostrictive/Piezoelectric Laminate Composites. J. Magn. 2015, 20, 347–352. [Google Scholar] [CrossRef]
- Spetzler, B.; Golubeva, E.V.; Friedrich, R.M.; Zabel, S.; Kirchhof, C.; Meyners, D.; McCord, J.; Faupel, F. Magnetoelastic coupling and delta-E effect in magnetoelectric torsion mode resonators. Sensors 2021, 21, 2022. [Google Scholar] [CrossRef]
- Reermann, J.; Zabel, S.; Kirchhof, C.; Quandt, E.; Faupel, F.; Schmidt, G. Adaptive readout schemes for thin-film magnetoelectric sensors based on the delta-E effect. IEEE Sens. J. 2016, 16, 4891–4900. [Google Scholar] [CrossRef]
- Spetzler, B.; Kirchhof, C.; Reermann, J.; Durdaut, P.; Höft, M.; Schmidt, G.; Quandt, E.; Faupel, F. Influence of the quality factor on the signal to noise ratio of magnetoelectric sensors based on the delta-E effect. Appl. Phys. Lett. 2019, 114, 183504. [Google Scholar] [CrossRef]
- Durdaut, P.; Reermann, J.; Zabel, S.; Kirchhof, C.; Quandt, E.; Faupel, F.; Schmidt, G.; Knöchel, R.; Höft, M. Modeling and analysis of noise sources for thin-film magnetoelectric sensors based on the delta-E effect. IEEE Trans. Instrum. Meas. 2017, 66, 2771–2779. [Google Scholar] [CrossRef]
- Reermann, J.; Schmidt, G.; Zabel, S.; Faupel, F. Adaptive multi-mode combination for magnetoelectric sensors based on the delta-E effect. Procedia Eng. 2015, 120, 536–539. [Google Scholar] [CrossRef]
- Spetzler, B.; Kirchhof, C.; Quandt, E.; McCord, J.; Faupel, F. Magnetic sensitivity of bending-mode delta-E-effect sensors. Phys. Rev. Appl. 2019, 12, 064036. [Google Scholar] [CrossRef]
- Ju, O.Y.; Liu, X.; Zhou, H.W.; Zou, Z.Q.; Yan, Y.; Li, J.X.; Yue, Z.; Zhu, B.P.; Shi, C.; Yang, X.F. Magnetoelectric laminate composites: An overview of methods for improving the DC and low-frequency response. J. Phys. D Appl. Phys. 2018, 51, 324005. [Google Scholar] [CrossRef]
- Zhao, X.F.; Yang, X.H.; Yu, Y.; Wu, T.; Wen, D.Z. Characteristics of 2D magnetic field sensor based on magnetic sensitivity diodes. AIP Adv. 2015, 5, 041321. [Google Scholar] [CrossRef]
- Okada, T.; Kako, E.; Konomi, T.; Masuzawa, M.; Sakai, H.; Tsuchiya, K.; Ueki, R.; Umemori, K.; Pizzol, P.; Poudel, A.; et al. Systematic evaluation of magnetic sensitivities of anisotropic magnetoresistive sensors at liquid helium temperature for superconducting cavities. Rev. Sci. Instrum. 2021, 92, 035003. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.C.; Dixon, S. A closed-loop operation to improve GMR sensor accuracy. IEEE Sens. J. 2016, 16, 6003–6007. [Google Scholar] [CrossRef]
- Han, S.Y.; Wu, Y.; Wang, Y.; Chen, J.M. Fabrication and performance enhancement of TMR-Superconducting composite magnetic sensors for weak magnetic field detection. Cryogenics 2024, 138, 103803. [Google Scholar] [CrossRef]
- Hrakova, D.; Ripka, P.; Butta, M. Sensitivity and noise of parallel fluxgate sensor with amorphous wire cores. J. Magn. Magn. Mater. 2022, 563, 169981. [Google Scholar] [CrossRef]
- Zhou, H.; Pan, Z.M.; Zhang, D.S. Operating Point Self-Regulator for Giant Magneto-Impedance Magnetic Sensor. Sensors 2017, 17, 1103. [Google Scholar] [CrossRef]
- Yashchuk, V.V.; Granwehr, J.; Kimball, D.F.; Rochester, S.M.; Trabesinger, A.H.; Urban, J.T.; Budker, D.; Pines, A. Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry. Phys. Rev. Lett. 2004, 93, 160801. [Google Scholar] [CrossRef]
- Ito, Y.; Ohnishi, H.; Kamada, K.; Kobayashi, T. Sensitivity Improvement of Spin-Exchange Relaxation Free Atomic Magnetometers by Hybrid Optical Pumping of Potassium and Rubidium. IEEE Trans. Magn. 2011, 47, 3550–35530. [Google Scholar] [CrossRef]
