Compact and Real-Time Radiation Dosimeter Using Silicon Photomultipliers for In Vivo Dosimetry in Radiation Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. SiPM-Based PSOF Dosimeter
2.2. In-House Phantom
2.3. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartesaghi, G.; Conti, V.; Bolognini, D.; Grigioni, S.; Mascagna, V.; Prest, M.; Scazzi, S.; Mozzanica, A.; Cappelletti, P.; Frigerio, M.; et al. A scintillating fiber dosimeter for radiotherapy. Nucl. Instrum. Methods Phys. Res. A 2007, 581, 80–83. [Google Scholar] [CrossRef]
- Goossens, M.E.; Van den Bulcke, M.; Gevaert, T.; Meheus, L.; Verellen, D.; Cosset, J.-M.; Storme, G. Is there any benefit to particles over photon radiotherapy? Ecancermedicalscience 2019, 13, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Trotter, J.; Lin, A. Advances in Proton Therapy for the Management of Head and Neck Tumors. Surg. Oncol. Clin. N. Am. 2023, 32, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, B.; Shin, W.-G.; Son, J.; Choi, C.H.; Park, J.M.; Hwang, U.-J.; Kim, J.-I.; Jung, S. 3D star shot analysis using MAGAT gel dosimeter for integrated imaging and radiation isocenter verification of MR-Linac system. J. Appl. Clin. Med. Phys. 2022, 23, e13615. [Google Scholar] [CrossRef]
- Rivera-Montalvo, T. Radiation therapy dosimetry system. Appl. Radiat. Isot. 2014, 83, 204–209. [Google Scholar] [CrossRef]
- Ahn, Y.C. Introduction of Intensity Modulated Radiation Therapy. J. Korean Med. Assoc. 2011, 54, 1172–1178. [Google Scholar] [CrossRef]
- Kron, T.; Lehmann, J.; Greer, P.B. Dosimetry of ionising radiation in modern radiation oncology. Phys. Med. Biol. 2016, 61, R167–R205. [Google Scholar] [CrossRef]
- Birajdar, S.; Zhang, W.; Santos, A.; Hickson, K.; Afshar Vahid, S. Real-time in vivo dose measurement using ruby-based fibre optic dosimetry during internal radiation therapy. Phys. Eng. Sci. Med. 2023, 46, 1205–1213. [Google Scholar] [CrossRef]
- Berra, A.; Conti, V.; Lietti, D.; Milan, L.; Novati, C.; Ostinelli, A.; Prest, M.; Romanó, C.; Vallazza, E. A SiPM based real-time dosimeter for radiotherapic beams. Nucl. Instrum. Methods Phys. Res. A 2015, 773, 72–80. [Google Scholar] [CrossRef]
- Merchant, A.K. The advantages and disadvantages of large chamber measuring apparatus. Radiology 1933, 21, 123–125. [Google Scholar] [CrossRef]
- Lonski, P.; Kron, T. Impact through Versatility: Patterns of In Vivo Dosimetry Utilization with TLD Across a Large Multi-Site Radiotherapy Department. Front. Oncol. 2022, 12, 918178. [Google Scholar] [CrossRef] [PubMed]
- Essers, M.; Mijnheer, B.J. In Vivo Dosimetry During External Photon Beam Radiotherapy. Crit. Rev. 1999, 43, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Rivera, T. Thermoluminescence in medical dosimetry. Appl. Radiat. Isot. 2012, 71, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Ramaseshan, R.; Kohli, K.S.; Zhang, T.J.; Lam, T.; Norlinger, B.; Hallil, A.; Islam, M. Performance Characteristics of a MicroMOSFET as an In Vivo Dosimeter in Radiation Therapy. Phys. Med. Biol. 2004, 49, 4031–4048. [Google Scholar] [CrossRef]
- Yadav, P.; Hallil, A.; Tewatia, D.; Dunkerley, D.A.P.; Paliwal, B. MOSFET dosimeter characterization in MR-guided radiation therapy (MRgRT) Linac. J. Appl. Clin. Med. Phys. 2020, 21, 127–135. [Google Scholar] [CrossRef]
- Ding, L.; Wu, Q.; Wang, Q.; Li, Y.; Perks, R.M.; Zhao, L. Advances on inorganic scintillator-based optic fiber dosimeters. EJNMMI Phys. 2020, 7, 60. [Google Scholar] [CrossRef]
- Song, S.; Kim, J.; Park, J.H.; Kim, S.; Lim, T.; Kim, J.H.; Kim, S.; Lee, B. Measurements of low dose rates of gamma-rays using position-sensitive plastic scintillation optical fiber detector. Nucl. Eng. Technol. 2022, 54, 3398–3402. [Google Scholar] [CrossRef]