- Barthelmess, H.J.; Halverscheid, M.; Schiefenhovel, B.; Heim, E.; Schilling, M.; Zimmermann, R. Low-noise biomagnetic measurements with a multichannel dc-SQUID system at 77 K. IEEE Trans. Appiled Supercond. 2001, 11, 657–660. [Google Scholar] [CrossRef]
- Sun, K.Y.; Jiang, Z.H.; Wang, C.M.; Han, D.X.; Yao, Z.; Zong, W.H.; Jin, Z.J.; Li, S.D. High-resolution magnetoelectric sensor and low-frequency measurement using frequency up-conversion technique. Sensors 2023, 23, 1702. [Google Scholar] [CrossRef]
- Sreenivasulu, G.; Laletin, U.; Petrov, V.M.; Petrov, V.V.; Srinivasan, G. A permendur-piezoelectric multiferroic composite for low-noise ultrasensitive magnetic field sensors. Appl. Phys. Lett. 2012, 100, 173506. [Google Scholar] [CrossRef]
- Sun, X.; Wu, J.G.; Xu, Y.W.; Gao, J.Q.; Lin, B.M.; Yang, G.N.; Ge, B.F.; Hu, Z.Q.; Liu, M. Reducing equivalent magnetic noise by electrode design and magnetic annealing in Quartz/Metglas magnetoelectric sensors. Sensor Actuat. A-Phys. 2024, 379, 115903. [Google Scholar] [CrossRef]
PZT-5H ceramic | Density ) | Relative Permittivity | Compliance Coefficient Matrix ) | Piezoelectric Coefficients Matrix ) |
7500 | 3400 | |||
Copper | Density ) | Young modulus (GPa) | Poisson’s ratio | - |
8900 | 119 | 0.37 | - | |
NdFeB permanent magnet | Density ) | Relative permittivity | Young modulus (GPa) | Poisson’s ratio |
7500 | 1 | 160 | 0.24 | |
Conductivity ) | Relative permeability | Residual flux density (T) | - | |
4000 | 1.01 | - |
Sensors | Sensitivity (mV/Oe) | Resolution (nT) | Size | Reference |
---|---|---|---|---|
Hall sensor (HMIRS GM08) | 0.5 | 2000 | - | [24] |
Magnetodiode | 0.0498–0.0544 | - | - | [56] |
AMR sensor | 3.6 | 1000 | 40 × 70 × 2 mm3 | [57] |
GMR sensor | 17.5 | - | 6 × 8 × 8 mm3 | [58] |
TMR sensor | 790 | 0.015 at 1 Hz | 12 × 12 mm2 | [59] |
Fluxgate sensor | 12,000 | 0.025 at 1 Hz | 35 × 24 × 24 mm3 | [60] |
GMI sensor | 390,000 | 0.38 at 1 Hz | - | [61] |
Optical atomic magnetometer | - | 10 | 1300 mm3 | [62] |
Optically pumped magnetometer | - | 0.00003 | - | [63] |
SQUID | - | 0.00001 | - | [64] |
ME sensor | 500 | 0.2 at 1 Hz | 25 × 2 × 0.5 mm3 | [65] |
ME sensor | 7500 | 0.025 at 1 Hz | 40 × 10 × 0.6 mm3 | [66] |
ME sensor | 140,000 | 0.000135 at 23.23 kHz | 100 × 1.5 × 0.6 mm3 | [30] |
ME sensor | 81,340 | 0.00001 at 44.272 kHz | 60 × 5 × 0.7 mm3 | [67] |
ME sensor | 3.13 | 10 at 10 Hz | 18 × 8 × 6 mm3 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Qiao, J.; Liang, X.; Du, Y.; Gao, J.; Xu, Y.; Guo, J.; Lu, M.; Zhang, M.; Hu, Z. A Portable Magnetoelectric Gaussmeter Based on Torque Effect. Sensors 2025, 25, 855. https://doi.org/10.3390/s25030855
Wu J, Qiao J, Liang X, Du Y, Gao J, Xu Y, Guo J, Lu M, Zhang M, Hu Z. A Portable Magnetoelectric Gaussmeter Based on Torque Effect. Sensors. 2025; 25(3):855. https://doi.org/10.3390/s25030855
Chicago/Turabian StyleWu, Jingen, Jiacheng Qiao, Xianfeng Liang, Yongjun Du, Jieqiang Gao, Yiwei Xu, Jinghong Guo, Min Lu, Ming Zhang, and Zhongqiang Hu. 2025. "A Portable Magnetoelectric Gaussmeter Based on Torque Effect" Sensors 25, no. 3: 855. https://doi.org/10.3390/s25030855
APA StyleWu, J., Qiao, J., Liang, X., Du, Y., Gao, J., Xu, Y., Guo, J., Lu, M., Zhang, M., & Hu, Z. (2025). A Portable Magnetoelectric Gaussmeter Based on Torque Effect. Sensors, 25(3), 855. https://doi.org/10.3390/s25030855