- Guillot, M.; Gingras, L.; Archambault, L.; Beddar, S.; Beaulieu, L. Spectral method for the correction of the Cerenkov light effect in plastic scintillation detectors: A comparison study of calibration procedures and validation in Cerenkov light-dominated situations. Med. Phys. 2011, 38, 2140–2150. [Google Scholar] [CrossRef]
- Kim, J.H.; Joo, K.S. Study on scintillator polishing technology for increasing the detection efficiency of radiation detectors using plastic scintillators. J. Inst. Korean Electr. Electron. Eng. 2014, 18, 456–462. [Google Scholar] [CrossRef]
- Ciarrocchia, E.; Ravera, E.; Cavalieri, A.; Celentano, M.; Del Sarto, D.; Di Martino, F.; Linsalata, S.; Massa, M.; Masturzo, L.; Moggi, A.; et al. Plastic scintillator-based dosimeters for ultra-high dose rate (UHDR) electron radiotherapy. Phys. Med. 2024, 121, 103360. [Google Scholar] [CrossRef]
- Jang, K.W.; Cho, D.H.; Yoo, W.J.; Seo, J.K.; Heo, J.Y.; Park, J.-Y.; Lee, B. Fiber-optic radiation sensor for detection of tritium. Nucl. Instrum. Methods Phys. Res. A 2011, 652, 928–931. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, K.H.; Joo, K.S. Development of low-cost, compact, real-time, and wireless radiation monitoring system in underwater environment. Nucl. Eng. Technol. 2015, 773, 72–80. [Google Scholar] [CrossRef]
- Kim, J.; Park, K.; Joo, K. Feasibility of miniature radiation portal monitor for measurement of radioactivity contamination in flowing water in pipe. J. Instrum. 2018, 13, P01022. [Google Scholar] [CrossRef]
- Park, H.M.; Joo, K.S. Remote radiation sensing module based on a silicon photomultiplier for industrial applications. Appl. Radiat. Isot. 2016, 115, 13–17. [Google Scholar] [CrossRef]
- Acerbi, F.; Gundacker, S. Understanding and simulating SiPMs. Nucl. Instrum. Methods Phys. Res. A 2019, 926, 16–35. [Google Scholar] [CrossRef]
- Gundacker, S.; Heering, A. The silicon photomultiplier: Fundamentals and applications of a modern solid-state photon detector. Phys. Med. Biol. 2020, 65, 17TR01. [Google Scholar] [CrossRef]
- Agishev, R.; Comeron, A.; Bach, J.; Rodriguez, A.; Sicard, M.; Riu, J.; Royo, S. Lidar with SiPM: Some capabilities and limitations in real environment. Opt. Laser Technol. 2013, 49, 86–90. [Google Scholar] [CrossRef]
- Acerbi, F.; Paternoster, G.; Gola, A.; Regazzoni, V.; Zorzi, N.; Piemonte, C. High-density silicon photomultipliers: Performance and linearity evaluation for high efficiency and dynamic-range applications. IEEE J. Quantum Electron. 2018, 54, 4700107. [Google Scholar] [CrossRef]
- Bisogni, M.G.; Del Guerra, A.; Belcari, N. Medical applications of silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 926, 118–128. [Google Scholar] [CrossRef]
- Product Information of Kuraray Home Page. Available online: https://www.kuraray.com/products/psf (accessed on 20 January 2025).
- Product of Industrial Fiber Optics Hompage. Available online: https://i-fiberoptics.com/fiber-detail.php?id=47 (accessed on 20 January 2025).
- O’Keeffe, S.; McCarthy, D.; Woulfe, P.; Grattan, M.W.D.; Hounsell, A.R.; Sporea, D.; Mihai, L.; Vata, I.; Leen, G.; Lewis, E. A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy. Br. J. Radiol. 2015, 88, 20140702. [Google Scholar] [CrossRef]
- Product of Industrial DigiChip Hompage. Available online: https://www.digchip.org/datasheets/parts/datasheet/2/190/S13360-1350CS.php (accessed on 20 January 2025).
- Silicon Photomultiplier Operation, Performance & Possible Applications, Hamamatsu Hompage. Available online: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/static/hc/resources/W0003/sipm_webinar_1.10.pdf (accessed on 20 January 2025).
- Tsujikawa, K.; Tajima, K.; Zhou, J. Intrinsic Loss of Optical Fibers. Opt. Fiber Technol. 2005, 11, 319–331. [Google Scholar] [CrossRef]
- Park, H.M.; Joo, K.S. Development of a Wireless Gamma-ray Probe for Diagnosing and Evaluation of its Effectiveness. J. IEIE 2015, 52, 355–363. [Google Scholar] [CrossRef]
- Shehzadi, N.N.; Yi, C.-Y.; Kim, K.-H.; Jang, J.; Hwang, U.-J.; Kim, Y.; Kim, I.-J.; Seong, Y.M. Feasibility study of radiophotoluminescent glass dosimeter for in vivo dosimetry in external photon beam radiotherapy. J. Korean Phys. Soc. 2021, 78, 523–534. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, J.; Park, B.; Park, B.D.; Kim, T.G. Feasibility of a patient-specific bolus using the life-casting method for radiation therapy. Appl. Sci. 2023, 13, 9977. [Google Scholar] [CrossRef]
- Park, B.; Ko, J.; Byun, J.; Park, B.; Lee, M.-J.; Kim, J. Feasibility study of CdZnTe and CdZnTeSe based high energy X-ray detector using linear accelerator. Nucl. Eng. Technol. 2023, 55, 2797–2801. [Google Scholar] [CrossRef]
- Andreo, P.; Burns, D.T.; Hohlfeld, K.; Huq, M.S.; Kanai, T.; Laitano, F.; Smyth, V.; Vynckier, S. Absorbed dose determination in external beam radiotherapy: An international code of practice for dosimetry based on standards of absorbed dose to water. In IAEA TRS Report. 398; International Atomic Energy Agency: Vienna, Austria, 2000. [Google Scholar] [CrossRef]
- Al-Shareef, J.M.; Attalla, E.M.; El-Gebaly, R.H.; Deiab, N.A.; Abdelmajeed, M.; Fathy, M.M. Implementation of in-vivo diode dosimetry for intensity modulated radiotherapy as routine patients’ quality assurance. Radiat. Phys. Chem. 2021, 187, 109564. [Google Scholar] [CrossRef]
- Ferrer, C.; Huertas, C.; García, D.; Sáez, M. Dosimetric characterization of a novel commercial plastic scintillation detector with an MR-Linac. Med. Phys. 2023, 50, 2525–2539. [Google Scholar] [CrossRef]
- Sathish Kumar, A.; Sharma, S.D.; Ravindran, B.P. Characteristics of mobile MOSFET dosimetry system for megavoltage photon beams. J. Med. Physiol. 2014, 39, 142–149. [Google Scholar]
- Kim, J.H.; Joo, K.S. Fabrication of fiberoptics detector for measuring radioactive waste. J. Inst. Korean Electr. Electron. Eng. 2015, 19, 282–287. [Google Scholar]
- Mobile MOSFET Wireless Dose Verification System, Best™ Medical Canada. Available online: http://www.bestmedicalcanada.com/pdf/datasheets/mobilemosfet.pdf (accessed on 20 January 2025).
Model | S13360-1350CS |
---|---|
Package type | Ceramic |
Effective photosensitive area | 1.3 mm × 1.3 mm |
Number of pixels | 667 |
Pixel size | 50 µm |
Spectral response rang | 270 to 900 nm |
Peak sensitivity wavelength | 450 nm |
Gain | 1.7 × 106 |
Dark count (Typ.) | 90 kcps |
Dark count (Max.) | 270 kcps |
Recommended operating voltage | Breakdown voltage + 3 V |
Dosimeter | Measument 1 (cGy) | Measument 2 (cGy) | Measument 3 (cGy) | Mean (cGy) | RSD (%) |
---|---|---|---|---|---|
PSOF | 294.19 | 338.78 | 336.72 | 323.23 | 6.36 |
OSLD | 295.13 | 310.31 | 309.18 | 304.87 | 2.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Park, J.; Park, B.; Kim, Y.; Park, B.; Park, S.H. Compact and Real-Time Radiation Dosimeter Using Silicon Photomultipliers for In Vivo Dosimetry in Radiation Therapy. Sensors 2025, 25, 857. https://doi.org/10.3390/s25030857
Kim J, Park J, Park B, Kim Y, Park B, Park SH. Compact and Real-Time Radiation Dosimeter Using Silicon Photomultipliers for In Vivo Dosimetry in Radiation Therapy. Sensors. 2025; 25(3):857. https://doi.org/10.3390/s25030857
Chicago/Turabian StyleKim, Jeongho, Jeehoon Park, Byungdo Park, Yonghoon Kim, Beomjun Park, and So Hyun Park. 2025. "Compact and Real-Time Radiation Dosimeter Using Silicon Photomultipliers for In Vivo Dosimetry in Radiation Therapy" Sensors 25, no. 3: 857. https://doi.org/10.3390/s25030857
APA StyleKim, J., Park, J., Park, B., Kim, Y., Park, B., & Park, S. H. (2025). Compact and Real-Time Radiation Dosimeter Using Silicon Photomultipliers for In Vivo Dosimetry in Radiation Therapy. Sensors, 25(3), 857. https://doi.org/10.3390/s25030857